U.P.B. Sci. Bull., Series A, Vol. 78, Iss. 3, 2016 ISSN 1223-7027

CONNES-BIPROJECTIVE DUAL BANACH ALGEBRAS
Ahmad SHIRINKALAM', Abdolrasoul POURABBAS?®

In this paper, we introduce a new notion of biprojectivity, called Connes-
biprojective, for a dual Banach algebra. We study the relation between this new
notion to Connes-amenability and we show that, for a given dual Banach algebra, A
it is Connes-amenable if and only if A is Connes-biprojective and has a bounded
approximate identity.

Also, among some useful results, for an Arens regular Banach algebra A,
we show that, if A is biprojective, then the dual Banach algebra A** is Connes-
biprojective.

Keywords: Connes-biprojective, dual Banach algebra, oWC -virtual diagonal,
Connes-amenable.

1. Introduction

Let A be a Banach algebra and let A® A be the projective tensor product of
A with itself, which is a Banach A-bimodule for the usual left and right
operations with respect to A. Let z: A® A— A denote the linearization mapping
of the algebra multiplication in A, defined by z(a®b)=ab (a,beA). Let

7 A" > (A®A)" be the adjoint map of , where A" is the topological dual of A.

In the Helemskii’s Banach homology setting, there are two important notions
related to that one of (Johnson’s) amenability for Banach algebras. These are
projectivity and flatness. A Banach algebra A is called biprojective if » is a
retraction, which is to say, there is a bounded A -bimodule homomorphism
p:A— A® A such that 7o p =id - Similarly, a Banach algebra A is called biflat

if z* is a co-retraction; that is, if there is a bounded A -bimodule homomorphism
7 (A®A)" > A* such that 7o7z* =id AF [6, section VII]. Then we have that a

Banach algebra A is amenable if and only if A is biflat and has a bounded
approximate identity; see [10, Proposition 4.3.23 and Exercise 4.3.15] or [6,
Theorem VIIL.2.20]. Clearly, every biprojective Banach algebra is biflat -the
converse is generally not true- and, as a consequence, every biprojective Banach
algebra with a bounded approximate identity is amenable. There are several
analogue notions of biprojectivity and amenability like module biprojectivity and
approximate amenability (see [1] and [11] for more details).
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Another important characterization of amenability involving the map
7:A®A— A is that A is amenable if and only if there is a virtual diagonal for A.
The definition of virtual diagonal does not matter here.

Yet in relation with amenability, there is a particular class of Banach algebras
which deserves attention. This is the class of dual Banach algebras introduced by
V. Runde (2001). Examples of these algebras are the von Neumann algebras, the
measure algebras M(G) for locally compact groups G, the algebra of bounded

operators B(H), for a Hilbert space or even a reflexive Banach space H, the

bidual Banach algebra A™ for an Arens regular algebra A, and others. This list
shows the interest of the above class.

The original Johnson’s amenability is too strong to be handled in connection
with dual Banach algebras. Two good samples: S. Wasserman proved (1976) that
every amenable von Neumann algebra is subhomogeneous, and H. G. Dales, F.
Ghahramani and A. Helemskii proved (2002) that M(G) is amenable if and only if
G is amenable -as a group- and discrete.

A suitable amenability-type concept to deal with dual Banach algebras seems
to be the so-called nowadays Connes-amenability, firstly introduced by Johnson,
Kadison and Ringrose for von Neumann algebras (1972). In fact, a von Neumann
algebra is Connes-amenable if and only if it is injective. Also, M(G) is Connes-
amenable if and only if G is amenable (see [2], [3] and [4]).

It is possible to characterize Connes-amenability for dual Banach algebras in
terms of virtual diagonals. Let A be a dual Banach algebra. For a given A -
bimodule E, let osWC(E) denote the closed submodule of E of all elements x

such that the mappings A— E;ara-x andat> X-a are (A A —o(E,E")-
continuous. Then A, c oWC((A® AY"), from which it follows that ﬁ* maps A,
into AWC(A® A)Y). Hence, P drops to an A -bimodule
homomorphism TANC LOWC(A® A S A. Any element M in oWC((A® A"
satisfying a-M =M-a and a-7_cM=a (acAh),

is called a oWC-virtual diagonal for A. Then, a dual Banach algebra A is
Connes-amenable if and only if there exists a oWC-virtual diagonal for A
(Runde, 2004).

In short, 7, arises as the most convenient mapping, induced by 7, to deal

with the important class of dual Banach algebras. In this respect, it is now natural
to look for a suitable (Helemskii’s) homological analogue of biprojectivity, in the
setting of dual Banach algebras, that fit well with Connes-amenability.

In this paper, we introduce an analogue of biprojectivity, called Connes-
biprojective, studying its homological properties and we show how this concept
deals with Connes-amenability. The organization of this paper is as follows. We
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introduce a suitable notion of Connes-biprojectivity in the setting of dual Banach
algebras. We show that a dual Banach algebra is Connes-amenable if and only if it
is Connes-biprojective and has a bounded approximate identity (identity, indeed).
We prove that if an Arens regular Banach algebra A is biprojective, then the

bidual Banach algebra A™ is Connes-biprojective.
Given a Banach algebra A and a Banach A-bimodule E, the topological dual

space E* of E becomes a Banach A-bimodule defined by
<X,a'go> = <X'a,¢)>, <X,(p~a> = <a'x,(p> (aeAxeE,pe E*).
Recall that a Banach space X is a predual for a Banach space Y if we have an
isometric isomorphism X" =Y .
Definition 1.1. [8, Definition 1.1] A Banach algebra A is called dual, if it is a
dual Banach space with predual A, such that the multiplication in A is separately
o(A, A,)-continuous. Equivalently, a Banach algebra A is dual if it has a predual

A, which is a closed submodule of A* [10, Exercise 4.4.1].

Although a predual may not be unique, we can recognize it from the context.
In particular, we may speak of the weak™® topology on A without ambiguity.
Definition 1.2. [9, Definition 1.4] Let A be a dual Banach algebra and let E be a
dual Banach A-bimodule. An element xeE 1is called normal, if the maps
a>a-x and ar x-a are weak™ continuous.

The set of all normal elements in E is denoted by E,. We say that E is

normal if E=E,. It is easy to see that E, is a norm-closed submodule of E.
However, there is no need for E, to be weak*-closed.

For a given dual Banach algebra A and a Banach A-bimodule E, it is easy to
see that oWC(E) is a closed A -submodule of E and so E is canonically mapped
into oWC(E")*. If F is another Banach A-bimodule and if y:E >F is a
bounded A-bimodule homomorphism, then w(oWC(E)) c oWC(F) holds. Runde
in [9, Proposition 4.4] showed that E =coWC(E) if and only if E* is normal
Banach A-bimodule, and therefore for any Banach A-bimodule E, the dual
module oWC(E™) is normal.

Recall that for a Banach algebra A and a Banach A-bimodule E, a bounded
linear map D: A — E is called a derivation if D(ab)=a-D(b)+D(a)-b for every
a,be A. A derivation D:A— E 1is called inner if there exists an element x e E
such that for every ae A, D(a)=a-x—x-a.

Definition 1.3. [9, Definition 1.5] A dual Banach algebra is called Connes-
amenable if for every normal dual A -bimodule E, every weak* continuous
derivation D: A — E is inner.
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2. Connes-biprojective dual Banach algebras

As mentioned in the introduction, the concept of biprojectivity is important
in the Helemskii’s Banach homology and is closely related to Johnson’s
amenability. In this section we define a suitable analogue of Helemskii’s
homological-type concept to deal with dual Banach algebras, called Connes-
biprojectivity and we show that this concept is closely related to Connes-
amenability.

Definition 2.1. Let A be a dual Banach algebra. Then A is called Connes-
biprojective if there exists a bounded A-bimodule homomorphism
p:A— oWC(A® A)")" such that Tawe ° P =idy (that is, 7, is a retraction).

In the following theorem, we determine the relation between Connes-
biprojectivity and Connes-amenability.
Theorem 2.2. The following are equivalent for a dual Banach algebra A :
(1) A is Connes-biprojective and has a bounded approximate identity,
(i1) A is Connes-amenable.
Proof. Suppose that A is Connes-amenable. Then there exists a oWC -virtual
diagonal M e oWC(A®A)")" for A. We define p:A— (6oWC(A®A)")" by
p(@)=a-M, for every ae A Then

lp(a)l=lla-M < Klalll M.

Thus p is bounded. Also a-p(b)=a-(b-M) = (ab)-M. On the other hand, since M
is a virtual diagonal, (ab)-M =M -(ab)=(a-M)-b=p(a)-b, that is, p is an A-
bimodule homomorphism. It is easy to see that z_,. o p=id,. Note that since A is
Connes-amenable, it has an identity, equivalently, a bounded approximate
identity.

Conversely, suppose that A is Connes-biprojective and has a bounded
approximate identity (g),. Then there exists a bounded A-bimodule

homomorphism p: A— oWC((A® A" such that Tgnc °P =idy. Let
M; = p(g;) € WC((A® A)")". Then for every a € A, we have
a-M;-M;-a=p(a-¢)-pe-a)—>0,

and
7z we (M) @) -a =l gja—af— 0.

Since (M;); is uniformly bounded net in SWC(A® A", it has a weak* limit

point, say M. It is easy to see that M is a oWC -virtual diagonal for A, so A is
Connes-amenable. [
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Example 2.3. Let A be a biflat dual Banach algebra. Then AT S (AGA) isa

co-retraction and soz |Ak:Ak—>oWC((A® A)*) is a co-retraction again. Thus

TG (GWC(A® AY")* > A is a retraction, that is, A is Connes-biprojective.

By the previous example, every biprojective dual Banach algebra is Connes-
biprojective. In the following example we see that the converse is false in general.
Example 2.4. Let G be a non-discrete amenable locally compact group. Then by
[10, Theorem 4.4.13], M(G), the measure algebra of G, is a Connes-amenable
dual Banach algebra and thus by Theorem 2.2, M(G) is Connes-biprojective.
Since G is not discrete, by [5, Theorem 1.3] M(G) is not amenable, so it is not
biflat.

Clearly, every Connes-amenable Banach algebra is Connes-biprojective. Here

we give two examples of Connes-biprojective dual Banach algebras, which are
not Connes-amenable.

Example 2.5. Let S be a discrete semigroup and let ¢'(S) be its semigroup
algebra. Let A=/'(S)". If ¢ is a character on c,(S), then there exists a unique

extension of ¢ on ¢,(S)™, (which is denoted by ¢ ) and defined by

p(F)=F(d) (Fec,(S)" = A

$ is a multiplicative map because, for every F,G € A,
#(FG) = (FG)(¢) = F ($)G(4).
Now we define a new multiplication on A by
ab=g@b (abeA ¢ec,(S)).

With this multiplication, A becomes a Banach algebra which is a dual Banach
space. We denote this algebra by A,. We define a map p: A, — A¢®A¢ by
p(a)=X,®a, where ae A, and X, is an element in A, such that ¢?(XO) =1. Itis
casy to see that p is a bounded A, -bimodule homomorphism and Tp, © pa)=a
for each a € A,. Hence A, is a biprojective Banach algebra. If we show that A, is
a dual Banach algebra, then by Example 2.3 A, is Connes-biprojective. It is
enough to show that the multiplication in A, is separately W’ -continuous.
Suppose that be A is a fixed element. Let ae A and (a,) < A be such that
a,—»a in the W'-topology. For each fe/'(S)=c,(S)", we have
a,(f)—a(f). Since the character space of c,(S) lies in ¢'(S), so the last

statement is also true for f =@, where ¢ is the corresponding functional to ¢ .
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Hence, a,(#) — a(¢), which implies that #(a,) — #(a). Then @(a,)b — d(a)b.
Now suppose that (b,), is a net in A, such that b, —b in the W"-topology. It is

easy to see that #(a)b, — $(a)b in the W' -topology, for every a e A,. Hence A,

is a dual Banach algebra.
Now if A, is Connes-amenable, then A, has an identity, so dim A=1, (because

for each ae A we have a=ae=¢(a)e, where e is an identity of A;), hence a

contradiction reveals.

0 C
Example 2.6. Consider A= (0 (Cj with the usual matrix multiplication and L' -

norm. Since A is finite dimensional, it is a dual Banach algebra. Clearly A has a
right identity but it does not have an identity, so it is not Connes-amenable. We
. 0 X 0 X 0 1

defineamap ¢ : A—> A® A by )= ® . We have
0 vy 0 vy 01

II§[8 ;Jn:n[g §]®(8 Duzn(g i]nn(g nnzzn(g )y(jn

so || £ |[£2 and an easy calculation shows that £ is an A -bimodule
homomorphism. By composing the canonical map A® A — cWC((A® A" with
¢, we obtain an A -bimodule homomorphism p: A— oWC(A® A" . Since for
every ae Az e °p(@) =7y c °¢(a) we have

( ) 0 X ( 0 x ® 0 1 ) 0 X . ioht i ¢
o = = , SO 1ISari mverse o
Towe © P 0y 7 owe 0y 0 1 0y P g

7w Hence A is Connes-biprojective.

The next theorem shows that how Connes-biprojectivity deals with
homomorphisms.
Theorem 2.7. Let A be a Banach algebra, and let B be a dual Banach algebra.
Let 6: A— B be a continuous homomorphism.

(i) Let 6":B"— A" be such that 8" ,B.— A" is surjective. Suppose that

the image of the closed unit ball of Aby @ is weak* dense in the closed
unit ball of B. Then, biprojectivity of A implies Connes-biprojectivity of
B.

(i) If A is dual and Connes-biprojective and & is weak* continuous, then B
is Connes-biprojective.

Proof. Note that since 6:A— B is a continuous homomorphism, by [7,

Proposition 1.10.10], the map 0®9:A®A—>B®B defined
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by (0®6)a®b)=0(a)®O((b) can be extended to a bounded Ilinear map
0®0:A®Q A—>B®B. It is readily seen that, for every ab,ceA
(O®O)[a®b]-c)=(0®0)(a®b)ed(c) and (0 ® H)(c-[a®b]) = H(c) e (O ® O)(a®b)
where “-” is the action of A on A®A and “e” is the action of B on B®B
inherited by 6. Also, consider the canonical map +:B®B — oWC(B®B)")",

which is norm continuous with weak* dense range.
(1) Suppose that A is biprojective. Then there exists an A -bimodule

A

homomorphism p”:A—>A&®A such that z”epA=id Define a map

A
¢ A oWC(BOB))* given by ¢(a)=(1o(0®8)op")a). Then ¢ is bounded,
and for every a,a’ ¢ A we have

¢(aa')=0(a)eg(a)=¢(a)e0(a). (2.1)
For every beB, by assumption, there exists a bounded net (a;) = A such that
6(a;) »>b in the weak* topology. Since ¢ is bounded, (¢{(g)); has a weak*
accumulation point by Banach-Alaoglu theorem. Passing to a subnet (if it is
necessary), w —lim; {(ay) exists. Thus, we extend ¢ to a weak* continuous map

pB B oWC((B®B)")" defined by pB (by=w" - lim; £(3;) . We need to verify that
p® is well-defined. In order to do this, it is enough to show that w - lim; £'(aj) =0
in oWC(B®B)")*, whenever w" ~lim; 6(3)=0 in B. If Ze A", then by

assumption, there is a ¢ € B, such that 9*‘8* (¢) = 1. Now we have

1ilm</1, aj) = 1i|m<0*(go), a > - li|m<(p, 0(a;)) = 0.
Hence a; — 0 in the weak topology of A. Since ¢ is weak-weak™ continuous, we
conclude that ¢(aj) —» 0 in the weak™ topology. Suppose that b and b'e B. Then
there exist two nets (aj) and (a’p) in A such that 6(aj) > b and 6(a'p) > b’ in the

weak* topology. By the equation (2.1), and by the weak™® continuity of the action
of B we have,

B (b = w* - limj w* — lim 5 ¢ (aja'p) = w —lim; w* - lim ; 6(aj) ¢ (a'jg) =be B ).

B

Similarly, pB(bb') = pB(b) eb’. Thus p~ is a B -bimodule homomorphism.
Finally, we prove that ”EWC ° pB (b) =b for every b e B. Observe that for the
elementary tensor element a®a’ € A® A we have
7oc 212 (08 0)@®a) = moyc *1(0(2) ®6() = f(aa’) = o " (a®a)).

Thus for every ae A,
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oc ° € (@) = 6(a). (2.2)
Now let be B and take a net (a;) ¢ A such that 6(a;) - b in the weak* topology.
Then, by equation (2.2), we have
b=w" —lim; 8(a;) = w* —lim; 75~ 0 (@) = 75y~ (W —lim; £()) = 75/ o p° (b)
= i 08j) = i TowC i)~ "FoWC o) =%owc e p )
(i1) Suppose that A is dual and Connes-biprojective. Then there exists an A -
bimodule homomorphism pA ‘A= oWC(A® A" such that ”?WC o pA =id 5.
Consider the map(@®6)":(B®B)* > (A®A)" which is an A-bimodule
homomorphism. We conclude that (¢®6)" maps oWC(B®B)" into sWC(A® A)".

Consequently, we obtain a weak* continuous map

p=(086)" |6WC(B®B)* ) oOWC(A® A - oWC(B& B)™) .

Now, we define a map ¢ : A— oWC(B®B)")" given by ¢(a)=gpo pA(a) , for every
acA Since ¢ and p" are weak* continuous, so is £ and since @ is weak*
continuous and weak* dense range, ¢ extends to a weak* continuous map
pB B> oWC(B®B)")". An argument similar to (i) shows that p® is a B-

bimodule homomorphism.
Let a®a'e A® A. Since the map ¢ is the double transpose of #® 6, we have

p(a®a’)=(0®0)(a®a’)=(A(a)®H(a")).
Hence
B , B , ' A ,
T ANC oqy(a@a):zzdwc(e(a)@)e(a)): H(aa):eozzawc(a@)a).
Thus by linearity and continuity and by the hypothesis, for every a € A, we have
”OBWC OwopA(a):HoﬂOA_\WC o pP(a) = 0(a), (2.3)
so that the following diagram is commutative;
A —2 5 GWC(A®A))
o lo
B «—— OoWC(B®B))
Since the range of @ is dense, by (2.3) we have ”UBWC o pB (o) =b for every
b € B. Hence B is Connes-biprojective. 0
Given a Banach algebra A, we may define the bilinear maps AT x AT 5 AT
and A" xA™ 5 A" given by (®,u)— ®-u and (u,®)+— u-®, respectively, where
for every @ e A**,u cA"and ac A
<(D«y,a>=<q),y~a>, <,u‘d>,a>=<d>,a~,u>.
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We define two bilinear maps ¢,0: A™ xA™ — A™ given by (0,¥) > 0¥ and
(®,¥) —> 00 , where for every @, % ¢ A™ and ue A"
(00, 1) = (@, ), (@0W, 1) = (¥, @),
One can check that [J and ¢ are actually algebra products, called the first and the
second Arens products, respectively. If for every @, ¥ ¢ A™ we have oO¥ = 00,
then we say that A is Arens regular.
It is well-known that if A is an Arens regular Banach algebra, then A™, the

bidual of A is a dual Banach algebra with predual A* (see [9] for more details).
Corollary 2.8. Let A be an Arens regular Banach algebra. If A is biprojective,

then A™ is Connes-biprojective.
Proof. It is clear that the inclusion map id: A— A™ satisfies the conditions of
Theorem 2.7(1). O

If A is a dual Banach algebra and | is a weak*-closed ideal of A, then | isa
dual Banach algebra with predual 1, = A,/ I+, To see this, we have

" = =aht =1

Since the multiplication in A is separately weak* continuous, a simple
verification shows that the multiplication on A/ | is separately weak* continuous,
so A/l is also a dual Banach algebra.

Proposition 2.9. Let A be a Connes-biprojective dual Banach algebra and let |
be a weak*-closed ideal of A which is essential as a left Banach A -module. Then
A/1 is Connes-biprojective.

Proof. Since A is Connes-biprojective, the map = SWC :oWC((A® A)*)* —>Aisa
retraction, so there exists a bounded A-bimodule homomorphism
p:A—oWC(A® A" as aright inverse of 7T we - Let g: A— A/ be the quotient
map. Then the map id®q:A®A—>A®(A/l) is a bounded A-bimodule
homomorphism, so is (id&®q) :(A®(A/1)" > (A®A). Thus (id&q)"
maps oWC((A®(A/1))") into oWC((A® A)*), therefore we obtain an A -bimodule
homomorphism

(id & q)*‘GWC(A&)A)* ) OWC((A® A" = GWC(A® (A/1)™)".

Composing this map with p, we obtain the map

¢ = ((id ®Q)*LWC(A®A)* ) op: A GWC((A®(A/ 1)),

which is a bounded A -bimodule homomorphism since it is a composition of such
two maps. If a € A, then

0(a) e AWC(AB(A/ 1)) = (A®(A/1)™ / WC(A® (A7 1)*)T.
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Suppose that @(a) is a corresponding element of p(a) in (A®(A/ )™ (that is,
@#(a) is the image of ¢(a) under the quotient map). By the Goldstine’s theorem
there is a net (¢, (a)), < A®(A/1) such that ¢, (a) > @(a) in the weak* topology.
Since oWC((A® (A/1)")* is normal, we have ¢y (@)-i > @(a)-i forevery iel, and
since for every a we have ¢, (a)-i=0, hence @(a)-i=0. Thus ¢(ai)=¢p(a)-i=0.
By the fact that | is a left essential ideal, we have (p|| =0, so it induces an A-

bimodule homomorphism ¢: (A/1) - oWC((A® (A/ 1)™)*. In contrast, we have a
bounded A -bimodule homomorphism q®id:A®(A/1)— (A/1)®(A/1),which
gives an A -bimodule homomorphism

@®id) (A DS (A/1)" > (AR (A/ 1),
such that it maps oWC((A/1)®(A/ 1)) into oWC(A®(A/1)). Now consider the

adjoint map ((q® id)*‘ )" which is denoted by

OWC (2&4)
v oWC((A® (A7 1)) 5 aWC((A/ Y& (A1)

Take (=wpop:A/l >aWC((A/DH®MA/INH". Tt is easy to see that

Towc(any °¢ =1d ), therefore A/1 is Connes-biprojective.
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