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APPLICATION OF THE HOMOTOPY PERTURBATIONS METHOD IN APPROXIMATION
PROBABILITY DISTRIBUTIONS OF NON-LINEAR TIME SERIES

Eugen Ljajko1, Marina Tošić1, Tijana Kevkić2, Vladica Stojanović3

In this paper, the application of homotopy perturbations method (HPM) in approximation the
probability distribution of some non-linear stochastic models that have probability densities functions (PDFs)
with no closed form is described. The main result is based on HPM approximations the PDFs of some non-
linear autoregressive time series, which are widely used in modeling actual data, especially in econometrics.
It is formally confirmed the convergence and efficiency of HPM approximations, and illustrated also with
certain examples of non-linear stochastic models of autoregressive time series.
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1. Introduction

The homotopy perturbation method (HPM), firstly introduced by He [1]–[3], represents a very
general mathematical approach that combines homotopy in topology with perturbation techniques in
order to obtain (aproximate) solutions of non-linear equations of different types. In following years, the
HPM has been the subject of extensive studies [4]-[6] and applied in solving various problems. These
are, first of all, the different types of non-linear differential and partial-differential equations [7]-[9], the
different kinds of physical problems [10]-[12], as well as Fredholm and Volterra integral equations [13]-
[14]. On the other hand, the application of HPM in stochastic theory is still not significantly represented.
We point out [15] where the HPM has been applied in determination the invariant PDFs of non-linear
dynamical systems with chaotic behaviour. In research of discrete-time non-linear stochastic models one
of the main (and often intractable) problem is determination of their probability distributions [16]-[18].
Here, we describe one of the possible ways of solving this problem, based on HPM technique.

2. Stochastic assumptions. Formulation of the problem

Let (Ω,F ,P) be the probability space and (Zt), t = 0,±1,±2, . . . , the series of independent iden-
tically distributed (i.i.d.) and non-negative random variables (RVs). In addition, we suppose that RVs
(Zt), which are usually called the noise-series, have an absolutely-continuous probability density func-
tion (PDF) fZ(x), such that:

E(Zt) = P(Zt > 0) = 1. (1)

Also, let Ft = σ{Zs : s≤ t} be the filtration of non-decreasing σ–algebras on Ω, generated by the series
(Zt), and (Xt) be the series of Ft adaptive RVs, functionally depended on (Zt). In various practical
interpretations, (Xt) represents the realizations of some actual time series (financial index, for example),
with an unknown PDF fX (x). Therefore, one of the main goals in stochastic analysis of series (Xt) is to
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determine its probability distribution, based on the known PDF fZ(x). In that way, the behaviour of the
series (Xt) is completely described in a stochastic sense.

Among the most popular non-linear econometric models, which were successfully applied in many
analysis of financial markets, is the AutoRegressive Conditional Heteroscedastic (ARCH) model, firstly
introduced by Engle [19], and the AutoRegressive Conditional Duration (ACD) model, which was intro-
duced by Engle and Russel [20]. Both of these discrete-time stochastic models can be defined recursively,
in the general form, as {

Xt = Vt Zt

Vt = φ(Xt−1, . . . ,Xt−p),
(2)

where p ∈ N is the order of the model. Here, (Vt) is series of the Ft−1 adaptive RVs which is usually
called the volatility, and it represents the measure of uncertainty (or dispersion) of the actual series (Xt).
According to Eqs. (1) and (2), as well as assumptions introduced above, it follows:

E(Xt |Ft−1) =VtE(Zt |Ft−1) =Vt . (3)

In other words, Eq. (3) points to that all “information” about Xt , at the time moment t− 1, are based on
the known values of the volatility Vt . That is why the main goal is determination the common PDFs of
the RVs (Xt ,Vt), according to the known PDF of the noise series (Zt).

In the following, we consider the simplest form of the stochastic model given by Eqs. (2), where
the volatility (Vt) has a linear form of order p = 1:

Vt = a0 +a1 Xt−1. (4)

Additionally, we will assume that inequalities a0 ≥ 0 and 0 < a1 < 1 hold. In that way, the non-negative
and stationary conditions of (Xt ,Vt) are fulfilled (see, for instance [21]). Now, according to the first
equality in Eqs. (2), we can define the following transformation:{

Xt = Vt Zt

Yt = Zt
⇐⇒

 Vt =
Xt

Yt
Zt = Yt

,

whose Jacobian is

J=

∣∣∣∣∣∣∣∣∣
∂ vt

∂ xt

∂ vt

∂ yt
∂ zt

∂ xt

∂ zt

∂ yt

∣∣∣∣∣∣∣∣∣=
1
yt

> 0.

Using the conventional method, as well as the stochastic independence of the RVs Vt and Zt , we
can obtain the common PDF of the RVs (Xt ,Yt) as follows:

f(X ,Y )(xt ,yt) = fV [vt(xt ,yt)] fZ [zt(xt ,yt)] |J|=
fV

(
xt

yt

)
fZ (yt)

yt
.

where fV (v) and fX (x) are PDFs of the RVs (Vt) and (Xt), respectively. From here, the marginal PDF of
the series (Xt) is as follows:

fX (x) =
∫ +∞

0

fZ (y)
y

fV

(
x
y

)
dy. (5)

In the other way, Eq. (4) gives the following expression of the same PDF:

fX (x) = a1 fV (a0 +a1x) . (6)

Thus, by equalizing right-hand sides of Eqs. (5) and (6), we obtain the following equation:

a1 fV (a0 +a1x) =
∫ +∞

0

fZ (y)
y

fV

(
x
y

)
dy, (7)
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which represents an integral equation on unknown PDF fV (x).
Let us notice that, by using substitution v := x/y, Eq. (7) can be equivalently written as:

a1 fV (a0 +a1x) =
∫ +∞

0

fV (v)
v

fZ

(x
v

)
dv. (8)

Then, by substituting u := a0 +a1x, Eq. (8) becomes:

a1 fV (u) =
∫ +∞

0

fV (v)
v

fZ

(u−a0

a1 v

)
dv. (9)

In addition, when u < a0, the equality fZ((u−a0)/(a1v)) = 0 holds. Therefore, Eq. (9) can be written as:

a1 fV (u) =
∫ +∞

a0

fV (v)
v

fZ

(u−a0

a1 v

)
dv, (10)

where u≥ a0. According to translation (u,v) 7−→ (u+a0,v+a0), Eq. (10) becomes:

a1 fV (u+a0) =
∫ +∞

0

fV (v+a0)

v+a0
fZ

( u
a1(v+a0)

)
dv. (11)

Finally, if we introduce the new unknown function gV (x) as:

gV (x) =

{
fV (x+a0), x≥ 0

0, x < 0
,

then Eq. (11) becomes:

gV (x) =
1
a1

∫ +∞

0
K(x,y)gV (y)dy, (12)

with the kernel:

K(x,y) =
1

y+a0
fZ

( x
a1(y+a0)

)
. (13)

Note that function K(x,y) depends, also, on parameters a0,a1. Therefore, even though closely, Eq. (12)
is not a typical, homogenous Fredholm integral equation of the second kind, and it can not be solved in
the conventional way.

3. Approximation of PDFs with HPM

In order to solve Eq. (12), we apply the HPM technique. For this purpose, we firstly introduce the
homotopy equation:

(1− p)L [g̃V (x; p)] = pN [g̃V (x; p)] , (14)
where p ∈ (0,1) is the so-called embedding parameter,

L [g̃V (x; p)] = g̃V (x; p)−gZ(x)

is the linear part, and

N [g̃V (x; p)] =
1
a1

∫ +∞

0
K(x,y)g̃V (y; p)dy− g̃V (x; p)

is the non-linear or “true” part of homotopy Eq. (14). Obviously, when p = 0, Eq. (14) becomes
L [g̃V (x;0)] = 0, with the unique solution:

g̃V (x;0) = gZ(x)
de f
=

{
fZ(x+a0), x≥ 0

0, x < 0.

This solution is usually called an initial solution or an initial approximation of the homotopy Eq. (14).
Otherwise, when p = 1, Eq. (14) becomes N [g̃V (x,0)] = 0, and it is the equivalent to Eq. (12), with the
main solution g̃V (x;1)≡ gV (x).
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The HPM is based on the assumption that solution of Eq. (14) can be express as the power series
(in p):

g̃V (x; p) =
+∞

∑
k=0

pk gk(x). (15)

From here, when p = 0, we get as initial solution of Eq. (14):

g0(x) := g̃V (x;0) = gZ(x).

Otherwise, the main solution of Eq. (14), obtained when p = 1, will be:

gV (x) = lim
p→1−

g̃V (x; p) = gZ(x)+
∞

∑
k=1

gk(x), (16)

on the condition that series in Eq. (16) converges. Substituting Eq. (15) in Eq. (14), we obtain:

(1− p)
+∞

∑
k=1

pk gk(x) =
1
a1

+∞

∑
k=1

pk
∫ +∞

0
K(x,y)gk−1(y)dy−

+∞

∑
k=1

pk gk−1(x), (17)

and if we introduce the sequence of integrals:

Ik(x) =
∫ +∞

0
K(x,y)gk(y)dy, k = 0,1,2, . . . ,

then Eq. (17) becomes:
+∞

∑
k=1

pk gk(x) =
1
a1

+∞

∑
k=1

pkIk−1(x)− pg0(x).

Now, equating expressions with the identical powers pk, where k= 1,2, . . . , gives the following recurrence
relations: 

g1(x) =
1
a1

I0(x)−g0(x),

gk(x) =
1
a1

Ik−1(x), k = 2,3, . . .
(18)

In that way, the functions gk(x), k = 0,1,2, . . . can be obtained. Moreover, if we introduce another
recurrence sequence: 

J0(x) = g0(x) = gZ(x),

Jk(x) =
∫ +∞

0
K(x,y)Jk−1(y)dy, k = 1,2, . . . ,

(19)

then functions {gk(x)}∞
k=1 can be expressed in the following way:

g1(x) =
1
a1

∫ +∞

0
K(x,y)g0(y)dy−g0(x)

=
1
a1

J1(x)− J0(x)

g2(x) =
1
a1

∫ +∞

0
K(x,y)g1(y)dy =

1
a2

1

∫ +∞

0
K(x,y)J1(y)dy− 1

a1

∫ +∞

0
K(x,y)J0(y)dy

=
1
a2

1
J2(x)−

1
a1

J1(x), etc.

It can be easily shown, by using the induction method, that:

gk(x) =
1
ak

1
Jk(x)−

1
ak−1

1

Jk−1(x), k = 1,2, . . . , (20)
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and Eqs. (19) and (20) give the appropriate HPM-approximations (or HPM-estimates) of gV (x):

ĝ0(x) = g0(x) = gZ(x)

ĝ1(x) = ĝ0(x)+g1(x) =
1
a1

J1(x)

ĝ2(x) = ĝ1(x)+g2(x) =
1
a2

1
J2(x), etc.

Thus, the unique expression of HPM-approximations of the unknown function gV (x) is obtained as:

ĝk(x) =
k

∑
j=0

g j(x) =
1
ak

1
Jk(x), k = 0,1,2, . . . (21)

Obviously, the solution of main Eq. (12) is the limit of HPM-approximations ĝk(x), when k→+∞. Under
certain sufficient conditions, this convergence can be shown as follows.

Theorem 3.1. Let {ĝk(x)}∞
k=0 be the sequence of HPM-approximations, defined by Eqs. (21). In addition,

assume that there exist C > 0, α > 0 and 0≤ β < 1 such that for each x > 0 the PDF fZ(x) of noise-series
(Zt) satisfies inequality:

fZ(x)≤C
e−αx

xβ
. (22)

Then, the series {ĝk(x)}∞
k=0 converges to the function gV (x), i.e. it converges to the solution of Eq. (12).

Proof. According to assumption of the theorem, for fixed but an arbitrary x > 0 the kernel K(x,y), given
by Eq. (13), satisfies inequality:

K(x,y)≤C
(a1

x

)β

(y+a0)
β−1 exp

(
−αx

a1(y+a0)

)
. (23)

Notice that function:

h(u) = uβ−1 exp
(
− αx

a1u

)
is positive for any u > 0 and lim

u→0+
h(u) = 0+ holds [22]. Also, at the point:

u0 =
α x

a1(1−β )
> 0

it has a maximum (Fig. 1):

hmax = h(u0) =

[
α ex

a1 (1−β )

]β−1

.

Thus, substitution hmax in Eq. (23) gives:

K(x,y)≤ a1 C
x

(
1−β

α e

)1−β

. (24)

On the other hand, as the PDF fZ(x) satisfies the normality condition:∫ +∞

0
fZ(x)dx = 1,

for the kernel K(x,y) is valid:∫ +∞

0
K(x,y)dx =

∫ +∞

0
fZ

(
x

a1(y+a0)

)
dx

y+a0
= a1. (25)
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FIGURE 1. Graphics of the function h(u) for various values of x-variable when α = 1,
β = 0 (panel left), and various values of parameters α , β when x = 1.5 (panel right).

According to Eqs. (24) and (25), for the sequence {gk(x)}∞
k=1, defined by Eqs. (18), it follows [23]:

|g1(x)| ≤
1
a1

∫ +∞

0
K(x,y)g0(y)dy≤ C

x

(
1−β

α e

)1−β ∫ +∞

0
fZ(x+a0)dx

≤ C
x

(
1−β

α e

)1−β [
1−FZ(a0)

]
,

|g2(x)| ≤
1
a1

∫ +∞

0
K(x,y) |g1(y)| dy≤ C

x

(
1−β

α e

)1−β ∫ +∞

0
|g1(y)| dy

≤ C
x

(
1−β

α e

)1−β ∫ +∞

0

dy
a1

∫ +∞

0
K(y,z)g0(z)dz

≤ C
x

(
1−β

α e

)1−β ∫ +∞

0

g0(z)dz
a1

∫ +∞

0
K(y,z)dy

≤ C
x

(
1−β

α e

)1−β ∫ +∞

0
g0(z)dz

≤ C
x

(
1−β

α e

)1−β [
1−FZ(a0)

]
, etc.

Obviously, for each k = 1,2, . . . the following inequalities are valid:

|gk(x)| ≤
C
x

(
1−β

α e

)1−β [
1−FZ(a0)

]
, (26)

where we denoted as FZ(x) := P{Zt < x} =
∫ x

0
fZ(y)dy the cumulative distribution function (CDF) of

RVs (Zt).
Further, denote with r(x) the radius of convergence of the power series in Eq. (15). Then, by

applying the Cauchy-Hadamard theorem and Eq. (26) it follows:

r(x) =
[

limsup
k→∞

|gk(x)|1/k
]−1

≥ 1.
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Thus, the power series in Eq. (15) converges at p = 1. In the same way as above, according to Eqs. (19),
for the HPM-estimates {ĝk(x)}∞

k=1 we obtain:

|ĝk(x)| ≤
C
x

(
1−β

α e

)1−β [
1−FZ(a0)

]
, k = 1,2, . . . (27)

Thus, when k→ ∞, it follows:

lim
k→∞

|ĝk(x)|=

∣∣∣∣∣ ∞

∑
j=0

g j(x)

∣∣∣∣∣<+∞,

i.e. this power series is absolutely convergent at p = 1. By applying the Abel theorem, it follows that
function g̃(x, p) is continuous from the left at point p = 1, i.e. Eq. (16) holds. So, the series ∑

∞
j=0 g j(x) is

a solution of the homotopy Eq. (14), when p = 1, and it is also a solution of Eq. (12). �

Remark 3.1. The boundary condition (BC) given by Eq. (22) is usually fulfilled, especially for the well-
known exponential family of PDFs (see, for instance [24]). In the next section, practical application of
the previously mentioned HPM procedure will be described, and this BC will be examined in more detail.

Remark 3.2. If we introduce the so-called L1-norm ‖g(x)‖1 :=
∫ +∞

0
|g(x)| dx, then for the HPM-estimates

{ĝk(x)}∞
k=0 it follows:

‖ĝ0(x)‖1 =
∫ +∞

0
fZ(x+a0)dx = 1−FZ(a0),

‖ĝ1(x)‖1 =
1
a1

∫ +∞

0
J1(x)dx =

1
a1

∫ +∞

0
dx
∫ +∞

0
K(x,y)g0(y)dy

=
1
a1

∫ +∞

0
g0(y)dy

∫ +∞

0
K(x,y)dx =

∫ +∞

0
g0(y)dy

= 1−FZ(a0), etc.

In general, equalities:
‖ĝk(x)‖1 = 1−FZ(a0)

hold for each k = 0,1,2, . . . Furthermore, let us notice that functions f̂V,k(x) := ĝk(x− a0) represent the
appropriate approximations of the unknown PDF fV (x). In the same way as before, it can be easily shown,
for any k = 0,1,2, . . . , the normality conditions:∥∥∥ f̂V,k(x)

∥∥∥
1
= 1.

Finally, estimates f̂X ,k(x) of the unknown PDF fX (x) can be obtained according to Eq. (6) as:

f̂X ,k(x) = a1 f̂V,k(a0 +a1x) = a1 ĝk(a1x), k = 0,1,2, . . . . (28)

4. Examples and applications

As we have already pointed out in the introductory part, there are two by far the most important
stochastic models in which the aforementioned HPM procedure would find application. Both of these
models can be described by a unique autoregressive model, given by the following equations:{

Xt = Vt Zt

Vt = a0 +a1Xt−1.

The only difference between these two models is in the stochastic distribution of noise series (Zt), that
is, its PDF fZ(x). In the following, both of them will be considered in more detail, whereby, for the
simplicity, we shall suppose that a0 = 0, a1 = 1/2.
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4.1. ACD model

The times of changes of some financial index (stock prices, for example) can be modelled by
the Autoregressive Conditional Duration (ACD) model, introduced by Engle and Russel [20]. In this
stochastic model, as the known PDF of RVs Zt ≥ 0 is usually taken the so-called standardized exponential
distribution, with PDF given as:

fZ(x) :=

{
e−x, x≥ 0

0, otherwise.

Obviously, the condition E(Zt) = 1 holds, and the PDF fZ(x) satisfies the BC given by Eq. (22), when
C = α = 1 and β = 0. Thereby, under the condition x ≥ 0 and by using the previously described HPM
procedure, i.e. Eqs. (19)–(21), we obtained the series of HPM-estimates of PDF fV (x):

ĝ0(x) = f̂V,0(x) = exp(−x) ,

ĝ1(x) = f̂V,1(x) = 2
∫

∞

0
K(x,y)J0(y) dy = 2

∫
∞

0

e−
2x
y −y

y
dy = 4K0(2

√
2x),

and, in general:

ĝk(x) = f̂V,k(x) = 2k
∫

∞

0
K(x,y)Jk−1(y) dy = 2k

∫
∞

0

e−
2x
y

y
Jk−1(y)dy, k = 1,2, . . .

Here, K0(x) is the hyperbolic Bessel function of the second kind, and {Jk(x)}∞
k=0 is the recurrence se-

quence of integrals defined by Eqs. (19). Thereafter, estimates f̂X ,k(x) of the unknown PDF fX (x) can
be easily obtained by using Eqs. (28). In Fig. 2 are shown the graphics of both of these estimates, when
k = 0,1,2, . . . ,7.

FIGURE 2. HPM-approximations of unknown PDFs of the ACD model: the volatility
series (Vt) (panel left) and the basic series (Xt) (panel right).

4.2. ARCH model

The Autoregressive Conditional Heteroscedastic (ARCH) models, introduced by Engle [19], were
successfully applied in many aspects of the financial markets analysis. They explain a lot of the properties
of financial indexes dynamics such as a non-linear behaviour of the volatility, heavy tails distributions and



Application of the HPM in approximation PDFs of non-linear time series 185

clustering. In this case, as the PDF of non-negative noise-series (Zt) is usually taken the squared Gaussian
distribution:

fZ(x) :=


1√
2πx

e−x/2, x≥ 0

0, otherwise.

Notice that this PDF also satisfies E(Zt) = 1, as well as the BC given by Eq. (22), when C = (2π)−1/2

and α = β = 1/2. Analogous to the previous one, the sequence of HPM-estimates of the unknown PDF
fV (x) is as follows:

ĝ0(x) = f̂V,0(x) = (2πx)−1/2 exp
(
− x

2

)
,

ĝ1(x) = f̂V,1(x) =
1

π
√

2x

+∞∫
0

e−
x
y−

y
2

y
dy =

√
2K0

(√
2x
)

π
√

x
, etc.

In general, for any k = 1,2, . . . , HPM-estimates can be obtained by the recurrence relation:

ĝk(x) = f̂V,k(x) = 2k
∫

∞

0
K(x,y) Jk−1(y) dy =

2k−1
√

π x

+∞∫
0

e−
x
y

√
y

Jk−1(y)dy,

where {Jk(x)}∞
k=0 is defined by Eqs. (19). After that, in the same way as in previously, the PDF fX (x) can

be estimated according to Eqs. (28). Graphics of estimates f̂V,k(x) and f̂X ,k(x), when k = 0,1,2, . . . ,7, are
shown in Fig. 3.

FIGURE 3. HPM-approximations of unknown PDFs of the ARCH model: the volatility
series (Vt) (panel left) and the basic series (Xt) (panel right).

5. Conclusion

The Homotopy Perturbation Method (HPM) has been proposed in order to (approximate) solving
non-linear equation which enables finding the probability density functions (PDFs) of some important
classes of stochastic models, primarily used in econometrics. Here presented theoretical and practical
results indicate that thus obtained HPM-approximations converge to the exact solution of this equation.
Therefore, this method could find application in solving some similar and related stochastic problems.
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[14] S.-M. Jung, Ş. Sevgin and H. Şevli, On the perturbation of Volterra integro-differential equations, Appl. Math. Lett. 26(2013)
665–669.
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