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WEBBED LOCALLY CONVEX CONES

Davood AYASEH?, Asghar RANJBARI?

In this paper, we introduce the concepts of webs, compatible
webs, completing webs and uniformly completing webs in locally convex cones. We
obtain some criteria for locally convex cones with completing webs. Finally, we
prove a closed graph type theorem in locally convex cones.
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1. Introduction

A cone is a set » endowed with an addition and a scalar multiplication for
nonnegative real numbers. The addition is associative and commutative, and 2 has
a neutral element 0. Also the scalar multiplication has the usual associative and
distributive properties, that is a(fa) = (aB)a, (a +p)a = aa+ fa, a(a+b) =aa+
ab, la=aand oa =o0forall a,b € ?and a,p > 0.

The theory of locally convex cones was developed in [4] and [6]. In this theory,
a topological structure on a cone is introduced with the help of an order theoretical
concept or a convex quasiuniform structure. In this paper we use the latter. For
recent researches see [1, 3].

Let » be a cone. A convex quasiuniform structure on ®, is a collection u of
convex subsets U c P? = P x 2 if the following properties hold:

(U acuUforeveryU eu (A= {(aa)ac€P});

U, forall u,v euthereisaw eusuchthat w cunv;
(U) AU opU c A+ U forallu ewand A, u > 0;

W, av euforall y e wand a > 0.

We note that for u,v c P2,

UoV ={(a,b) € P2:3c € P; (a,c) €U and (c,b) €V}

Let  be a cone and u be a convex quasiuniform structure on ®. The pair (P,) is
called a locally convex cone if

(Us) for each a € # and U € u there is some p > 0 such that (0, a) € pU.

With every convex quasiuniform structure i on P we associate two topologies:
The neighborhood bases for an element a in the upper and lower topologies are
given by the sets
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U(@)={beP:(ba)eU}, resp. (a)U={b€eP:(ab)eU} Uell

The common refinement of the upper and lower topologies is called symmetric

topology. A neighborhood base for a € 2 in this topology is given by the sets
Ul@U=U(a)n(a)U, Uel

Let u and w be convex quasiuniform structures on . We say that u is finer than
w if for each w € w there is U € u such that u c w.

Let » be a cone and u be a convex quasiuniform structure on ®. The subset B of
u is called a base for u if for each U € u thereare n e N, A,,---,4, >0and B,,--,B, €
B such that 2,B, n---n 4,B, € U.

In locally convex cone (P,u) the closure of ae® is defined to be the set
a=Nyex U(a) 3
(see [4], Chapter I). The locally convex cone (P,u) is called separated if @ =b
implies a = b for a,b € P. It is proved in [4] that a locally convex cone is separated
if and only if its symmetric topology is Hausdorff.

Let » be a cone. A convex subset B of P2 is called uniformly convex whenever it
has the properties (U,) and (Us;). The locally convex cone (P,u) is called a uc-cone
whenever U = {aU: a > 0} for some U € u (see [2]).

The extended real number system R = R U {+o0} is a cone endowed with the usual
algebraic operations, in particular a + o = +o for all a € R, a - (+) = +o for all
a>0and0- (+0) =0. Weset ¥ = (£:¢ > 0}, where £ = {(a,b) E R :a < b + ¢},

Then 7V is a convex quasiuniform structure on R and (R, V) is a locally convex
cone. For a € R the intervals (—«,a + £] are the upper and the intervals [a — ¢, + ]
are the lower neighborhoods, while for a = +o the entire cone R is the only upper
neighborhood, and {+} is open in the lower topology. The symmetric topology is
the usual topology on R with as an isolated point +co.

For cones # and @, a mapping T: - @ is called a linear operator if T(a + b) =
T(a) + T(b) and T(aa) = aT(a) hold for all a,b € and « > 0. If both (?,u) and
(0, w) are locally convex cones, the operator T is called (uniformly) continuous if
for every w € w one can find U € u such that (T x T)(U) c w.

A linear functional on ® is a linear operator u:? - R. We denote the set of all
linear functional on ® by L(P) (the algebraic dual of ). For a subset F of P? we
define polar F° as follows

Fo={uelL®):ula) <ul)+1,vY(ab)EF}

Clearly ({(0,0)})° = L(P). A linear functional x on (»,) is (uniformly) continuous
if u € u° for some U € u. The dual cone P* of a locally convex cone (P, ) consists
of all continuous linear functionals on # and is the union of all polars v° of
neighborhoods U € u.

We shall say that the locally convex cone (P,u) has the strict separation
property if the following holds:

(sp) For all a,b € 2 and U € u such that (a, b) ¢ pU for some p > 1, there is a
linear functional x € U° such that u(a) > u(b) + 1 ([4], I, 2.12).
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Also we shall say that the subset U of P2 has the property (cp) if the following
holds:

if (a,b) ¢ U, then there is u € P* such that u(a) > u(b) + 1 and u(c) < u(a) + 1 for all
(c,d) e U.

Let (»,u) be a locally convex cone. The subset B of P2 is called u-bounded
whenever it is absorbed by each U € u. The subset 4 of 2 is called bounded above
(or below) whenever A x {0} (or {0} x A) is u-bounded, respectively (see [2]).

A dual pair (®,Q) consists of two cones 2 and @ with a bilinear mapping

(a,x) »<a,x >:P xQ - R,
(see [4]). If (»,0) is a dual pair, then every x € Q is a linear mapping on . We
denote the coarsest convex quasiuniform structure on ® that makes all x e Q
continuous by u,(P,9). In fact (P, u,(P,Q)) is the projective limit of (R, V) by
x € @ as linear mappings on ® (projective limits of locally convex cones were
defined in [5]).

Let (,0) be a dual pair. We shall say that a subset B of 2 is u,(®,0)-bounded
below whenever it is bounded below in locally convex cone (?,u,(?,Q)). Let B be
a collection of u, (P, 9)-bounded below subsets of # such that

() aB e B forall Be Band a > 0,
(b) Forall X,y e BthereiszeBsuchthatxuy c z.
(c) P is spanned by Uges B.
For B € B we set
Ug ={(x,y) €Q%:< b,x ><< b,y > +1, for all b € B}
and uz(Q,P) = {Ug:B € B}. It is proved in [4], page 37, that uz(Q,P)is a convex
quasiuniform structure on @ and (9, U5 (Q,P)) is a locally convex cone.

Let (»,w) and (9, W) be locally convex cones. The linear operator T:? - Q is
called u-bounded whenever for every u-bounded subset B of P2, (T x T)(B) is u-
bounded. The locally convex cone (2, 1) is called bornological if every u-bounded
linear operator from (#,2) into any locally convex cone is continuous. The linear
operator T: - @ is called bounded below whenever for every bounded below
subset 4 of P, T(4) is bounded below. The locally convex cone (P,u) is called b-
bornological if every bounded below linear operator from (2,w) into any locally
convex cone is continuous (see [2]). Since every u-bounded linear operator is
bounded below, every b-bornological cone is bornological.

For a subset F of 22 we denote by uch(F), the smallest uniformly convex subset
of P2, which contains F and call it the uniform convex hull of F.

Bornological and b-bornological locally convex cones were studied in [2]. We
review the construction of these structures briefly: Let » be a cone and v be a
uniformly convex subset of P. We set P, ={a e P:31>0, (0,a) € AU} and U, =
{a(UnPZ):a > 0}. Then (Py,u,) is a locally convex cone (a uc-cone). In [2], we
proved that there is the finest convex quasiuniform structure u, (or ,,) on locally
convex cone (?,w) such that #2 (or ?) has the same u-bounded (or bounded
below) subsets under u and u,(or u,,). The locally convex cone (P,u,) is the
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inductive limit of the wuc-cones (P, U,)yes, Where B is the collection of all
uniformly convex and u-bounded subsets of 2. Also (P,u,,) is the inductive limit
of the wuc-cones (Py,Uy)yes, Where B = {uch({0} x B): B is bounded below}. The
locally convex cone (P,u) is bornological or b-bornological if and only if u is
equivalent to u, or u,,, respectively.

Let (»,) be a locally convex cone. A net (x);e; In (P, ) is called lower (upper)
Cauchy if for every v e u there is some y, € 7 such that (xz,x,) € U (respectively,
(xq,x5) € U) for all @, p € 7 with g > a > y,. Als0 (x;);¢; IS called symmetric Cauchy
if for each U € u there is some y, €7 such that (xz,x,) € U for all «,p €7 with
B,a =yy. The locally convex cone (?,w) is called lower (upper and symmetric)
complete if every lower (respectively, upper and symmetric) Cauchy net
converges to an element of 2 in the lower (respectively, upper and symmetric)
topology.

The locally convex cone (P,u) is called sequentially lower (upper and
symmetric) complete if every lower (respectively, upper and symmetric) Cauchy
sequence converges to an element of # in the lower (respectively, upper and
symmetric) topology.

2. Locally convex cones with webs

Firstly, we define the concept of web in cones. We mean a web w in a cone 2 as
a countable collection of uniformly convex subsets of P2, indexed by the finite
sequences of positive integers and arranged by layers. The first layer consists of
the sequence (W;);en, Whose union absorbs each point of w = uch({0} x ) i.e. for
each (a,b) € W there are 2 > 0 and m € N such that (a, b) € AW,,,. For each w; there is
a sequence (W;;);en Of subsets %Wi, whose union, i.e. U,y W;; absorbs each points
of w;. All the sets w;;, when i and j vary, consist the second layer of w. For each
set w;; there is a sequence (W;;,)xen OF subsets of §Wl-j, whose union, i.e. Uyey Wi
absorbs each point of w;;. By the induction, the sets w; ;,., can be defined. A
strand of the web w is any sequence w;, w;;, W;j. ..., one from each layer. Thus
each infinite sequence (i,)..y Of positive integers determines the strand
W, ,W; ., W, W, .. Then we can denote a typical strand by (W,),ew.

igr Wigipr Wigipizs = 1i2+in’

Therefore w,,,, c 2w, for each n € N.
2

Definition 2.1. Let (?,u) be a locally convex cone. We shall say that the
web W is compatible with the convex quasiuniform structure of P, i.e. U,
whenever for each strand (W,),.ey and each U € u, there is n € N such that w,, c u.
For a subset F of P2 and ae P, we set F(a)={b € P:(b,a) €EF}, (aA)F ={b €
P:(a,b) € P} and F(a)F = F(a) N (a)F.



Webbed locally convex cones 153

Lemma 2.2. Let (»,u) be a locally convex cone. Then the web W is

compatible with the convex quasiuniform structure u if and only if for each x € P
and every strand (w,) and each choice x, € W, (x)(or x, € (x)W,) the sequence
(X)nen 1S UpPper (or lower) convergent to x.
Proof. Let x e » be arbitrary and (w,) be a strand of w. If the web w is
compatible with the convex quasiuniform structure u and x, € W, (x) (or x, €
(x)w,) for each n € N, then for every U € u, there is m € N such that w,, c u. Then
w, c U for all n > m by the definition of a web. This implies that w;,(x) < U(x) (or
(X)W, € (x)U). This shows that x,, € U(x) (or x, € (x)U) for all n >m i.e. (x,)ney IS
upper (or lower) convergent to x. For the converse let v € u and (w,) be a strand.
For arbitrary x € 2 and (x,,),en € (W,)nen there is N € N such that for each n > N we
have (x,,x) € U (i.. (x,)nen € Wp)nen 1S UPPEr convergent to x). Now, since xy is
an arbitrary element of w,(x), we have wy(x) c U(x), for all x e 7. Now, suppose
(a,b) € Wy. Then a € W,(b) c U(b). Thus (a,b) € U. Then the web w is compatible.
Similarly, if (x,)neny € W)nen 1S lower convergent to x, then we can prove that the
web w is compatible.

Corollary 2.3. Let (p,u) be a locally convex cone. If the web w is
compatible with the convex quasiuniform structure u, then for each x € 7 and
every strand (w,) and each choice x, € W, (x)W, the sequence (x,) iS symmetric
convergent to x.

Lemma 2.4. Let (P, u) be a locally convex cone and the web w is
compatible with the convex quasiuniform structure u. For the strand (W,),.yand
each choice x, e w(0)(or x, € (0)w), the sequence of partial sums of the series
¥ x,, is lower (or upper) Cauchy.

Proof. Let v e u and for each n € N, x, € W,(0). Since W is compatible with the
convex quasiuniform structure 1, there is N € N such that w,, c %U. Lets, =3, x;.

For m > n > N we have

m m
(SmsSn) = (Sp + Z XiySn) = (SnySp) + ( Z Xi,0) €A +Wpyq + -+ Wy,

i=n+1 i=n+1

CA+ W+ + o W

CA+W,

A +Wy g%u+%ug U.
Then (s,) is lower Cauchy. Similarly, if x, € (0)W,, then we can prove the
sequence of partial sums of the series ¥, x,, is upper Cauchy.

Corollary 2.5. Let (P,u) be a locally convex cone and the web w is

compatible with the convex quasiuniform structure u. For the strand (W},),.ey and
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each choice x, € w(0)w, the sequence of partial sums of the series ¥ x,, is lower,
upper and symmetric Cauchy.

Corollary 2.6. Let (P,u) be a sequentially symmetric complete locally
convex cone and the web w is compatible with the convex quasiuniform structure
u. For the strand (W},),,cy @and each choice x,, e w(0)w the series ¥ x,, is symmetric
convergent.

Definition 2.7. Let (»,u) be a locally convex cone. The compatible web w
in (P,w) is called completing if for each strand (W,),ey the series ¥ x, is
symmetric convergent for every choice x,, € W, (0)W,.

By Corollary 2.6, in every sequentially symmetric complete locally convex cone,
each compatible web is completing.

Example 2.8. Let E endowed with the topology  be a locally convex space
and v be a neighborhood base of convex and balanced sets for . For each v e v
we set V ={(a,b) € E>:a—b € V}. Then the collection V = {V7:v € v} is a convex
quasiuniform structure on E2 and (£, V) is a locally convex cone. The upper, lower
and symmetric topologies of (E, V) is identical with the topology . Now, let m be
aweb in (E,V) as a locally convex cone. Then the collection w = (W )w:w € M}
is a web in E as a locally convex space. Also, if » is a web in E as a locally
convex space, then the collection & = {N:N € '}, where N = {(a,b) € E>:a— b € N}
is a web in (E,7) as a locally convex space. If & is completing or compatible in E
as a locally convex space, then & is completing or compatible in (g, V), since the
upper, lower and symmetric topologies of (£, V) is identical with z. Therefore the
concept of web in locally convex cones is an extension of the concept of web in
locally convex spaces.

Example 2.9. We consider the cone M ={[a,b]:a,b €R and a < b}
endowed with the usual algebraic operations. We set B = [-1,1] and

B ={([a,b],[c,d]) € M?:[a,b] S [c,d] + [-1,1]}

={([a,b],[c,d]) E M%:c—1<a<b<d+1)}.
Then u = {aB:a > 0} IS a convex quasiuniform structure on M and (M, u) is a
locally convex cone. We prove that (M, ) is symmetric complete. Since (M, ) is
a uc-cone, it is enough to show that every symmetric Cauchy sequence is
symmetric convergent. Let ([a,, b,])ney IS @ Symmetric Cauchy sequence in M.
Then for each e > 0 there is n, € N such that for each m,n > n,, ([a,, bul, [@m, bm]) €
eB. Then for each m>n=>ny, ap,-¢<a,<bh,<b,+¢ and a,—e<a, <b, <
b, +&. This shows that |a, —a,|<e and |b, —b,|<e for each m >n = n,.
Therefore the sequences (a,)ney and (b,).ey are Cauchy sequences in R with
respect to the usual topology. Since R is complete with respect to the usual
topology, there are a,b € R such that a, - a and b, - b. It is clear that a < b. We
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prove that [a,, b,] - [a, b] With respect to the symmetric topology of M. For ¢ >0
there are k,,k, € N such that for each n>k,, |a, —a|] <e and for each n > k,,
|b, —b| < e. Now, for each n > max{k,,k,}, we have a—s<a,<bh,<b+e and
a, —e<a<b<b,+e Therefore [a,, b,] - [a,b] With respect to the symmetric
topology and (a, ) is symmetric complete. We construct the web w on wm as
follows:

- 1_
Wi, =B Wy, = EB’ o Wity = on—-1""

Clearly, w is a compatible web on 2. Now since (M, 1) is symmetric complete, w
is completing by Corollary 2.6.

Proposition 2.10. Let (?,u) be a sequentially symmetric complete locally

convex cone. If u has a countable base, then (,) has a completing web.
Proof. We choose the base (U,),ey for u such that v,,, c U, foreach n e N. Let w
is the web formed by taking every set in the nth layer to be u,. Clearly, w is a
compatible web. Now, since (P,1) is sequentially symmetric complete, then w is
completing.

Corollary 2.11. Let (P,u) be a sequentially symmetric complete uc-cone.
Then (P, has a completing web.

The concept of completion for locally convex cones has been established in [3].
For a locally convex cone (2, ) with (sp), the completion # of P, is the subcone
Nuex (P + {0} x U°)*) of L(P*) endowed with the convex convex quasiuniform
structure U = Uz (P, P*), where B = {U°: U € u}. For details see [3].

Lemma 2.12. Let (P, ) be a locally convex cone with (sp) and B be a

collection of u, (P, ?*)-bounded subsets of » with the properties (a), (b) and (c). If
every linear functional on » which is continuous on each (2,,4,,), where A’ =
uch({0} x A) for AeB, is continuous on P, then the locally convex cone
(P, Uz (P, P)) is complete with respect to upper and symmetric topology.
Proof. We prove that the completion of 2* under u; (P, 2) is identical with 7. Let
® € P* = Nges (P* + ({0} X U)") = Nge (Unen U° + ({0} x U3)*). Then for each B € B
there is U € u such that ¢ € U° + ({0} x Ug)°. Then there exist u € u° and ¥ € U; such
that ¢ = u+ 9. For A e B, we have A c U; and then {0} x 4 c {0} x U;. This shows
that ({0} x U3)° < ({0} x A)° = (A4")° € P;,. This yields that ¥ is continuous on each
P,. Now, the assumption shows that ¢ is continuous on ® and then 9 € P*.
Therefore ¢ = u+9 € P* + P* = P*. Then P* = P*. This shows that (P*, Uz (P*,P)) IS
complete with respect to upper and symmetric topology.

Proposition 2.13. Let (P, ) be a b-bornological locally convex cone with
(sP) and B be a collection of v, (P, P*)-bounded subsets of » with the properties
(a), (b) and (c). If every lower compact subset x of 2 is contained in some 4 € B,
then (P, uz (P, P)) is complete with respect to upper and symmetric topology.
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Proof. Let u be a linear functional on » which is continuous on each (?,,1,,),
where A" = uch({0} x A) for A € B. We prove that y is bounded below on 2. If it is
not true, then there are points x,, in some bounded below subset B of 7 such that
u(x,) < —n?, neN. Since B is bounded below, the sequence (’%‘)nEN is lower
convergent to 0 in . This shows that the set {%”:n € N} u {0} is lower compact and
then it is contained in some A € B. Since u("f) < —n, we conclude that x is not
lower bounded on A. This contradiction shows that x is bounded below on 2.
Since (P, ) is a b-bornological locally convex cone, u is continuous. Now Lemma
2.12 shows that (P*,uz(®*,P)) is complete with respect to upper and symmetric
topology.

Suppose (P, ) is a locally convex cone. We set u,,(P*, P) = Uy (P*,P), Where B
is the collection of all bounded below subsets of 2.

Corollary 2.14. Let (?,u) be a b-bornological locally convex cone with
(SP). Then (P, U, (P*,P)) is upper and symmetric complete.
Proof. For, every lower compact subset of 7 is bounded below.

Theorem 2.15 Let (»,u) be a b-bornological locally convex cone with
(sP). If u has a countable base, then (", u,(?*,?)) has a completing web.
Proof. Let (U,) be a base for u and B be the collection of all bounded below
subsets of P. For U € u we set U° = {(u,y) € P* x P*:¢p € u+ U°}. We define w as
follows:
_ 1 _
W, = Ui;’VViﬂ'z = 2 U,
Then clearly w is a web. Now, let 4 € B be arbitrary and (W},),.cy be an strand of
w. Then w,, = an—_ﬁ'n- for some i € N. Since 4 is bounded below, there is 2 > 0 such

that {0} x 4 c AU;. Then %Uf} c ({0} x A)°. This shows that

Uiy s W,

iyig=in = on-1

1 .
AU? = FU < ({0} X A)° € U,.
L_ < 1. Therefore

T <
W, zﬁﬁi cC AU € U,.
Then w is a compatible web. Now, since (P*,u,5(P*,P)) is symmetric complete
by the Corollary 2.14, then w is a completing web by Lemma 2.6.
Corollary 2.16. Let (P,u) be a b-bornological uc-cone with (sp). Then
(P, U,s(P*,P)) has a completing web by Theorem 2.15. In fact every uc-cone has
a countable base and {% U:n € N} is a base for .
Now, we turn to study some stability properties of the classes of locally convex

cones with webs. If a locally convex cone (P,u) has a compatible web, then
clearly every subcone of » has a compatible web. Also, if (?,1) has a completing

Now there is m € N such that
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web, then every sequentially symmetric complete subcone of » has a completing
web.
Proposition 2.17. Let (,u) and (Q,V) be separated locally convex cones
and T: P - 9 be a continuous linear operator.
() If (,u) has a compatible web, then (T(?), M) has a compatible web, where
M ={V n(T(P)*V eV}
(i) If (P, ) has a completing web, then (7(?), M) has a completing web.

Proof. For (i), let w be a compatible web on . We define 7 as follows: F, ;,...,
(T X T)(Wy,1,.4,)- Then it is clear that 7 is a web in (T(P),m). We prove F it is
compatible. Let v e m and (E,),.y be a strand of F, then there is a strand (W,) e
of w such that £, = (T x T)(W,)). Also, there is U € U such that (T x T)(U) € V, since
T is continuous. Now, since w is a compatible web, there is m € N such that
W,, € U. Then E,, = (T x T)(W,,) < (T x T)(U) < V. This shows that F is compatible.

For (ii), let w be a completing web on ?. We show that F as defined above is
completing. Let x,, € F,(0)F,. Then T7({x,.}) € W,(0)W,. Let a, € T~*({x,}) for each
n € N. Since w is completing, ¥ a, is symmetric convergent. Now, the continuity
of T shows that xx,, = 2T (a,) IS Symmetric convergent.

Theorem 2.18. Let (P, ) be the projective limit of separated locally
convex cones (#,,,,) by the linear mappings 9,: ? - 7,. If each (®,,11,,) has a
compatible web wn, then (2, ) has a compatible web w. Also suppose that

(1) whenever (x,) is a sequence in P such that (9, (x,)) is symmetric convergent
in P, for each n € N, then (x,) is symmetric convergent in 2.
Then (2, ) has a completing web w if each (2,,11,) has a completing web wn.
Proof. For the first layer of w, we consider the sets (9; x 9,)~*(W;'), where (W);en
is the first layer of w. For the sets of the second layer of w which is determined
by (¥, x 9;)~t(W), we take the sets

(91 X 9) W) N (92 X 9) WP (or =1,2,-),
where (W;?) is the first layer of w2. If we continue this way, then we can
determine the strand w, of w by
Wy = (91 X 91) T (W) 0 (9 X 9) TH(Wisy) Neee ) (0 X 9,) " H (W),
where (W;}) is a strand in the web wi. Now, let U € u. Since (P, 1) is the projective
limit of separated locally convex cones (#,,11,), then there are n e N and U; € 1,
i=1,..,nsuchthat N, (¥; x9)~*(U;) € U. Since W' is a compatible web for each
i € {1,...,n}, there is m > n such that
Wlcu,W2_,cU,... Wt .1 <SU,.

This shows that

m n
W =[] @ %907 W) €[] @1 % 907 Wician)
i i=1

i=1
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n
c ﬂ ; x9)"1U; € U.
i=1

Therefore w is compatible.

Now suppose (1) holds and a, € W, for each n e N. Then for i,n € N with n > i,
we have 9;(a,) € Wi. Since W' is completing, ¥,..; 9;(a,) IS Symmetric convergent.
Then for b, = 27_,a,, (v;(b;))ney IS Symmetric convergent in (P, ;) for each i e N.
Now (1) shows that =, a,, IS Symmetric convergent in (2, ).

Corollary 2.19. If (7,1) is sequentially symmetric complete and is the
projective limit of sequences of locally convex cones with compatible webs then
(P, ) has a completing web.

Corollary 2.20. If (P,2) = ey (P, U,) and each (2,,11,) has a
completing web, then (?,) has a completing web. In fact, for every n e N, 9,, = p,,
is the projection map form # into 2, which satisfies condition (1).

Example 2.21. Consider the cone ?=T1I, (R,,V) i.e. the cone all
sequences in R,. We consider the projective limit convex quasiuniform structure
on P and denote it by . This structure consists of the sets

Us = {((xn)neN: (yn)nEN) € ?2: vn € N; Xn < Yn + S}'
Since (R,,V) is a symmetric complete uc-cone, it has a completing web by
Corollary 2.11. Now, Corollary 2.20, shows that (,) has a completing web.

2. The closed graph theorem

The main aim of this section is to prove a closed graph type theorem for a linear
operator from a complete separated bornological locally convex cone into a
locally convex cone with some properties. Suppose (P,u) and (Q,V) are locally
convex cones. The graph of T is the set graph(T) = {(x,T(x)):x € P}. If T is
symmetric continuous, then its graph is symmetric closed in (P x 9, M), where M
is the projective limit convex quasiuniform structure on ? x Q. But the converse is
not true in general. In this section we find some conditions under which the
converse holds.

For the proving the main results of this section i.e. the the closed graph theorem,
we need some useful topological results which will be established in the following
three Lemmas.

Lemma 3.1. Let (p,u) be a separated locally convex cone. Then P
endowed with the symmetric topology has a base of symmetric closed
neighborhoods.

Proof. Let ae®. It is enough to show that (%U)(a)(%U)SEU(a)U, where
(%U)(a)(%U)s denotes the closure of (GU)(a)GU) with respect to the symmetric
topology. Let b € GU) (@) U)S. Then
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1 1 1 1
GUBGU N GD@GU) # 0.

Let c € GUMBGU) N GUY(@GU). Then (b,c) € GU),(c,b) € GU), (c.a) € GU) and

(a,0) € (% U). This shows that (a,b) € U an (b,a) € U by (U;). Then b € U(a)U.

Lemma 3.2. Let (,u) be a Baire space with respect to its symmetric
topology. Then the followings hold.
(@) If W is any web in (P, 1), then there is a strand (,),.y Of W such that (0)w7,” is
a symmetric neighborhood (i.e. contains a symmetric neighborhood of an element
of P) for eachn e N,
(b) if v is a web in (P, such that Uy_, v, (0)v;, absorbs each point of 2 i.e. for
each a € P there is m e N and A > 0 such that a € A(V,,(0)V},,), then there is a strand
(V) e OF ¥ such that v,(o)v, is a symmetric neighborhood for each n € N.
Proof. For (a), we define a strand (W,,),.cy for which each set (0)w;, is not meagre
(the set of interior points of (0)w,” is nonempty): the union of the sets of the first
layer absorbs each point of uch({0} x P). This shows that uy_, (0)w;, absorbs each
point of 2. Since (P, ) is a Baire space with respect to its symmetric topology,
there is m, € N such that (0)u;,, is not meagre. Now, since each point of (0)w,
absorbed by the union of the sets (0)W,,,;, j € N, there is m, € N such that (0)W,_,,,
is not meagre in P with respect to symmetric topology. By continuing this way we
obtain the non meagre sets (0)W,, m,..m,- NOW, We Set W, = Wy, 1, ..m,,. Since for
each n € N, (0)w, is not meagre, (0)w," has an interior point a, € ?. Then for each
neN, there is u, eu and b, € P such that u,(b,)U, < (0OW, . Then (0w’ is a
symmetric neighborhood of b, for each n € N.

For (b), let v be a web in (P, ) such that UZ_, v;, (0)V;, absorbs each point of 2.
Then there is m, e N such that v, (0)V,, is not meagre, since P is Baire space.
Now since each point of v;, (0)V,,, is absorbed by the union of the sets v,, ;(0)V,,,,;,
j € N there is m, € N such that V,, ,, (0)V;, ., IS NOt meagre in ? with respect to
symmetric topology. By continuing this way we can determine the non-meagre
SetS Vi, my-my 0oy my-m, - W€ SELV, = Vi o, - Since for each n e N, 1,(0)¥;, is not
meagre, v.(0)," has an interior point a,, € 2. Then for each n € N, there is U, e i
such that u, (a,)U, < V,(0)V, .

Lemma 3.3. Let (P, u) be a symmetric complete separated uc-cone. Then
(P, w) is a Baire space endowed with the symmetric topology.
Proof. We prove that the intersection of any countable collection of open dense
subsets of 2 is dense. Let U = {aU:a > 0} and {0,},ey D€ a collection of open
subsets of » which are dense in ? with respect to symmetric topology. It is
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enough to show that the intersection of any symmetric neighborhood o with
N, 0, is nonempty. Since 0, is dense, then o0no, # @ and hence there is
x; € 0 n 0;. Now since 0 n 0, is a symmetric neighborhood there is r, > 0 such that
() U) €0no, by Lemma 3.1. Since (nU)(x)(nU) is a symmetric
neighborhood and 0, is dense there is x, € (r,U)(x,)(r,U) n 0, and r, > 0 such that
D) () (1U). € (1,0)(x,)(1,U) 0 O, By the induction there are 0 <, <% and x,,,

neN such that (r,0) () (U) € (1 1U)(%y_1) (a1 U) N 0,, SINCE 0, is symmetric
neighborhood and dense. The above steps show that the sequence {x,}nen IS
symmetric Cauchy in 2. Then {x,},cy IS CONvergent to some x € P by symmetric
completeness of ». Now closedness of D)UY shows  that

x € () (x)rU) <o for all neN. On the other hand, we have x € 0, for each
n € N. Therefore x e 0 n (N%-, 0,) and 0 n (NZ; 0,) # 0.

Corollary 3.4. Let (7, u) be a symmetric complete separated uc-cone. Then
by Lemma 3.3, (P, ) is a Baire space with respect to symmetric topology. Now
Lemma 3.2 shows that for any web w in (?,u) there is a strand (w,) such that
W, is a symmetric neighborhood for each n € N.

Definition 3.5. We say that the locally convex cone (#,1) is symmetric
quasi-full whenever for U e, ce? and a e U(c)U there is t € U(0)U such that
a=c+t.

Example 3.6. The locally convex cone (R,V), where V = {&:¢> 0} and
§={(ab)€E R:a<b+ ¢}, is a symmetric quasi-full locally convex cone. For a e R
and >0 we have é(a)é=[a—¢ca+e]=a+[—¢—¢c] =a+&0)E FOr +o € R, We
have

E(0)€ = 0 + £(0)& = {+00}.

Example 3.7. Let F(X,R) be the cone of all R-valued functions on
nonempty set X. For the constant positive real function e:X - R, we set € = {(f,g) €
(FX,R)%: f(x) < g(x) +€}. Then ¥ = {&:¢ > 0} is a convex quasiuniform structure
F(X,R). We denote by 7, (X, R) the subcone of F(X, R) which contains all uniformly
bounded below R-valued functions on x with respect to V. Then (F,(X,R), D) is a
locally convex cone. We prove that (F,(X,R),7) is symmetric quasi-full. Let
f€é&(g)é Then f(x) < g(x)+¢ and gx) < f(x) + ¢ for all x e X. If for every x € X,
g(x) < o, then f(x) < +oo for all x € X. Therefore f—g)x) <cand 0< (f —g)(x) +¢
for all xex in this case. Then (f —g) € £(0)é. Now, since f =g+ (f —g), the
assertion holds in this case. On the other hand, if g(y) = +o0, for some y € X and
g(x) < +oo for all x # y, then f(y) = +o0, and f(x) < +o for all x = y. Now, we define
the function h as following
(()f —9x) x#y
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We have f=g+h and h € £0)s Then the locally convex cone (F,(X,R), V) is
symmetric quasi-full.

Lemma 3.8. Let (P, ) be a symmetric quasi-full locally convex cone and
(9,v) be another locally convex cone. Then the linear operator T:? - Q is
symmetric continuous on » if and only if it is symmetric continuous at 0.
Proof. If T:2 > @ is symmetric continuous on ®, then clearly it is symmetric
continuous at 0. We prove the converse. Let T be symmetric continuous at 0 and
let vev and b eP. There is U e u such that T(U©)v) € vV(T0)V =V(©0)V. We
prove that T(Ub)U) c V(T(b))V. Let a € Ub)U. Since (P,A) iS symmetric quasi-
full, there is s € U(0)U such that a = b + 5. Then

T(a) = T(b) + T(s) € T(b) + T(U(0)U) S T(b) + V(0)V S V(T(b))V.

Therefore T is symmetric continuous at b.

Definition 3.9. Let (»,u) be a locally convex cone. The web w on 2 is
called uniformly completing if it has the following properties
(c,) W is completing,
(c2) UR W, (0)W;, absorbs each point of 2, where {w; :i, € N} is the first layer of w,
(c;) for a strand () of W and me N, ¢ + d € W,,(0)W,, and c € W,,(O)W,, imply
that ¢ € 2w, ()W, .

Example 3.10. We consider the locally convex cone () from the
Example 2.9. We have
BH{O})B = {[c,d] € M:[c,d] < {0} + [-1,1],{0} < [c,d] + [-1,1]}
={lc,dl:-1<c<d<1}

We prove that the neighborhood B({0})B is closed with respect to the symmetric
topology: If [a,b] € ’E({O})ES, then there is a sequence ([c,, dn])nen € [—1,1] Which is
symmetric convergent to [a,b]. Then the sequences (c,)ney anNd (dp)nen are
convergent to a and b respectively. This shows that —1 <a<b<1. Then [a,b] €
B({0o})B. We claim that the web w, which was defined in Example 2.9, is
uniformly completing: The condition (c,) holds by Example 2.9. For (c,), we have
W, (OW;, = BEONB ={[cd:-1<c<d<1} for each i, eN. For [ab]emMm, if
[a,b] = {0} then clearly [a,b] € B({o}hB = w; (0)W;, for each i, e N. Let [a,b] € M and

[a,b] # {0}. We set A =max{|al,|b]}. Then we have [i,g] e W, (0)W;, and [a,b] =

A[%,g] € c¢(W;, (0)W;,). This shows that w; (0)w;, absorbs each point of M. For (cs),

let (w,) be a strand of w and meN. Then szzm%lB and
Win (Wi = Gz BY{OD Grs B) = 255 (B({0)B). This shows that
I TR pse—— T
Win(OWin =57 (BAODB) =55 (B({o)B) = Sm-1 (BHODE).
Let [ab]+[ef] € Wo(O)W,, and [efl € W,(O)W,, . Then [a+eb+f][ef]€
—= (B{OPB). This shows that [f —e] € == (B({0HB). Then a+eb+f—e—fe
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1 1

2 2
[=om=t gmal-
[

2m-1’om-1

] and b=Mb+H+(-hHe

Therefore a= (a+e)+ (—e) € [—
—2_1. This implies

- 2m-1’,m-1

N

[2,b] € oy (BUONE) = 2Wiy ()W, = 2Wp, ()W, -
Then w is a uniformly completing web on .

Theorem 3.11. Let (P,u) be a separated symmetric complete and
symmetric quasi-full uc-cone and (9, y) be a separated locally convex cone with a
uniformly completing web w. Then every linear operator T: 7 - @ with symmetric
closed graph is symmetric continuous.

Proof. The inverse image of the sets of w by T x T, form a web in # and therefore

by Lemma 3.2 there is a strand (W;,) of w such that T‘l(Wn(O)Wn)S IS a symmetric
neighborhood for each n € N. Then for every n € N there is U, € W and a,, € ? such

that U,(a,)U, S T‘1(Wn(0)Wn)S. Without loss of generality we suppose a, €
T-1(W,(0)W,) and B = {U,:n € N} is decreasing base for u (since (P, is a uc-cone,
u has a such base). Since (?,) is quasi-full, we have
T Wo(OW,) S T W (O)Wy) + U(O),
for each u € u. This implies
Un(an)Un c T_l(Wn(O)Wn)s c T_l(Wn(O)VVn) + Un+1(O)Un+1

Therefore T(U,(a,)U,) € W,(0O)W, + T(Un41(0)U,,,) for each neN. Since P is
symmetric quasi-full, we have v, (a,)U, = a, + U,(0)U,. Then

T(an + Un(o)un) c VVn(O)Wn + T(Un+1(O)Un+1)'
for each n € N. Now let v be a symmetric closed neighborhood of 0 in (9, ). Then
there is m € N such that 2(w,,_, (0)W,,_,) € V. We shall prove that 7(U,,(0)U,,,) € V.
Let x, € U,,(0)U,,. Then there is x, € U,,.1(0)U,,,, and ¢, € W,,(0)W,, such that
T(ay) + T(xo) = co + T(x;). Also, there is x, € U, ,(0)Upns, aNd ¢; € Wiy (0)W,iq
such that T(a,,41) + T(x1) = ¢; + T(x;). Then

T(am) + T(ams1) + T(xp) = ¢o + 1 + T(x3).
By continuing this way we obtain x,,; € Uy t41(0)Umirsr aNd ¢, € Wiy, (0)Wypye
such that
t t
D T + TG = ) 6+ T(xern).
i=0 i=0
Also, we have
fzo T(@mei) + T(x0) = oo ¢ + T(Xe41)

€ Wm(O)Wm + Wm+1(0)Wm+1 + et Wm+t(0)Wm+t + T(xt+1)

€ Wy ()W, + 5 (Won ()W) + -+ + = Wi ()W) + T (Xes1)

€ 2(1 = 52) Wi (0)Wj)

C 2(Wn (0)W:n)

< Wm—l(O)Wm—l- (31)
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Since w is a completing web and T(an.), ¢; € Wit (0)W,,,;, the series 32, ¢; and
> T(ams;) are symmetric convergent. Let their limit be a and ¢ respectively.
Now if t - oo, by (3.1) we have
@+ T(%0) € Wy (O)Wp s -

Also, since

Zf:o T(am+i) € Wm(O)Wm + Wm+1(0)Wm+1 +t Wm+t(0)Wm+t < Wm—l(O)Wm—lt
we have a € W,,_,(0)W,,_, . Therefore T(x,) € 2W,, ,(O)W,,_, SV =V, since W is
uniformly completing. This shows that T is symmetric continuous at 0. Now since
(P, ) is symmetric quasi-full, Lemma 3.8 shows that T is symmetric continuous at
each a € P.

Theorem 3.12 (Closed Graph Theorem). Let (P,u) be a separated

bornological locally convex cone which is symmetric complete and symmetric
quasi-full and (9,y) be a separated locally convex cone with a uniformly
completing web w. Then every linear operator T:? - @ with symmetric closed
graph is symmetric continuous.
Proof. By Proposition 2.12 from [1], (P,w) is the inductive limit of complete
separated uc-subcones (P, Ug)gez, Where B is the collection of all uniformly
convex u-bounded subsets of P2, under the inclusion mappings I,:P; - P, B € B.
Since u induces u; on P, for each B € B, the uc-cones (Pg, Up)zcp are Symmetric
quasi-full. Also, for each B € B, I, is symmetric continuous, then it has closed
graph. Then for each B € B, T o I; has closed graph. Now, by Theorem 3.11, each
T o I IS Symmetric continues. This shows that T is symmetric continuous.

Example 3.13. We consider the locally convex cones (F,(X,R), V) from
Example 3.7 and (v, u) from Example 3.10. The first one i.e. (F,(X,R), V) is
separated, bornological (a uc-cone), symmetric complete and symmetric quasi-
full. Also, (', ) is separated and has a uniformly completing web (see Example
3.10). Now, every linear operator from (F,(X,R), V) into (,) with closed graph
is symmetric continuous by Theorem 3.12. If we consider the subcone (7, (X, R), V)
of (F,(X,R), V), then for every x € X, the linear operator T,: (F,(X,R), V) » (M, )
defined by T.(f) = [minf,f(x)], has closed graph with respect to symmetric
topology. Then it is symmetric continuous by Theorem 3.12.
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