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COSMOS FRAMEWORK: SIMULATION AND OPTIMIZATION

OF 3D SEARCH

Cosmin-Gabriel Samoilă1, Damian Dinoiu2, Emil-Ioan Sluşanschi3

In modern numerical simulations, in order to be reliable, a computer
code needs to be accurate and fast. The Framework for Combining Optimization
and Simulation Software (COSMOS) is a tool which allows for the seamless in-
tegration of numerical simulations with appropriate optimizations algorithm. In
this paper we present the integration of different numerical solutions in order to
simulate a search in a continuous 3D space. The simulations are performed on
different computational scenarios revealing significant improvements and useful
insights into alternative optimisation solutions.
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1. Introduction

The simulations of real-world environments have become more complex, in-
troducing an ever-increasing amount of data processing requiring computationally
intensive workloads coupled with appropriate optimization packages.
COSMOS [9] is a framework allowing the integration of different software and op-
timization tools. Moreover, it can serve as a wrapper for sending tasks on a HPC1

system. Its architecture is divided into three independent modules, namely:
• The Controller module interacts with external modules by parsing the con-
figuration files, commands the broker and the optimizer modules and processes
the output of the tasks;

• The Broker modulemanages the resources by scheduling tasks using different
heuristics based on task length and machine load;

• The Optimization module is providing data to the Controller module in
order to determine the next parameters of the numerical simulation.

This paper presents an extension of the COSMOS framework through the ad-
dition of numerical simulations. Consequently, it is necessary to introduce new mod-
ules that interact with the Controller module and that focus on the post-optimization
process in order to determine the optimal steps of the numerical simulation. The
structure is based on three main stages, namely: reconstructing of a 3D continuous
space with a mobile camera, gathering information from the scene and processing
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it; and the optimization process that will determine the next step of the numerical
simulation, based on the previously collected data.

COSMOS main modules can work individually, opening the possibility of
bringing separate implementations and integrating various other external simula-
tion modules. The main goal is to extend the coverage area of simulations, by
introducing a new problem, an informative search in a continuous 3D space.

Being given the initial view of the scene as input, it is wanted to start the
search from a random position in order to determine the coordinates of the camera
from the input perspective, with data collected across the search. In order to achieve
the goal, the simulation should be optimized by generating the best next steps of
the search. All these will be synchronized by the main COSMOS modules.

Furthermore, it will be possible for both simulation and optimization processes
to be used in solving real problems for unmanned aerial vehicles. The scope can in-
clude tracking endangered species [6], monitoring vegetation in precision agriculture
[7]. This domain is vast and rapidly growing, due to the continuous, significant
improvements in technology.

As previously stated, projects can be easily divided into three main compo-
nents that will require integration:

• Reconstruction of the scene, where a physically based render Mitsuba2.0 is used.
This render permits the modification of the scene layout, camera specification,
position, and orientation, in order to simulate the continuous 3D space;

• The extraction of the information from the scene, where the main module in-
troduced is You Only Look Once: Unified, Real-Time Object Detection, which,
according to R. Girshick et al. [8], will detect and provide data for the object
mapping, in order to estimate the coordinates of the object;

• The optimization, in which case, based on the results given from the second
component, the next best step in the simulation is going to be computed by
analyzing the objects and their position in the scene.

After implementing the proposed solution, a complete package is expected to
be introduced in COSMOS Framework, enhancing the capabilities of this framework.
It will be able to render various 3D scenes only by modifying the input file, to
recognize different object in the scene and to estimate their position. Furthermore,
being given an input file (initial image) and a starting position, by combining the
features described above, the initial position of the camera, from where the given
picture was taken, will be found in an optimized manner.

Section 2 presents a summary of the related work in the domain of computer
simulations and optimizations, introducing COSMOS framework. Section 3 provides
theoretical details of the solution that will be implemented, also describing the other
tools and frameworks which were used. A comprehensive presentation of the results
is available in Section 4. A summary of the paper is depicted in Section 5, together
with ideas on further work and research.

2. Related work

ASE (Atomic Simulation Environment) [5] is an international open-source
software instrument written in Python, serving the main purpose of setting up, con-
trolling, visualising and analysing atomistic software simulations. This environment
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Fig. 1. Architecture of COSMOS Framework

is suitable for simulations, as it uses powerful Python libraries, such as NumPy,
allowing the execution of complex tasks. According to its authors [5], ASE is con-
sidered to serve as ”front-end for atomistic simulations where atomic structures and
parameters controlling simulations can be easily defined”.

An interactive software systems providing a solution for parameter estimation
and identification for mathematical models, belonging to categories such as differ-
ential algebraic equations, Laplace transformations, ordinary differential equations,
steady-state systems or systems of one-dimensional time-dependent partial differen-
tial equations is offered in EASY-FIT [10]. This software offers four optimization
routines and a number of differential equation solvers.

A similar approach, offering an interactive software environment combining
numerical simulation code with optimization software packages is proposed by Rasch
and Bücker in EFCOSS [1]. EFCOSS is focused on optimal experimental design and
is presented as an extension of a previous implementation [2] which was mainly
focused on parameter fitting.

COSMOS - Framework for Combining Optimization and Simulation Software
[9] provides an interface for merging various simulation and optimization software
packages. According to [9], simulation software packages consist of mathematical
models describing real-world occurrences, such as chemical reactions, electronic cir-
cuits, biological processes etc., translated into computationally intensive computer
programs. COSMOS – which we are going to use in this paper – supplies a stable
interface between optimization programs and simulation packages, schedules tasks
in HPC environment, provides optimization hints based on the application output
and offers an abstraction for the underlying hardware computing architecture. A
simplified architecture of COSMOS can be seen in Figure 1.
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3. Proposed solution

The following Section offers an in-depth presentation of the solution which
was implemented. As previously mentioned, it consists of three main stages - the
scene reconstruction, the image processing and object mapping and the optimization,
which will be detailed one by one.

3.1. Scene reconstruction and camera movement

This section will analyze the reconstruction of the scene, by describing the
components of the scene and the discretized movement of the camera used in the
target search.

Scene components. In an attempt to reconstruct a real-world scene, the following
components were introduced:

• camera with known features: model, field of view, resolution, position and
orientation;

• emitter: a point-like source of light specifying the position and the intensity;
• the plane surface that represents the ground;
• different objects loaded as polygon file format with own texture - shapes define
surfaces that mark transitions between different types of materials.

A preview can be seen in Figure 2a.

Fig. 2. a) Scene preview b) Camera discretized positions

Camera movement. The main goal of the project is to find the camera position
based on an input image, starting from a random point in space. In order to reduce
the number of possible states of the camera, its movement will be discretized to a
set of points located on an hemisphere of known radius. The camera is able to move
alongside the hemisphere, by changing the polar coordinates with a certain angle
each step, as expressed in the following equation:

radius =
√

pos2x + pos2y + pos2z

θ = arccos
posz

radius
± angle step

ϕ = arctan
posy
posz

± angle step

(1)
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The movement is characterized by four possible actions: movement alongside lat-
itude (North and South) by changing θ and movement alongside longitude (West
and East) by changing ϕ. A preview of the discretized set of points is illustrated
in Figure 2b. To obtain a more accurate search, the angle for the longitude will
decrease directly proportional with the height. All these considerations lead to a
possible movement of the camera on the horizontal plane as well as on the upped
hemisphere of the plane, as depicted in Figure 2b. In this image, as well as in Fig-
ure 5 and Figure 6 one can see possible positions of the camera while searching for
the target position.

The scene that is considered in the paper is static and it contains static ele-
ments. The only movable part is the camera and the setup of the problem is such
that we are looking for the original position of the camera starting from an arbitrary
position of the scene. The only constraint that is currently implemented is that the
camera is oriented towards the center of the scene.

If the scene or the objects in the scene (e.g. the balls) are dynamic, the
probability of the framework being able to find the original vantage point of the
camera is decreasing significantly. To date, we did not conduct such a study.

3.2. Image coordinates and object mapping

In this subsection, the methods used in extracting the information from the
images created are presented. First, the method used in recognition of the objects
is described. Further, the output is explained, together with its interpretation. The
main purpose is to estimate the object’s positions in the scene, since this data will
serve in the target search and optimization methods.

3.2.1. Image coordinates. After each movement step of the camera, based on the new
image, an object recognition is performed in order to extract the image coordinates
of the objects. The bounding boxes, which surrounds the objects, are extracted as
pairs of pixels from the image.

3.2.2. Object mapping in the scene. Now, having the pixels coordinates of the ob-
jects, it is wanted to estimate the real position in the scene. Firstly, the position of
the object will be estimated relatively to the current camera position. Secondly, by
rotating the coordinates in the scene surface, the real coordinates will be computed.

Note: Axes correspond to the scene space, not the image space. For better
correlation, they have also been kept when referring to the images’ space.
Position on X axis. First of all, the depth estimation is calculated. As per [4], the
depth from a perspective camera can be calculated using the following formula:

d =
f ∗ yc

f ∗ sin θx − (vc − vb) ∗ cos θx
∗ 1

s
(2)

In equation 2, f represents the focal length of the camera, θx expresses the
camera tilt in radians, yc is the camera height, vc the camera optical center, vb the
object center in pixel coordinates on X axis and s, the scale. Knowing that the
camera is always oriented to the center of the scene, vc will also represent the center
coordinates in the image. As a result, when vc equals vb, the distance expressed in
equation 2 will represent the distance on the X axis of the surface plane form the
camera to the center of the scene.



8 Cosmin-Gabriel Samoilă, Damian Dinoiu, Emil-Ioan Sluşanschi

d0 =
yc

sin θx
∗ 1

s
(3)

Combining equations 2 and 3, the distance to the center can be expressed, on
X axis, as a difference:

∆x =
(vc − vb) ∗ yc ∗ cos θx

f ∗ sin θx2 − (vc − vb) ∗ cos θx ∗ sin θx
∗ 1

s
(4)

Furthermore it can be seen that this distance is not dependent of the movement on
the Y axis. The center of each object that is located at a distance d is on a line
parallel to Y axis. This can also be observed in Figure 3a, where the blue line is the
line that crosses the center of the image, and the green lines are situated at different
distances d1, d2 and d3 from the center.

Fig. 3. a)Deformation on X axis b) Vanishing point

Position on Y axis. The perspective projection of any set of parallel lines which
are not parallel to the image plane will converge to a “vanishing point” [3]. Due
this perspective error, the dimensions of the objects in a picture will be affected.
However, all objects situated at the same distance from the Y axis will be on the
same line that converges to the vanishing point, as represented by the green lines in
Figure 3b.

The distances y1, y2, y3 and y4 represent the distance expressed in pixels from
the center of objects. In the real 3D space, the object are situated at the same
distance one from another, while the distances in the picture differ, because of the
perspective error. Knowing that the camera is oriented towards the scene center,
it can be determined that the vanishing point will be situated on the X axis, the
middle green line from Figure 3b, letting the possibility to express the distances as
a simple linear equation:

∆Y = ay ∗∆pixels + by (5)

∆pixels represents the distance in pixels between object centers on Y axis.

Now, in order to determinate the slope ay and the intercept by, the distance
on X axis determined in the previous section will be used. With the vanishing point
situated on the X axis, the slopes and intercepts will decrease inversely proportional
with the distance between the camera and the object. Knowing the camera position
and the distance between the objects and the center of the scene on X axis, ∆x, the
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slopes and intercepts can be expressed as a first-degree equation with their slopes
and intercepts determined experimentally:

ay = as ∗∆x + bs

by = ai ∗∆x + bi
(6)

Coordinates rotation. The two distances determined in the previous section were
determined relatively to the current camera position. In order to obtain the real 3D
world coordinates, ∆x and ∆y are rotated in the surface plane with ϕ, the camera
polar coordinate from equation 1.

posx = ∆x ∗ cosϕ+∆y ∗ sinϕ
posy = −∆x ∗ sinϕ+∆y ∗ cosϕ

(7)

Where posx and posy represented the real 3D coordinates of the object.

3.3. Optimization

This section will describe the methods used for the target search, as well as
the ones used in the optimization process. These methods relay on the object coor-
dinates, posx and posy, and coordinates camerax, cameray and cameraz described
in the previous sections. As input, there are two sets of pairs which contain the
bounding boxes of the objects, from the initial view and from the current camera.
For both sets, the positions of the objects are estimated based on the current camera
position, with the goal being to minimize the difference between the two coordinates.
The difference will be analyzed from two perspectives, based on the possible camera
moves: on latitude (North and South) and on longitude (West and East). Finally,
combining these two results, the next best step will be determined.

3.3.1. Optimization on longitude. Starting from the current camera view, the exact
coordinates of the objects - posx and posy, can be determined. However, for the
initial view, the position can only be estimated relatively to the initial camera, so
∆X and ∆Y can be found. Combining this information into equation 1, we can
express the polar coordinate of the initial camera position as follows:

2∆Y cosϕ2 − 2(posx + posy)(∆X +∆Y ) cosϕ+ (posx + posy)
2 − 1 = 0 (8)

In order to solve the equation, two sub-problems need to be approached. First of
all, because ∆X and ∆Y are dependent on the height of the camera, the value of
cosϕ will be approximated and not precise. Second of all, given the objects placed
in the scene, a validation is required in order determine if object mapping between
the initial stage view and the current stage view was done correctly.

Regarding the value obtained for cosϕ, the problem will persist until the
camera height will be found. At that point, the exact polar coordinate, ϕ, will be
found. Even if the solution from equation 8 will not produce the exact solution,
it will always point in right direction, letting the possibility to have a step-by-step
approach. Figure 4 represents the equation of two approximations: one from the
correct camera height (green) and one from an incorrect position (orange). The
purple squares represent the closest points for the camera trajectory to follow in
order to obtain the desired position. The first one will always be analyzed. The one
on the orange line represents the desired position, with a slight error which comes
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Fig. 4. Next step estimation

from the object mapping. As it can be observed, the solution for the green line is
two steps away from the real target, but it is a real improvement from a simple step-
by-step approach. At the next iteration, a closer camera height will be obtained,
introducing the possibility to obtain a better position on the lateral movement.

3.3.2. Optimization on latitude. The object correspondence is also a problem that
will affect the optimization on latitude. Knowing the equations for ∆X and ∆y,
it is possible to state that for given pixels coordinates of an object, the distance
between the object and the scene center will grow simultaneously with the camera
height. Furthermore, the object-scene center distances corresponding to multiple
objects will be preserved; consequently, the order of the objects will remain the
same irrespective of any other parameters.

There are three projections of the positions of the camera on the scene:
• pos z1 - corresponding to the light blue objects in Figure 5
• pos z2 - corresponding to the light purple objects in Figure 5
• pos z3 - corresponding to the grey objects in Figure 5

In Figure 5, the points on the right side are the real coordinates estimations
of three objects - 1, 2 and 3 - which were made using the same pixel coordinates
extracted from pos z2. However, these coordinates could have also been extracted
from pos z1 or from pos z3. As a result, there are two main conclusions:

• the objects will remain in the same order despite other parameters; this order
is determined by the distance to the scene center;

• the greater the camera’s height (from z1 to z3), the greater the distance from
the objects to the center of the scene.

These conclusions confirm the ideas previously expressed, validating the correspon-
dence between the objects from the initial picture and from the current picture. This
also shows that it is not possible to put together an exact equation is not possible
in order to have an accurate estimation. As a solution, it is possible to store all the



COSMOS Framework: Simulation and optimization of 3D search 11

Fig. 5. Project architecture

desire data for object mapping, letting the possibility to test all the possible combi-
nations. This approach will obtain the correct camera height in just one evaluation,
by choosing the position from where the distance to the center of an object is the
closest to the one from the current camera view.

4. Results and evaluation

To assess the results of this project we will consider the following categories of
interest: the approximation of the positioning of the object mapping in the scene and
the optimization of the search performed in the 3D space. The units of measurement
are adapted to Mitsuba 2.0’s system of measurement, having the generic name of
’units of length’ (U.L.).

After implementing the algorithm that approximates the positioning of the
objects in the scene, the results obtained were good, proving the correctness of the
algorithm. First of all, for the approximation of Y axis, the slopes and intercepts
were empirically determined, using the least square algorithm. Furthermore, by
combining both estimations, on X axis, which is computed using equation 4 and on
Y axis, which is empirically determined, the distance to the center of the scene can be
estimated. This distance is calculated as square root of the sum of the estimations’
squares.

To emphasize the results obtained for the optimized version of the search,
a step-by-step search was performed at first. Figure 6a shows the results of this
approach.

The blue line represents the trajectory obtained if only the longitude search
is performed; the orange one, only the latitude search; the green one represents the
case for which for the longitude and latitude search are done. For the first two, the
desired height is reached and the desired ϕ, spherical coordinate of the camera, is
reached respectively. As a result, the third one, which is the combination of these
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Fig. 6. a) Simple search example b) Optimized search example

two, will reach the desired position of the camera in the 3D space. In all three cases,
the solution is reached in linear time, the slight changes being due to the fact that
there are less positions of the camera for high values of height.

The trajectories of the optimized solutions are illustrated in Figure 6. Like
previously, the blue line represents the longitude movement. The first step consists
of reaching the closest point to the solution of equation 8. Since the exact position
of the camera isn’t available, the next steps will be done in the same direction, until
the desired ϕ will be reached. As expected, the method used to obtain the height
of the camera will acquire the solution within one step, represented by the orange
line and also by the first step of the green line. The optimized solution reached the
desired position within two steps, because the solution of equation 8 will be correct
since the camera height value will be precise.

Figure 7 illustrates the comparison between the optimized and the simple
solution. Even though the optimized search on latitude is not pointing towards the
right solution after the first step, it is visible that it comes with an improvement of
five steps.

Fig. 7. Optimized vs simple solution
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The number of steps for the simple solution depends on the number of camera
states, which is given by the movement angle. In the worst case scenario, there
are π/angle step steps on longitude and (π/2)/angle step steps on latitude. The
improvement is expressed in percentage, by the following formula:

Improvement = −100 ∗ 3 ∗ π − 4 ∗ angle step

3 ∗ π
(9)

In Figure 8, the results for angle step = π/24 are illustrated. It can be
observed that the simple solution needs 36 steps to reach the solution, in the worst
case scenario, while the optimized solution only requires 2 steps, with a decrease of
−94.44% in the number of necessary steps to reach the optimum position.

Fig. 8. Distance as a step function graphic

The validation of the simulation using the COSMOS framework was done on
a significant number of starting camera positions. All instances concluded with the
framework correctly identifying the desired original position. In the above evaluation
we only gave a couple of relevant examples to illustrate the process.

5. Conclusion and further work

This paper focuses on how the COSMOS framework is an adequate solution
for numerous kinds of simulations corresponding to real life problems. Its architec-
ture allows the seamless integration of different tools in order to perform a consistent
simulation, in a different domain to the one it was originally designed for. Also, we
employed the post-optimization method of the Optimizer module within the COS-
MOS framework and obtained significantly improved results. An optimized search
in a continuous 3D space was performed by assembling different tools within a single
processing pipeline. The problem was split into three smaller problems, namely: the
scene reconstruction, the object mapping, and the optimization. Scene reconstruc-
tion was tackled using the Mitsuba2.0 renderer, which turned out to be a good match
with the COSMOS framework. The image processing and the object mapping part
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used YOLO, also interacting as expected with COSMOS. The optimization compo-
nent was designed to find the original position where the camera took the picture
of the scene. The obtained results are good, proving that the search can be opti-
mized and also that the COSMOS framework can be used in a software pipeline in
conjunction with any application, not just in scientific computing.

Nevertheless, some constraints were encountered, and they can constitute the
starting point for future work, in areas such as: recognizing objects in optimized
searches, arbitrary camera orientation and movement, and real time processing.
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