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ENHANCING THE ELECTROCHEMICAL PERFORMANCE 

OF HIGH-VOLTAGE MATERIALS IN Li-ION CELLS USING 

ADDITIVE-BASED ELECTROLYTES 

Cosmin UNGUREANU 1, Adina MELINTE 2, Adnana SPÎNU-ZĂULEȚ 3, 

Alexandru RIZOIU 4, Sébastien FANTINI 5, Christian FINK ELKJÆR 6,          

Mihaela BUGA*7, Horia NECULA8 

Lithium-ion batteries (LIB) are essential for energy storage, providing high 

energy density, long cycle life, and low self-discharge rates. Increasing market 

demand requires improvements in LIB performance, particularly in cycling stability. 

This study investigates carbonate-based electrolytes with additives to mitigate 

capacity fading due to LiPF6 decomposition. The high-voltage spinel material LNMO 

was evaluated in half-cell configurations against metallic lithium, utilizing carbonate-

based electrolytes with different additives. The Lithium Nickel Manganese Oxide 

(LNMO) cathode demonstrated a specific capacity of 116 mAh/g at 3C and exceeding 

115 mAh g⁻¹ at 1C, with over 85% capacity retention after 120 cycles, highlighting its 

potential to enhance LIB technology. 
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1. Introduction 

Lithium-ion batteries (LIBs) have become a cornerstone of modern energy 

storage technologies, powering a wide array of applications ranging from portable 

electronics to electric vehicles (EVs) and renewable energy systems [1]. The 

increasing energy demands and the push for sustainable solutions require the 

development of high-voltage materials that can deliver superior performance and 

safety. Among these, LiNi0.5Mn1.5O4 (LNMO) has emerged as a promising 

candidate for high-voltage cathodes due to its promising electrochemical 

characteristics and structural stability. 

Characterized by its spinel structure, LNMO operates at a high voltage of 

approximately 4.7V (vs Li/Li+), notably higher than conventional cathodes such as 

LiMn2O4 (LMO), LiCoO2 (LCO), and LiFePO4 (LFP). This elevated voltage can 

yield a theoretical capacity of around 650 Wh/kg, significantly enhancing the 

energy density of LIBs, making LNMO an attractive option for applications 

demanding higher performance. Additionally, the absence of cobalt not only 

reduces costs but also alleviates the ethical and environmental concerns associated 

with cobalt mining. While LNMO offers remarkable performance, the instability of 

the electrolyte during cycling presents challenges that can compromise safety and 

durability. The interaction between the electrolyte and the LNMO cathode can lead 

to the formation of unwanted by-products that contribute to capacity loss and 

diminished cycling stability [2, 3, 4]. Traditional carbonate-based electrolytes may 

not provide optimal stability under high voltage, demanding the integration of 

additives to enhance performance. Recent research highlights the importance of 

using safe and effective electrolyte formulations that include additives such as 

vinylene carbonate (VC) and fluoroethylene carbonate (FEC). These additives are 

known to stabilize the formation of a robust Cathode Electrolyte Interphase (CEI) 

on the surface of the LNMO cathode, mitigating the undesirable reactions that occur 

during charge and discharge cycles [5, 6, 7]. The addition of VC and FEC, alongside 

Lithium bis(oxalato)borate (LiBOB), not only improves the cycling performance 

but also enhances the safety of the LIB system by reducing the risk of gas evolution 

and thermal runaway conditions. Furthermore, incorporating LiBOB serves to 

enhance the overall ionic conductivity of the electrolyte while stabilizing the CEI 

layer, resulting in improved safety margins and extended cycle life [8, 9, 10, 11]. 

Studies have demonstrated that the combination of these additives leads to more 

stable voltage profiles and better capacity retention in half-cell configurations, 

emphasizing the requirement of tailored electrolyte solutions to maximize the 

performance of high-voltage LNMO cathodes [12]. 

LNMO represents a compelling high-voltage cathode material for the next 

generation of lithium-ion batteries. Its potential is further augmented by the careful 

selection of electrolytes with appropriate additives, collectively enhancing safety 
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and cycling performance. Ongoing research and development efforts are critical to 

fully harness the capabilities of LNMO and to pave the way toward more 

sustainable and efficient energy storage solutions.  

To investigate the capabilities of lithium-ion battery technology further, this 

study focuses on the electrochemical performance of the high-voltage spinel 

material LNMO (LiNi0.5Mn1.5O4) in CR2032 half-cell configurations. We present 

detailed experimental results that demonstrate how LNMO behaves under specific 

operating conditions, leveraging a tailored electrolyte formulation to optimize 

performance. 

To further explore these possibilities, LNMO cathodes were tested with a 

carbonate-based electrolyte formulation of 1.2M LiPF6 in EC (3:7) + 0.5% VC + 

0.5% FEC + 0.1M LiBOB. The results indicate that the LNMO cathode attained a 

specific capacity exceeding 115 mAh·g-1 at 1C, with good capacity retention of 

over 85% after 120 cycles. This performance underscores the potential of LNMO 

as a promising candidate for advancing the field of lithium-ion battery technology. 

2. Methodology 

All materials used in this study were of analytical grade and were used 

without further purification. LiNi₀.₅Mn₁.₅O₄ (LNMO), was kindly provided by 

Haldor Topsøe. Conductive carbon (C65) was obtained from Imerys C-NERGY™, 

Polyvinylidene fluoride (PVdF, Solef® 5130) was sourced from Solvay, and N-

Methyl-2-pyrrolidone (NMP, anhydrous, 99.5%) was purchased from Sigma-

Aldrich, while the electrolyte was provided by Solvionic. 

The LNMO, C65, PVdF, and NMP solvent in a 92:4:4 weight ratio slurry 

was homogenized using a planetary mixer under controlled temperature and 

vacuum. The resulting slurry was cast onto carbon-coated aluminum foil (battery 

grade, thickness: 15 µm, from ARMOR) using roll-to-roll coating technology (from 

Thank Metal, Japan). After pre-drying, the electrodes were punched into 14 mm 

diameter discs using a high-precision electrode cutter from El-Cell and were further 

dried overnight at 130°C under vacuum to ensure complete removal of any 

remaining moisture and residual NMP solvent. The final active mass loading was 

~14.4 mg/cm². The cell assembly was carried out in an argon-filled glove box 

(Innovative Technology Inc., USA) with H₂O and O₂ content of less than 0.1 ppm. 

CR2032 Li-ion cells, in a half-cell configuration, used lithium metal chips (battery 

grade, thickness 1 mm, diameter 15.6 mm, from MSE Supplies), with a glass fiber 

separator (Whatman GF/D GE, Healthcare Life Sciences Whatman™) measuring 

19 mm, and an excess of 1.2M LiPF₆ in EC (3:7) + 0.5% VC + 0.5% FEC + 0.1 M 

LiBOB electrolyte were assembled.  
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3. Results and discussion 

The electrochemical characterization was conducted for three cells in 

parallel under the same conditions at 23°C. Capacity retention and coulombic 

efficiency were measured for each cell, enabling a direct comparison of their 

performance over the course of cycling. Galvanostatic cycling was performed 

within a voltage range of 3.4V to 4.8V using a Neware Battery Tester. Two testing 

protocols were employed: the first measured the cells performance at different rates, 

while the second examined cyclic stability. Following two cycles at current rates of 

C/5, C/2, 1C, 2C, 3C, and finally C/3, the first three cycles at a current rate of C/10 

were dedicated to the formation process, Fig. 1a. Furthermore, 105 cycles at a 1C 

discharge rate were performed to assess cyclic stability, Fig. 1b. 

 
Fig. 1. a) Rate capability test at different C-rates, b) cycling stability at room temperature at 1C 

 

The discharge capacity and coulombic efficiency following multiple cycles 

at different current rates are displayed in Table 1. Cell No. 1 had a discharge 

capacity of 136.63 mAh/g and a coulombic efficiency of 95.76%; Cell No. 2 had a 

capacity of 137.88 mAh/g and a coulombic efficiency of 95.26%; and Cell No. 3 

had a capacity of 136.62 mAh/g and a coulombic efficiency of 95.49% following 

the first charge/discharge cycle at C/10. These findings suggest that the cells tested 

with 1.2M LiPF₆ in EC (3:7) + 0.5% VC + 0.5% FEC + 0.1 M LiBOB electrolyte 

achieved a stable cathode-electrolyte interphase layer (CEI), facilitating more 

effective lithium-ion transfer. 
Table 1 

Discharge capacity at different C-rates after rate performance protocol 

 Cell No.1 Cell No.2 Cell No.3 

 

Discharge 

Capacity 

(mAh/g) 

Coulombic 

Efficiency 

(%) 

Discharge 

Capacity 

(mAh/g) 

Coulombic 

Efficiency 

(%) 

Discharge 

Capacity 

(mAh/g) 

Coulombic 

Efficiency 

(%) 

2nd cycle 

@ C/10 
138.54 97.72 139.81 97.72 136.31 97.67 
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5th cycle 

@ C/5 
135.63 98.54 136.88 98.22 134.17 98.24 

7th cycle 

@ C/3 
136.63 99.33 137.88 99.31 134.80 99.11 

9th cycle 

@ 1C 
134.86 99.63 136.10 99.20 134.44 99.40 

11th cycle 

@ 2C 
132.18 99.93 133.39 99.01 132.84 99.63 

13th cycle 

@ 3C 
116.81 100.31 117.88 99.11 124.62 99.82 

15th cycle 

@ C/3 
136.63 99.40 137.88 99.40 136.04 99.18 

 

The charge/discharge curves of the three half-cells at different cycle counts 

are presented in Fig. 2a. Fig. 2b shows the capacity retention. After 120 cycles, the 

first two cells exhibited a capacity retention of 84%, while the third cell, 

demonstrated a capacity retention of 86%. 

 

 
 

Fig. 2. a) Charge/discharge profiles at 1 C-rate after the 1st, 50th, and 120th cycles. b) Capacity 

retention after 120 cycles for all cells 

 

The capacities measured at 1C after the eighth cycle are shown in Table 2. 

The first cell recorded a capacity of 135.09 mAh/g, the second cell recorded 136.33 

mAh/g, and the third cell, 134.80 mAh/g. Following the 50th cycle at the same 

current rate, the discharge capacities were as follows: 125.81 mAh/g for the first 

cell, 126.97 mAh/g for the second cell, and 126.88 mAh/g for the third cell. After 

completing 120 cycles of charging and discharging, the capacities of the three cells 

were measured at 113.72 mAh/g, 114.77 mAh/g, and 119.28 mAh/g, respectively. 

Notably, all tested cells demonstrated a coulombic efficiency greater than 98%. 
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Table 2 

Discharge capacity at different c-rate 

 Cell No.1 Cell No.2 Cell No.3 

 Discharge 

Capacity 

(mAh/g) 

Coulombic 

Efficiency 

(%) 

Discharge 

Capacity 

(mAh/g) 

Coulombic 

Efficiency 

(%) 

Discharge 

Capacity 

(mAh/g) 

Coulombic 

Efficiency 

(%) 

8th cycle @ 

1C 
135.09 98.34 136.33 99.20 134.80 99.11 

50th cycle 

@ 1C 
125.81 99.85 126.97 99.97 126.88 99.79 

120ed cycle 

@ 1C 
113.72 100.00 114.77 99.52 119.28 99.85 

 

The derived dQ/dV profile for the first charge/discharge cycle of the three 

tested cells is presented in Fig. 3, illustrating the oxidation and reduction reactions 

occurring within the cells. This profile reveals three distinct peaks in the specified 

voltage range. The two peaks observed at potentials of approximately 4.68V to 

4.76V during charging and 4.65V to 4.70V during discharging correspond to the 

redox processes involving nickel, specifically the Ni²⁺/Ni³⁺ and Ni³⁺/Ni⁴⁺ transitions. 

The peak observed at approximately 4.0V is attributed to the redox transition of 

Mn³⁺/Mn⁴⁺ [13]. 

 
 

Fig. 3. Differential capacity analysis (dQ/dV) for the first cycle at C/10 

 

Electrochemical Impedance Spectroscopy (EIS) measurements were 

conducted using a Solartron 1470E Multi-Channel Potentiosat over a frequency 

range from 500 kHz to 100 mHz, with a current amplitude of 10 mV. The 

impedance curves exhibit three distinct components: a semicircular region at high 

to medium frequencies (between 1000 Hz and 0.1 Hz), which corresponds to Li-ion 
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migration through the solid-electrolyte interphase (SEI) film resistance; a straight 

sloping line at low frequencies (< 0.1 Hz), related to the charge transfer resistance 

of Li ions in the bulk of the active material and the Warburg impedance (W); an 

Ohmic region at frequencies greater than 1000 Hz, associated with the internal 

resistance of each cell [14]. Notably, the Ohmic resistance showed an increase in 

value between the pre- and post-galvanostatic cycling, which can be attributed to 

changes in the electrode structure.  

The contact resistance and charge transfer resistance values obtained both 

before and after the galvanostatic cycling are summarized in Table 3. Both 

resistance values increased during the galvanostatic cycling, indicating the aging 

process of the electrode and the electrolyte. 
Table 3 

Electrochemical Impedance Resistance 

 Cell No.1 Cell No.2 Cell No.3 

 

Contact 

Resitance 

(Ω) 

Charge 

Transfer 

Resistance 

(Ω) 

Contact 

Resitance 

(Ω) 

Charge 

Transfer 

Resistance 

(Ω) 

Contact 

Resitance 

(Ω) 

Charge 

Transfer 

Resistance 

(Ω) 

Before 

electrochemical 

testing  

6.95 51.04 6.85 56.70 4.91 48.02 

After 120th 

cycles 
14.09 186.06 9.56 197.99 10.23 140.53 

 

The results of the impedance experiment are shown visually as Nyquist plots 

in Fig. 3a-b, both before and after galvanostatic cycling for each of the three tested 

cells. For the fresh cells, the contact resistances were measured at 6.95 Ω, 6.85 Ω, 

and 4.91 Ω, respectively.  

 
Fig. 4. EIS showing the Nyquist plots of the LNMO/Li configuration: a) before electrochemical 

testing; b) after galvanostatic cycling, at 23°C 
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These values increased to 14.09 Ω, 9.56 Ω, and 10.23 Ω during 

galvanostatic cycling. After completing 120 charge/discharge cycles, a significant 

increase in contact resistance was observed.  

The following formula can be used to determine the diffusion coefficient 

(DLᵢ⁺) for lithium ions from the Warburg area, which is the low-frequency region in 

the EIS spectra [15]. 

 

(1) 

 

 

 

where A is the electrode surface area (1.539 cm2), n is the number of 

electrons transferred per molecule of active material, F is the Faraday constant 

(96500 C/mol), C is the molar concentration of Li-ion in active material, R is the 

gas constant (8.31415 J/mol K), and σ is the Warburg factor, which can be obtained 

from the slope of the linear of Z' vs. ω-1/2, Fig. 5. 

 
 

Fig. 5. Linear fitting of the Z’ vs. ω-1/2  

 

The diffusion coefficients for the tested samples are 2.49 × 10⁻¹¹ for cell no. 

1, 2.38 × 10⁻¹¹ for cell no. 2, and 1.55 × 10⁻¹¹ for cell no. 3. These findings align 

with the galvanostatic cycling results, indicating that ionic diffusion is fastest in cell 

no. 3. 

4. Conclusions 

In conclusion, the LNMO/Li cells have demonstrated excellent 

electrochemical performance after 120 cycles, achieving a capacity retention rate 

of 84%. The ability to attain discharge capacities of 132 mAh/g at 2C and 116 

mAh/g at 3C highlights the remarkable electrochemical properties of the LNMO 
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material under varying conditions. The incorporation of electrolyte additives 

significantly enhanced the performance of the cells across multiple aspects. These 

additives improve ionic conductivity, facilitating better ion transport and leading to 

higher discharge capacities during cycling. Additionally, they contribute to cycling 

stability by stabilizing the electrolyte and minimizing decomposition processes, 

which prolong the lifespan of the cell. By reducing voltage polarization, these 

additives also enhance the efficiency of energy usage, while specific types can 

inhibit detrimental side reactions that may degrade cell performance over time. 

Furthermore, the enhanced rate capability provided by these additives allows 

LNMO cathodes to effectively deliver higher capacities, making them suitable for 

high-power applications. Overall, the strategic implementation of electrolyte 

additives is crucial for optimizing the electrochemical characteristics of LNMO, 

driving advancements in lithium-ion technology. 
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