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THE ASYMPTOTIC FORMULAS FOR THE SUM OF SQUARES OF
NEGATIVE EIGENVALUES OF A SINGULAR STURM-LIOUVILLE
OPERATOR

Yonca SEZER}

In this work, I find the asymptotic formulas for the sum of squares of negative
eitgenvalues of the operator L which is formed by differential expression

Uy) = =(p(@)y' ()" — a(2)y(z)
in the space L3[0,00), with the boundary condition y(0) = 0.
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1. Introduction

Let us consider the operator L, which is formed by the differential expression

U(y) = —(p(x)y'(z))" — a(z)y(z) (1.1)
in the space L3[0,00), with the boundary condition y(0) = 0. Suppose that the functions
p(z) and ¢(x) which placed in the expression ¢(y) satisfy the following conditions:

1.There are constants ¢; and co such that 0 < ¢; < p(z) < ca.
2.p(z) is continuous, nondecreasing function and it has bounded derivative on [0, 00).
3. q(z) is continuous, decreasing and positive valued function on [0, co).
4. Ilin;o q(z) = 0.
5.1im q(z)z*~" = lim (g(z)x**")~! = 0 for every n > 0, where k is a constant
Tr—r00 xr—r 00
which belongs to the interval (0, ).
6.Let us denote the functions of the form Ingz =z, In;z =In(Inj_; z) by In;z  (j =
0,1,2-).
There are a positive number ¢ > 0 and a natural number n > 1 such that the function
q(x) — (In, )~¢ is neither negative valued and nor monotonous increasing in an interval
[a, 00) (a > 0).
D(L) denotes the set of all functions y(z) satisfying the following conditions in Ly[0, 00) :
a.y(x) and y'(x) are absolutely continuous in every finite interval [0,a) (a € (0, 00)).
b. y(0) = 0.
c. —(p(2)y'(2))" — q(2)y(z) € L2[0, 00).
Let the operator L be defined by Ly = #(y) from D(L) to Ls[0,00). It is known that the
operator L is self-adjoint, semi-bounded below and negative part of its spectrum is discrete

).
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Let A\ <)Xy <. <\, <--- be negative eigenvalues of the operator L.

In this work, I find the following asymptotic formulas for the sum of squares of negative
eigenvalues of the singular Sturm-Liouville Operator L as ¢ — +0, (¢ > 0)

I X =1+ 06) I ./qgf(;)f [84%(@) + da(@)e + 3¢ da,

under the conditions 1,2,3 5 and

/\j;_e X =15 [1 +0(e” )] q(fc{Ze (paz)m) = [Sq (x) + 4q(x)e + 362] dz,

under the conditions 1,2,3,4,6.

In the work [2], some asymptotic formulas are found for the number of negative eigenvalues
of the operator L. In the work [4], the asymptotic behavior of the negative part of the
spectrum of a differential operator with the operator coefficient is investigated. Later, the
asymptotic formula for the number of eigenvalues of Sturm-Liouville operator with the
operator coefficient which has singularity is studied in [3]. The works [5] and [8] analyzes the
asymptotic behavior of the negative eigenvalues of the operator in the space L3[0, 00) which
is formed by the differential expression —y"(x) — ¢(z)y(z), with the boundary condition
y'(0) = 0. The papers [10] and [9] are related to asymptotics of the number of negative
eigenvalues of a differential operator with operator coefficient. In many other works such as
[11], [12], [13], [14] negative spectrum of different type of differential operators is prospected
by using other methods. My work concerns the asymptotics of the summation of the squares

of eigenvalues. To do this I use Courant’s variational principle.

2. Some Inequalities About The Eigenvalues

Since the function ¢(x) is monotone decreasing, it has inverse. Let g(z) be inverse
function of ¢(z). Let e is a number belonging the interval (0,¢(0)) . Let us consider the
following operators:

Let L' be operator in the space L2[0, g(¢€)], which is formed by the expression (1.1), with
the boundary condition y(0) = y(g(e)) = 0.
Let L"” be operator in the space L2[0, g(e )], which is formed by the expression (1.1), with
the boundary condition y'(0) = y'(g(e)) =
Let the partition points of the interval [O,g(e)] be 0=x29 <z <+ < Ty, = g(€).
Let L} be operator in the space La[x;—1,x;], which is formed by expression (1.1), with the
boundary condition y(z;—1) = y(z;) = 0.
Let L! be operator in the space Ls[x;_1,x;], which is formed by expression (1.1), with the
boundary condition y'(z;—1) = y'(x;) = 0.
Let Lgl) be an operator in the space La[z;_1, 2;], which is formed by expression —p(z;)y" (x)—
q(z;)y(x) with the boundary condition y(z;—1) = y(x;) = 0.
Let Ll@) be an operator in the space La[z;—1, 2;] which is formed by expression —p(x;_1)y" (x)—
q(z;—1)y(x) with boundary condition y'(z;,—1) = v'(z;)) = 0.
Let us divide the interval [0, g(e)] into the intervals the with length
9(e)

SR FECIESY >y
Here € is a positive constant satisfying the conditions g%(¢) > 2 and « € (0,1).
Let N(XA), N'(X), N"(N), n(N), n(l)()\) be numbers of eigenvalues smaller than —A (Ne
(0,00)) of the operators L,L’,L", L,, LZ(»U .
Instead of nf(e) and ngl)(e) we will simply write n; and nl(.l).
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In the work [2], the following inequalities

N'(e) < N(e) < N"(¢) (2.2)
and

rsn ns 1
are proved. By the similar way the inequalities (2.2), the inequalities

NS NN SN'(N), (A>e) (2.3)

can be proved.
Since the inequality L < Lgl) and from the work [6], we obtain that

ni(3) > V(). (24)
On the other hand, from the variation principles of R. Courant [7] we have
M
N'(A) =) " nj(v), (2.5)
i=1

and from (2.3), (2.4) and (2.5) we find

M
1
N = Yo, (2:6)
i=1
where M any natural number. Let ;1 < o < i3 < -+ be the eigenvalues of the operator
v
Moreover let us take the following equality f(z,€) = qglége [8¢%(z) + 4q(x)e + 3¢€2]

1)

Theorem 2.1. For the eigenvalues smaller than —e of the operator L;

n®

12 w2 > %f(aci7 €) — 2¢°(x;) is satisfied.
m=1

, the inequality

)

Proof: Since the eigenvalues of the operator L; are of the form

2
Wim = p(2;) (ﬁ:”;:l> —q(z;) (m=1,2,---) then we have

:iu?m = :12531 [q(%) - p(xi) <$ m;_1>21 2 = j_l)l lq(wz) p(wi) (T)Q] 2

(2.7)
From the relation (%)2 < (%’)2 (m <t<m+1), we find that,

o) —p(xn(’%”)T e
m—+1

Hence we obtain that, [ lq(mi) — p(x;) (“g”)j th > Wzl[q(xi) — p(x;) (?)T 2dt

, (1<m<al? —1).

m
2

or [qm) —p(xn("?ﬂ s ”ﬂqm) ~ () (5)] a (1<m<al 1)
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By using these inequalities and the relation (2.7) we find that,

:ngjllufm = i[q(wi)—p(%)cyfrZn:z):lllcz(xi)—p(xi)U?Yr

> ;Z mjﬂlq(xi) —p(xn(?ﬂ - / lqm) —p(xn(’?)Tdt

LT

Moreover, from the inequality p(z;) (7)2 —¢(z;) < —e, we obtain that,

3

a(z: (2.9)
P T p(xz
From (2.8) and (2.9), we find that,
nH a—1 912 a 272
—~ tw 9 tw 9
Z Him > q(z;) — p(z;) 5 dt —q*(z;) > [ |q(x:) — p(zs) 5 dt —2q~(x;)
m=1 0 0
(2.10)
_ 5 Ja(zi)—e
where a = -/ P
when we calculate the integral on the right side of the relation (2.10), the result is
a . 9 2 5 ( )
T q\r;) — € 2 2
/[qm p<x>(5>] 2l l&z (2:) + g )e + 3c (2.11)
0

e

From (2.10) and (2.11) we get XL: p2, > o fxe) — 262 (),
m=1

where f(z;,€) = ,/% l8q2(xi) +4q(z;)e + 3¢
(2) (2)

Let /) < 7/ < --- be eigenvalues of the operator L and ~;;’ < ;5 < --- be

7

0O

eigenvalues of the operator L§2) .

Let us define the numbers nf(X), 7%(2)()‘) ,nY(e) and n§2)(e) as follows:

=Y 1, PN = 3 1 afo=nl, 2P =nd.

’71,"/m<_)\ 757273<—/\

(

Theorem 2.2. For the eigenvalues smaller than —e of the operator Liz), the inequality

n(®

- o
> < = f@ie1,9) + (aina)
m=1

1s satisfied.

)

Proof: The eigenvalues of the operator L§2 are of the form

Ty — Tj—1

%(fn) =p(wi_1) <(m_1)ﬂ> —q(zi-1) (m=1,2,--+). (2.12)

(2.8)
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Ti—1

2 2
By the relation <£m_1)w) > (?) (m—2<t<m-—1;, m=2,3,---), we have the

inequalities

[Q(ﬂfz‘—l) P(ﬂfz‘—l)<(mgl)ﬂ>2] < [Q(fﬁz‘—l) P(l’i—l)(tg)ﬂ

(m—2<t<m—1; 2<m<n'?).
Therefore we get the inequalities

J oo -5 < ] o) T
[qm 0 = st () r< m/l{qm 0 = st (5) } @ (21)

2<m< ngg)).
By using (2.12) and (2.13) we obtain that,

n§2) n£2)

2
(2) o L (m — 1)7T 2
E (Vim)? = E [Q(Iz‘—l) p(ﬂfi—l)((s > ]

m=1 m=1
& (m -1\’
m—1)m
= ¢“(xi—1) + q(wi—1) — p(z; 1)( 5 ) 1
m=2
n(g m
- tm
<qxl1+ /l$z1 1711)(5)]&
o)
t
= .’1311—"- / [ .’1711 (.’lﬁl 1)(?)]6&
0

2
By the inequality p(z;_1) (mgl)”> —q(x-1) < —€, we get ngz) < % % + 1. By

the last inequality we have

) b
Lo [l r-weoy

here, b = %1/% . From (2.11) and (2.14) we obtain that,

(2)

@ne 0 fawi) —e
1(%7") < 157 p(z;)

(2

dt + ¢*(zi—1), (2.14)

3

[8(12(551‘—1) +4q(xi—1)e+ 362] + qz(l'i—l)

3
Il
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or
TL(-Z)
- ]
Z(%‘%)Q < ﬁf(il?z’—hﬁ) +¢*(2i1).0 (2.15)
m=1

Since q(z;) < q(z) < g(x;-1) in the interval [x;_1, x;], then L} < Lgl) and L} < LEQ) .
In this case by [6], it is known that,

ni(A) =000 and nl(N) <P (). (2.16)
On the other hand, from the variation principles of R. Courant ([7]) we have
M
N'(A) =Y mi(N), N'(N) < Zn” (2.17)
i=1

From (2.2), (2.3) and (2.17) we find that,

M
donm <N Zn<2 n(A).

By using the last relation, the inequalities

M onY N(e)
Z Z [ < Z A2 < Z Z L Z A2 (2.18)
i=1 m=1 1=2 m=1

can be proved.

Theorem 2.3. If the functions p(x) and q(x) satisfy the conditions 1., 2., 3. and 4., then
for small positive values of € we have

N(e) g(e)

Z/\2> /fx €)dx — cg®(e) (2.19)

N(e) g(e)
Z )\2 < Z (Yim)? / f(z, €)dz + cg®(e) (2.20)
0

Here, f(z,€) = 1/ L2 =C[8¢%(z) + 4q(z)e + 3¢2] and ¢ is a positive constant.
Tp(e)

Proof : Since the function ¢(x) is monotonous decreasing, then the function f(z,€) is
monotonous decreasing with respect to x for every e satisfying the conditions € € (0, ¢(0))
and ¢g%*(e) > 2.

Therefore we have

Of(x;, €) = / f(zi, €)dz > / flz,e)de (1<i<M-1) (2.21)

By using theorem 2.1 and (2.21), we get

Ti+1

(1)
me > [ e Ode - 20) (2:22)

ers
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From (2.18) and (2.22), we obtain that,

N (e) M 1 Tit1
A > f(z, €)dz —2¢*(0 ] f(z, €)dx —2¢*(0)M (2.23)
305> 2|5 5/

By (2.1) for small positive values of e, we find that,

M= @ [ + 1 < 20°(e). (2.20)

If we consider that z1 =9 and zp; = g(e) then from (2.23) and (2.24) we get

N(e) p(e)

Z)\2> /fx €)dz — cp”(e).

So the inequality (2.19) is proved. Now, let us prove the inequality (2.20). Again, if we
consider that for every e satisfying the conditions e € (0, ¢(0)) and g“(e) > 2, the function
f(z,€) is monotonous decreasing with respect to = then we obtain that,

Ti_1 Ti—1
0f(xi—1, €) = / flziz1, e)dz < / f(z, e)dx (2<i<M). (2.25)
From theorem 2.2 and the relation (2.25), we find that,
n(®
Z(%(?n) / f(z, €)dz + ¢*(0). (2.26)
m=1

From (2.18) and (2.26), we get

Ti—1

N(e) ny M
1
2 2 2
Z A< Z Mim) +Z 157 / fe, gdwtq (0)]
Jj=1 m=1 =2 Ti_o
ny TM-1
= Y Oh /fxecm( -~ 1))
m=1
1 M
Z () + 1= [ S €l + M(0) (2:27)
m=1 0
By (2.24) and (2.27) we obtain that,
N(e) g(e)
Z )\2 < Z / f(z, €)dx + cg®(e).00

0

n
We can proof the following inequality for the sum > (77,,)? on the last inequality
m=1

! s
S (V)2 < e / f(z, )d + esg”(e). (2.28)
m=1 0
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From (2.20) and (2.28), we find that,

N(e) g(e)
Z /fm €dm—|—04/fac €)dx + c49“(€) (2.29)
j=1

Here, ¢4 > 0 is a constant.

3. The Asymptotic Formulas For The Sum Of Squares Of The Negative
Eigenvalues

In this section we will find some formulas for the sum > /\? as € — +0. First of all we
Aj<—e
suppose that the function ¢(z) satisfies the following condition:
5. lim g(x)2*~" = lim (¢(x)z*+")~1 = 0 for every n > 0.
T—r 00 Tr—00

where k is a constant which belongs to the interval (0, 2).

Theorem 3.1. If the functions p(x) and q(z) satisfy the conditions 1.,2.,3., and 5. , then
the asymptotic formula

Z >\2 o 1+O( )) / Q(x)—e[ng(x)+4q(m)€+362 de

p(x)
Aj<e a(z)>e
1s satisfied as € — +0. Here ty is a positive constant.

Proof: By Theorem 2.3, for small positive values of ¢ we have
g(e)

5
Z)\2> /f{,E €)dx — ;ﬂ_/f(x, e)dx — cg“(e) (3.1)
0

For the proof of theorem , we will limit the each term on the right side of the inequality
(3.1). Since the function ¢(x) is monotonous decreasing, then we have

q(x) 2 qlg(2)] =2¢  w € [0,9(2¢)].
Therefore we find that,
g(e g9(2¢) 9(2€)

)
/ f(z, e)dx > / flz, e)dr = alr) — ¢ {8 2(2) + 4q(z)e + 362}6133

9(2¢) g(2¢) .
1/ ©(8¢% + 4 + 3¢%)dx = 15¢%/2 / dz. (3.2)
) V()

Since p(z) < cq, then we get
g(e)

/ fx, e)dz > 15621/ e g(2€) > €21/ e5 1 g(2€). (3.3)
0

If the function ¢(x) satisfies the condition 5. and lim g(e) = oo, then we obtain that
E— OO

1in(1)[q(g(2€))(g(2€))k+"] = 0o. Hence we find

€E—>

9(2€) > ¢ 7, (3.4)
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for the small values with respect to n of €. By using (3.3) and (3.4) we get

g(e)

/ [z, e)dx > /eyt e (3.5)
0

5
Now let us limit the integral [ f(z, €)dz on the inequality (3.1): Since the function g¢(z)
0

satisfies the condition 5., there is a function fi(n) such that

g(z) < fitmz"*  (0<n<k), (3.6)

where f1(n) has positive values. On the other hand since p(z) > ¢; (¢1 > 0), then we have

5 5
/f(x, edr = /
0 0

)
< / \/ Q{Eg [8q2(a:) + 4q(z)e + 362} dx

_c {SqQ(x) + deq(z) + 362:| dx

i~

0
5
1
< 0/ ) [8q5/2($) + 4q3/2(x)€ + 3q1/2(x)62:| de
p 1
) 0/ =5 86°7%(0) + 40 @)a(o) + 30 (@) (o) do
15 ’ 1 . s
< \ﬁ/s \F/ \/a/q52($)dx
0 ) /
h 5
) 1/ dx<cﬁ+7f5/2( )l/a:g(ﬂk)dx
< g+ fon) 53R
< f3(n) s3(n—k)+1 .

where f5(n) is a positive valued function with respect to n (0 < n < k). By the equality
(2.1), for the small values of € we find that,

§<g™) (ae(0,1) (3.8)
If we write g(e) instead of x in (3.6), then we get

a9() < Hin) (o10) "

or
1

gle) <[] e (3.9)
By (3.7), (3.8) and (3.9), we obtain that,

(1—a)[5(n—k)+2]

)
/fx €)dx < fa(n)e — 2C=m (3.10)
0
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where f4(n) is a positive valued function with respect to 7 .
By (3.9) we get

g*(e) < fu(m) ™7 € T (3.11)
From (3.5), (3.10) and (3.11), we find the following inequalities:

5
[ f(z, e)dz
0

P < sl AT i (3.12)
[ f(z, e)dx
0
“(e __a 54 1
I e, (3.13)
[ f(z, €)dx
0
Since k # 0, the functions W — % + ﬁ and — ko‘fn — % + kf}rn are continuous

with respect to n at the point 1 = 0.
Consequently, for every ¢ > 0, as 0 <71 < w there is a number w = w(t) > 0 such that
1-a)bn—k)+2] 5 1 >_a(2—5k)_

T R 2%

t (3.14)

and
o 5 1 2—5k—2a_

K= 2 keno T 2%k

t. (3.15)

Here if we take a = ¥7 t=ty = min{ (2-5k)" 2_5k} , then from (3.14) and (3.15) we

6k * 8k
obtain
—B—k) +2](1-a) 5 1 >(2—5k)2_t
2(k —n) 2 k+1 8k 0
(2 -5k (2—5k)®> (2—5k)?
> — = >t 3.16
= 8k 16k 16k~ (3.16)
and
o 5 1 2 — bk 2—-5k 2-5k 2-5k
_ _° —ty > — = > to. 3.17
F—n 2 ke Ak 07 Tk 8k sk =0 (3:.17)
From (3.12), (3.13), (3.16) and (3.17) we find that,
0
[ f(z, e)dx
0 to
- <cre (3.18)
I f(z, e)dx
0
9(e) MO cr €, (3.19)
[ f(z, e)dx
0
where ¢; = f5(n(to)) € (0,00) is a constant. From (3.1), (3.18) and (3.19) we get
N (e)
> A
=t >1—cge (3.20)

L g(e)
o [ [z, e)dx

0
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From (2.29), (3.18) and (3.19) we find that,

N (e)

ZAQ

L g(e)
o [ [z, e)da

0

<1+ecge (3.21)

From (3.20) and (3.21) we obtain the asymptotic formula
PO
Aj<—e
g(e)

ﬁff(x €)dz
0

or ) > oA = [1 + O(et(’)} i q;@;e {8(12(1:) +4q(x) € + 3€?|dz as € — +0. O
j<—€ q(x)>e

Let us denote the functio(n)s of the form Ingz =z, In;x =In(ln;_; z) by In;z (j =
0,1,2).

Let us suppose that the function g(x) satisfies the following condition:

6. There are a positive number ¢ > 0 and a natural number n > 1 such that the
function ¢(z) — (In, #)~¢ is neither negative valued and nor monotonous increasing in an
interval [a, co) (a > 0).

For large values of z, the inequality

— 1= 0(e)

—

In,, <1nx> <In,z —In'""z,(n > 0) is satisfied. Let us prove this inequality:

If n=0, then we get 7= < x —Inz. Since lim ez —0, lnz<az-— o is satisfied.

T—>00 Inx

If n=1, then we get lnx—ln(ln z) <Ilnz—1. Since lim Iny, x = 0o, the inequality is satisfied.
T—00

For n > 2, let us use the induction method: If n=2, then we can show the equality Ina (%) =

Iny z + In(1 — 222) Since hm 22 — 0, In(1 — %) ~ lf‘nz;”, as ¢ — 0o. From here we

obtain that In(1 11“2;) <= 1 lﬁf;, for large values of z. So we get Ing x+1n(1 11“2 L) < lng x—
1lnpx

2
51y < Ingx —1In~ Y. For n=m (m > 2), let us suppose that the inequality lnm( ) <
In,, x —In'~"™ g is satisfied. For n=m+1, In,1(55) = In(Ing, %) < In(ln,, 2 — In'~"x) =

lnT

In |:1nm (1 —1In, ' 2In' "™ z)|. For large values of x, we can show In(1 —In,,' zIn'"™z) <

-3 In,;! #In'~™ z similar to the above. From here we obtain that Iy, 11 (55) < I 2+
In(1—1In'zln'™™2) < Inyz— %lnfnl xIn'~™z. Here since 211;“Tx > 1, (m > 2), we find
that Ing,11(55) < Iy @ — %ln:nl zlnzln™™z < Ingpyqz — In~ ™" z. If the function ¢(x)

satisfies the conditions 3., 4., and 6. ,then by using the last inequality, for the small positive

—m

values of €, the inequality

q( 9(€) ) —€e> (lng(e))fﬁﬂ)(nﬂ) (3.22)
can be proved.

Theorem 3.2. If the functions p(x) and q(x) satisfy the conditions 1.,2., 3., 4.and 6.,
then the asymptotic formula

2 —€
> M= |1+0( ]/,/ 8q z) + 4q( )e+3e}d

Aj<—€ q(@)>e
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1s satisfied as ¢ — 0. Here [ is a positive constant.

Proof: From the theorem 2.3, for small positive values € , we obtain that

g(e)
Z)\2> /fx €)dx — c19 0 — cg®(e) (3.23)
From (2.1) and (3.23), as a = 3, we find that,
N(e) g(e)
Z %> o [ 1 9de = eng’ o), (3.24)
0
g(e)
where ¢q; is a positive constant. Let us restrict the integral [ f(z, €)dz on the right side
0

of the inequality (3.24).

g(e) g(e) g(e)
/f(a:, e)da:z/ Q(;()m) [8(1( )+ 4q(z )6+3E}dl’>156 /” xie (3.25)

From (3.25), for the small positive values of ¢, we get

g(e) f(e) B Qf( @) -
/fx e)dz > €2 ,/ ;x ‘d 26),/q (;) < (3.26)

1/2f(e

where f(e) = g(e)In"! g(e). From (3.22) and (3.26) we obtain that,

9(e) > 0 —3(E+1)(n+1)
/ f(z, €)dx > c__I¢ <lng(e)> > e2g3/4(e)
0

2,/c3 Ing(e)
N g'%(e)

g(e)

[ f(z, e)dx

0

< e 2g74(e) (3.27)

Since the function ¢(x) satisfies the condition 6., then the inequality e¢ = ¢(p(e)) >
(In,, p(€))~¢ is satisfied. From this inequality, we get

gle) > e ©. (3.28)
From (3.27) and (3.28) we obtain that,
1/2 1 _
g(e)gi(e) <e2emit f o’ (3.29)
[ f(z, e)dx
0
From (3.24) and (3.29) we find that
2
)\‘;76 )\j -8
1 : >1— 0126_6 (330)

5 [ f(z, e)dx

q(z)>e
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From (2.29) we get

g(e)
Z)\2< /fx €)dx + c130 + c4g” (€) (3.31)
From (2.1) and (3.31) as o = 3 , we have
N(e) g(e)

Z )\2 < 15r / f(x, €)dx + c149"%(e) (3.32)

From (3.29) and (3.32) we find that,

S a2

Aj<—e€

o [ flz, eda

q(z)>e

<l+cpse™ (3.33)

From (3.30) and (3.33) we obtain the asymptotic formula as e — 0.

PO

Aj<—e

or
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