

**THE ASYMPTOTIC FORMULAS FOR THE SUM OF SQUARES OF
NEGATIVE EIGENVALUES OF A SINGULAR STURM-LIOUVILLE
OPERATOR**

Yonca SEZER¹

In this work, I find the asymptotic formulas for the sum of squares of negative eigenvalues of the operator L which is formed by differential expression

$$\ell(y) = -(p(x)y'(x))' - q(x)y(x)$$

in the space $L_2[0, \infty)$, with the boundary condition $y(0) = 0$.

Keywords: :Hilbert Space, self-adjoint operator, semi bounded operator, eigenvalue, discrete spectrum

MSC2010: 34L20, 34B24

1. Introduction

Let us consider the operator L , which is formed by the differential expression

$$\ell(y) = -(p(x)y'(x))' - q(x)y(x) \quad (1.1)$$

in the space $L_2[0, \infty)$, with the boundary condition $y(0) = 0$. Suppose that the functions $p(x)$ and $q(x)$ which placed in the expression $\ell(y)$ satisfy the following conditions:

1. There are constants c_1 and c_2 such that $0 < c_1 \leq p(x) \leq c_2$.
2. $p(x)$ is continuous, nondecreasing function and it has bounded derivative on $[0, \infty)$.
3. $q(x)$ is continuous, decreasing and positive valued function on $[0, \infty)$.
4. $\lim_{x \rightarrow \infty} q(x) = 0$.
5. $\lim_{x \rightarrow \infty} q(x)x^{k-\eta} = \lim_{x \rightarrow \infty} (q(x)x^{k+\eta})^{-1} = 0$ for every $\eta > 0$, where k is a constant which belongs to the interval $(0, \frac{2}{5})$.
6. Let us denote the functions of the form $\ln_0 x = x$, $\ln_j x = \ln(\ln_{j-1} x)$ by $\ln_j x$ ($j = 0, 1, 2 \dots$).

There are a positive number $\xi > 0$ and a natural number $n \geq 1$ such that the function $q(x) - (\ln_n x)^{-\xi}$ is neither negative valued and nor monotonous increasing in an interval $[a, \infty)$ ($a > 0$).

$D(L)$ denotes the set of all functions $y(x)$ satisfying the following conditions in $L_2[0, \infty)$:

- a. $y(x)$ and $y'(x)$ are absolutely continuous in every finite interval $[0, a]$ ($a \in (0, \infty)$).
- b. $y(0) = 0$.
- c. $-(p(x)y'(x))' - q(x)y(x) \in L_2[0, \infty)$.

Let the operator L be defined by $Ly = \ell(y)$ from $D(L)$ to $L_2[0, \infty)$. It is known that the operator L is self-adjoint, semi-bounded below and negative part of its spectrum is discrete [1].

¹Department Of Mathematics, Faculty of Arts and Science, Yıldız Technical University, Davutpaşa, İstanbul, Turkey, E-mail: ysezer@yildiz.edu.tr

Let $\lambda_1 \leq \lambda_2 \leq \dots \leq \lambda_n \leq \dots$ be negative eigenvalues of the operator L .

In this work, I find the following asymptotic formulas for the sum of squares of negative eigenvalues of the singular Sturm-Liouville Operator L as $\epsilon \rightarrow +0$, ($\epsilon > 0$)

$$\sum_{\lambda_j < -\epsilon} \lambda_j^2 = \frac{1}{15\pi} (1 + O(\epsilon^{t_0})) \int_{q(x) \geq \epsilon} \sqrt{\frac{q(x)-\epsilon}{p(x)}} [8q^2(x) + 4q(x)\epsilon + 3\epsilon^2] dx,$$

under the conditions 1,2,3,5; and

$$\sum_{\lambda_j < -\epsilon} \lambda_j^2 = \frac{1}{15\pi} [1 + O(\epsilon^{-\beta})] \int_{q(x) \geq \epsilon} \sqrt{\frac{q(x)-\epsilon}{p(x)}} [8q^2(x) + 4q(x)\epsilon + 3\epsilon^2] dx,$$

under the conditions 1,2,3,4,6.

In the work [2], some asymptotic formulas are found for the number of negative eigenvalues of the operator L . In the work [4], the asymptotic behavior of the negative part of the spectrum of a differential operator with the operator coefficient is investigated. Later, the asymptotic formula for the number of eigenvalues of Sturm-Liouville operator with the operator coefficient which has singularity is studied in [3]. The works [5] and [8] analyzes the asymptotic behavior of the negative eigenvalues of the operator in the space $L_2[0, \infty)$ which is formed by the differential expression $-y''(x) - q(x)y(x)$, with the boundary condition $y'(0) = 0$. The papers [10] and [9] are related to asymptotics of the number of negative eigenvalues of a differential operator with operator coefficient. In many other works such as [11], [12], [13], [14] negative spectrum of different type of differential operators is prospected by using other methods. My work concerns the asymptotics of the summation of the squares of eigenvalues. To do this I use Courant's variational principle.

2. Some Inequalities About The Eigenvalues

Since the function $q(x)$ is monotone decreasing, it has inverse. Let $g(x)$ be inverse function of $q(x)$. Let ϵ is a number belonging the interval $(0, q(0))$. Let us consider the following operators:

Let L' be operator in the space $L_2[0, g(\epsilon)]$, which is formed by the expression (1.1), with the boundary condition $y(0) = y(g(\epsilon)) = 0$.

Let L'' be operator in the space $L_2[0, g(\epsilon)]$, which is formed by the expression (1.1), with the boundary condition $y'(0) = y'(g(\epsilon)) = 0$.

Let the partition points of the interval $[0, g(\epsilon)]$ be $0 = x_0 < x_1 < \dots < x_m = g(\epsilon)$.

Let L'_i be operator in the space $L_2[x_{i-1}, x_i]$, which is formed by expression (1.1), with the boundary condition $y(x_{i-1}) = y(x_i) = 0$.

Let L''_i be operator in the space $L_2[x_{i-1}, x_i]$, which is formed by expression (1.1), with the boundary condition $y'(x_{i-1}) = y'(x_i) = 0$.

Let $L_i^{(1)}$ be an operator in the space $L_2[x_{i-1}, x_i]$, which is formed by expression $-p(x_i)y''(x) - q(x_i)y(x)$ with the boundary condition $y(x_{i-1}) = y(x_i) = 0$.

Let $L_i^{(2)}$ be an operator in the space $L_2[x_{i-1}, x_i]$ which is formed by expression $-p(x_{i-1})y''(x) - q(x_{i-1})y(x)$ with boundary condition $y'(x_{i-1}) = y'(x_i) = 0$.

Let us divide the interval $[0, g(\epsilon)]$ into the intervals the with length

$$\delta = \frac{g(\epsilon)}{\lceil g^\alpha(\epsilon) \rceil + 1}. \quad (2.1)$$

Here ϵ is a positive constant satisfying the conditions $g^\alpha(\epsilon) \geq 2$ and $\alpha \in (0, 1)$.

Let $N(\lambda), N'(\lambda), N''(\lambda), n'_i(\lambda), n_i^{(1)}(\lambda)$ be numbers of eigenvalues smaller than $-\lambda$ ($\lambda \in (0, \infty)$) of the operators $L, L', L'', L'_i, L_i^{(1)}$.

Instead of $n'_i(\epsilon)$ and $n_i^{(1)}(\epsilon)$ we will simply write n'_i and $n_i^{(1)}$.

In the work [2], the following inequalities

$$N'(\epsilon) \leq N(\epsilon) \leq N''(\epsilon) \quad (2.2)$$

and

$$L'_i \leq L_i^{(1)}, \quad L''_i > L_i^{(2)}$$

are proved. By the similar way the inequalities (2.2), the inequalities

$$N'(\lambda) \leq N(\lambda) \leq N''(\lambda), \quad (\lambda \geq \epsilon) \quad (2.3)$$

can be proved.

Since the inequality $L'_i \leq L_i^{(1)}$ and from the work [6], we obtain that

$$n'_i(\lambda) \geq n_i^{(1)}(\lambda). \quad (2.4)$$

On the other hand, from the variation principles of R. Courant [7] we have

$$N'(\lambda) \geq \sum_{i=1}^M n'_i(\lambda), \quad (2.5)$$

and from (2.3), (2.4) and (2.5) we find

$$N(\lambda) \geq \sum_{i=1}^M n_i^{(1)}(\lambda), \quad (2.6)$$

where M any natural number. Let $\mu_{i1} \leq \mu_{i2} \leq \mu_{i3} \leq \dots$ be the eigenvalues of the operator $L_i^{(1)}$.

Moreover let us take the following equality $f(x, \epsilon) = \sqrt{\frac{q(x)-\epsilon}{p(x)}}[8q^2(x) + 4q(x)\epsilon + 3\epsilon^2]$

Theorem 2.1. *For the eigenvalues smaller than $-\epsilon$ of the operator $L_i^{(1)}$, the inequality $\sum_{m=1}^{n_i^{(1)}} \mu_{im}^2 > \frac{\delta}{15\pi} f(x_i, \epsilon) - 2q^2(x_i)$ is satisfied.*

Proof: Since the eigenvalues of the operator $L_i^{(1)}$ are of the form

$$\mu_{im} = p(x_i) \left(\frac{m\pi}{x_i - x_{i-1}} \right)^2 - q(x_i) \quad (m = 1, 2, \dots) \text{ then we have}$$

$$\sum_{m=1}^{n_i^{(1)}} \mu_{im}^2 = \sum_{m=1}^{n_i^{(1)}} \left[q(x_i) - p(x_i) \left(\frac{m\pi}{x_i - x_{i-1}} \right)^2 \right]^2 = \sum_{m=1}^{n_i^{(1)}} \left[q(x_i) - p(x_i) \left(\frac{m\pi}{\delta} \right)^2 \right]^2. \quad (2.7)$$

From the relation $\left(\frac{m\pi}{\delta} \right)^2 \leq \left(\frac{t\pi}{\delta} \right)^2 \quad (m \leq t \leq m+1)$, we find that,

$$\left[q(x_i) - p(x_i) \left(\frac{m\pi}{\delta} \right)^2 \right]^2 \geq \left[q(x_i) - p(x_i) \left(\frac{t\pi}{\delta} \right)^2 \right]^2, \quad (1 \leq m \leq n_i^{(1)} - 1).$$

$$\text{Hence we obtain that, } \int_m^{m+1} \left[q(x_i) - p(x_i) \left(\frac{m\pi}{\delta} \right)^2 \right]^2 dt > \int_m^{m+1} \left[q(x_i) - p(x_i) \left(\frac{t\pi}{\delta} \right)^2 \right]^2 dt$$

$$\text{or } \left[q(x_i) - p(x_i) \left(\frac{m\pi}{\delta} \right)^2 \right]^2 > \int_m^{m+1} \left[q(x_i) - p(x_i) \left(\frac{t\pi}{\delta} \right)^2 \right]^2 dt \quad (1 \leq m \leq n_i^{(1)} - 1).$$

By using these inequalities and the relation (2.7) we find that,

$$\begin{aligned} \sum_{m=1}^{n_i^{(1)}} \mu_{im}^2 &= \sum_{m=1}^{n_i^{(1)}} \left[q(x_i) - p(x_i) \left(\frac{m\pi}{\delta} \right)^2 \right]^2 \geq \sum_{m=1}^{n_i^{(1)}-1} \left[q(x_i) - p(x_i) \left(\frac{m\pi}{\delta} \right)^2 \right]^2 \\ &> \sum_{m=1}^{n_i^{(1)}-1} \int_m^{m+1} \left[q(x_i) - p(x_i) \left(\frac{t\pi}{\delta} \right)^2 \right]^2 dt = \int_1^{n_i^{(1)}} \left[q(x_i) - p(x_i) \left(\frac{t\pi}{\delta} \right)^2 \right]^2 dt \end{aligned} \quad (2.8)$$

Moreover, from the inequality $p(x_i) \left(\frac{m\pi}{\delta} \right)^2 - q(x_i) < -\epsilon$, we obtain that,

$$\frac{\delta}{\pi} \sqrt{\frac{q(x_i) - \epsilon}{p(x_i)}} - 1 \leq n_i^{(1)} < \frac{\delta}{\pi} \sqrt{\frac{q(x_i) - \epsilon}{p(x_i)}}. \quad (2.9)$$

From (2.8) and (2.9), we find that,

$$\sum_{m=1}^{n_i^{(1)}} \mu_{im}^2 > \int_0^{a-1} \left[q(x_i) - p(x_i) \left(\frac{t\pi}{\delta} \right)^2 \right]^2 dt - q^2(x_i) > \int_0^a \left[q(x_i) - p(x_i) \left(\frac{t\pi}{\delta} \right)^2 \right]^2 dt - 2q^2(x_i) \quad (2.10)$$

where $a = \frac{\delta}{\pi} \sqrt{\frac{q(x_i) - \epsilon}{p(x_i)}}$.

when we calculate the integral on the right side of the relation (2.10), the result is

$$\int_0^a \left[q(x_i) - p(x_i) \left(\frac{t\pi}{\delta} \right)^2 \right]^2 dt = \frac{\delta}{15\pi} \sqrt{\frac{q(x_i) - \epsilon}{p(x_i)}} \left[8q^2(x_i) + 4q(x_i)\epsilon + 3\epsilon^2 \right]. \quad (2.11)$$

From (2.10) and (2.11) we get $\sum_{m=1}^{n_i^{(1)}} \mu_{im}^2 > \frac{\delta}{15\pi} f(x_i, \epsilon) - 2q^2(x_i)$,

where $f(x_i, \epsilon) = \sqrt{\frac{q(x_i) - \epsilon}{p(x_i)}} \left[8q^2(x_i) + 4q(x_i)\epsilon + 3\epsilon^2 \right]$. \square

Let $\gamma_{i1}'' \leq \gamma_{i2}'' \leq \dots$ be eigenvalues of the operator L_i'' and $\gamma_{i1}^{(2)} \leq \gamma_{i2}^{(2)} \leq \dots$ be eigenvalues of the operator $L_i^{(2)}$.

Let us define the numbers $n_i''(\lambda)$, $n_i^{(2)}(\lambda)$, $n_i''(\epsilon)$ and $n_i^{(2)}(\epsilon)$ as follows:

$$n_i''(\lambda) = \sum_{\gamma_{im}'' < -\lambda} 1, \quad n_i^{(2)}(\lambda) = \sum_{\gamma_{im}^{(2)} < -\lambda} 1, \quad n_i''(\epsilon) = n_i'', \quad n_i^{(2)}(\epsilon) = n_i^{(2)}.$$

Theorem 2.2. For the eigenvalues smaller than $-\epsilon$ of the operator $L_i^{(2)}$, the inequality

$$\sum_{m=1}^{n_i^{(2)}} (\gamma_{im}^{(2)})^2 < \frac{\delta}{15\pi} f(x_{i-1}, \epsilon) + q^2(x_{i-1})$$

is satisfied.

Proof: The eigenvalues of the operator $L_i^{(2)}$ are of the form

$$\gamma_{im}^{(2)} = p(x_{i-1}) \left(\frac{(m-1)\pi}{x_i - x_{i-1}} \right)^2 - q(x_{i-1}) \quad (m = 1, 2, \dots). \quad (2.12)$$

By the relation $\left(\frac{(m-1)\pi}{x_i-x_{i-1}}\right)^2 \geq \left(\frac{t\pi}{\delta}\right)^2$ ($m-2 \leq t \leq m-1$; $m = 2, 3, \dots$), we have the inequalities

$$p(x_{i-1})\left(\frac{(m-1)\pi}{\delta}\right)^2 \geq p(x_{i-1})\left(\frac{t\pi}{\delta}\right)^2$$

$$\left[q(x_{i-1}) - p(x_{i-1})\left(\frac{(m-1)\pi}{\delta}\right)^2\right]^2 \leq \left[q(x_{i-1}) - p(x_{i-1})\left(\frac{t\pi}{\delta}\right)^2\right]^2$$

($m-2 \leq t \leq m-1$; $2 \leq m \leq n_i^{(2)}$).

Therefore we get the inequalities

$$\int_{m-2}^{m-1} \left[q(x_{i-1}) - \left(\frac{(m-1)\pi}{\delta}\right)^2\right]^2 dt < \int_{m-2}^{m-1} \left[q(x_{i-1}) - p(x_{i-1})\left(\frac{t\pi}{\delta}\right)^2\right]^2 dt$$

or

$$\left[q(x_{i-1}) - p(x_{i-1})\left(\frac{(m-1)\pi}{\delta}\right)^2\right]^2 < \int_{m-2}^{m-1} \left\{q(x_{i-1}) - p(x_{i-1})\left(\frac{t\pi}{\delta}\right)^2\right\}^2 dt \quad (2.13)$$

($2 \leq m \leq n_i^{(2)}$).

By using (2.12) and (2.13) we obtain that,

$$\begin{aligned} \sum_{m=1}^{n_i^{(2)}} (\gamma_{im}^{(2)})^2 &= \sum_{m=1}^{n_i^{(2)}} \left[q(x_{i-1}) - p(x_{i-1})\left(\frac{(m-1)\pi}{\delta}\right)^2\right]^2 \\ &= q^2(x_{i-1}) + \sum_{m=2}^{n_i^2} \left[q(x_{i-1}) - p(x_{i-1})\left(\frac{(m-1)\pi}{\delta}\right)^2\right]^2 \\ &< q^2(x_{i-1}) + \sum_{m=2}^{n_i^{(2)}} \int_{m-2}^{m-1} \left[q(x_{i-1}) - p(x_{i-1})\left(\frac{t\pi}{\delta}\right)^2\right]^2 dt \\ &= q^2(x_{i-1}) + \int_0^{n_i^{(2)}-1} \left[q(x_{i-1}) - p(x_{i-1})\left(\frac{t\pi}{\delta}\right)^2\right]^2 dt. \end{aligned}$$

By the inequality $p(x_{i-1})\left(\frac{(m-1)\pi}{\delta}\right)^2 - q(x_{i-1}) < -\epsilon$, we get $n_i^{(2)} < \frac{\delta}{\pi} \sqrt{\frac{q(x_{i-1}) - \epsilon}{p(x_{i-1})}} + 1$. By the last inequality we have

$$\sum_{m=1}^{n_i^{(2)}} (\gamma_{im}^{(2)})^2 < \int_0^b \left[q(x_{i-1}) - p(x_{i-1})\left(\frac{t\pi}{\delta}\right)^2\right] dt + q^2(x_{i-1}), \quad (2.14)$$

here, $b = \frac{\delta}{\pi} \sqrt{\frac{q(x_{i-1}) - \epsilon}{p(x_{i-1})}}$. From (2.11) and (2.14) we obtain that,

$$\sum_{m=1}^{n_i^{(2)}} (\gamma_{im}^{(2)})^2 < \frac{\delta}{15\pi} \sqrt{\frac{q(x_i) - \epsilon}{p(x_i)}} [8q^2(x_{i-1}) + 4q(x_{i-1})\epsilon + 3\epsilon^2] + q^2(x_{i-1})$$

or

$$\sum_{m=1}^{n_i^{(2)}} (\gamma_{im}^{(2)})^2 < \frac{\delta}{15\pi} f(x_{i-1}, \epsilon) + q^2(x_{i-1}). \square \quad (2.15)$$

Since $q(x_i) \leq q(x) \leq q(x_{i-1})$ in the interval $[x_{i-1}, x_i]$, then $L'_i \leq L_i^{(1)}$ and $L''_i \leq L_i^{(2)}$. In this case by [6], it is known that,

$$n'_i(\lambda) \geq n_i^{(1)}(\lambda) \quad \text{and} \quad n''_i(\lambda) \leq n_i^{(2)}(\lambda). \quad (2.16)$$

On the other hand, from the variation principles of R. Courant ([7]) we have

$$N'(\lambda) \geq \sum_{i=1}^M n'_i(\lambda), \quad N''(\lambda) \leq \sum_{i=1}^M n''_i(\lambda). \quad (2.17)$$

From (2.2), (2.3) and (2.17) we find that,

$$\sum_{i=1}^M n_i^{(1)}(\lambda) \leq N(\lambda) \leq \sum_{i=2}^M n_i^{(2)}(\lambda) + n''_i(\lambda).$$

By using the last relation, the inequalities

$$\sum_{i=1}^M \sum_{m=1}^{n_i^{(1)}} \mu_{im}^2 \leq \sum_{j=1}^{N(\epsilon)} \lambda_j^2 \leq \sum_{i=2}^M \sum_{m=1}^{n_i^{(2)}} (\gamma_{im}^{(2)})^2 + \sum_{m=1}^{n'_1} (\gamma_{im}^{''})^2 \quad (2.18)$$

can be proved.

Theorem 2.3. *If the functions $p(x)$ and $q(x)$ satisfy the conditions 1., 2., 3. and 4., then for small positive values of ϵ we have*

$$\sum_{j=1}^{N(\epsilon)} \lambda_j^2 > \frac{1}{15\pi} \int_{\delta}^{g(\epsilon)} f(x, \epsilon) dx - cg^\alpha(\epsilon) \quad (2.19)$$

$$\sum_{j=1}^{N(\epsilon)} \lambda_j^2 < \sum_{m=1}^{n'_1} (\gamma_{1m}^{''})^2 + \frac{1}{15\pi} \int_0^{g(\epsilon)} f(x, \epsilon) dx + cg^\alpha(\epsilon) \quad (2.20)$$

Here, $f(x, \epsilon) = \sqrt{\frac{q(x)-\epsilon}{p(x)}} [8q^2(x) + 4q(x)\epsilon + 3\epsilon^2]$ and c is a positive constant.

Proof : Since the function $q(x)$ is monotonous decreasing, then the function $f(x, \epsilon)$ is monotonous decreasing with respect to x for every ϵ satisfying the conditions $\epsilon \in (0, q(0))$ and $g^\alpha(\epsilon) \geq 2$.

Therefore we have

$$\delta f(x_i, \epsilon) = \int_{x_i}^{x_{i+1}} f(x_i, \epsilon) dx > \int_{x_i}^{x_{i+1}} f(x, \epsilon) dx \quad (1 \leq i \leq M-1) \quad (2.21)$$

By using theorem 2.1 and (2.21), we get

$$\sum_{i=1}^{n_i^{(1)}} \mu_{im}^2 > \frac{1}{15\pi} \int_{x_i}^{x_{i+1}} f(x, \epsilon) dx - 2q^2(0) \quad (2.22)$$

From (2.18) and (2.22), we obtain that,

$$\sum_{j=1}^{N(\epsilon)} \lambda_j^2 > \sum_{i=1}^{M-1} \left[\frac{1}{15\pi} \int_{x_i}^{x_{i+1}} f(x, \epsilon) dx - 2q^2(0) \right] > \frac{1}{15\pi} \int_{x_1}^{x_M} f(x, \epsilon) dx - 2q^2(0)M \quad (2.23)$$

By (2.1) for small positive values of ϵ , we find that,

$$M = \frac{g(\epsilon)}{\delta} = [|^\alpha(\epsilon)|] + 1 < 2g^\alpha(\epsilon). \quad (2.24)$$

If we consider that $x_1 = \delta$ and $x_M = g(\epsilon)$ then from (2.23) and (2.24) we get

$$\sum_{j=1}^{N(\epsilon)} \lambda_j^2 > \frac{1}{15\pi} \int_{\delta}^{p(\epsilon)} f(x, \epsilon) dx - cp^k(\epsilon).$$

So the inequality (2.19) is proved. Now, let us prove the inequality (2.20). Again, if we consider that for every ϵ satisfying the conditions $\epsilon \in (0, q(0))$ and $g^\alpha(\epsilon) \geq 2$, the function $f(x, \epsilon)$ is monotonous decreasing with respect to x then we obtain that,

$$\delta f(x_{i-1}, \epsilon) = \int_{x_{i-2}}^{x_{i-1}} f(x_{i-1}, \epsilon) dx < \int_{x_{i-2}}^{x_{i-1}} f(x, \epsilon) dx \quad (2 \leq i \leq M). \quad (2.25)$$

From theorem 2.2 and the relation (2.25), we find that,

$$\sum_{m=1}^{n_i^{(2)}} (\gamma_{im}^{(2)})^2 < \frac{1}{15\pi} \int_{x_{i-2}}^{x_{i-1}} f(x, \epsilon) dx + q^2(0). \quad (2.26)$$

From (2.18) and (2.26), we get

$$\begin{aligned} \sum_{j=1}^{N(\epsilon)} \lambda_j^2 &< \sum_{m=1}^{n_1''} (\gamma_{1m}'')^2 + \sum_{i=2}^M \left[\frac{1}{15\pi} \int_{x_{i-2}}^{x_{i-1}} f(x, \epsilon) dx + q^2(0) \right] \\ &= \sum_{m=1}^{n_1''} (\gamma_{1m}'')^2 + \frac{1}{15\pi} \int_{x_0}^{x_{M-1}} f(x, \epsilon) dx + (M-1)q^2(0) \\ &< \sum_{m=1}^{n_1''} (\gamma_{1m}'')^2 + \frac{1}{15\pi} \int_0^{x_M} f(x, \epsilon) dx + Mq^2(0). \end{aligned} \quad (2.27)$$

By (2.24) and (2.27) we obtain that,

$$\sum_{j=1}^{N(\epsilon)} \lambda_j^2 < \sum_{m=1}^{n_1''} (\gamma_{1m}'')^2 + \frac{1}{15\pi} \int_0^{g(\epsilon)} f(x, \epsilon) dx + cg^\alpha(\epsilon). \quad \square$$

We can proof the following inequality for the sum $\sum_{m=1}^{n_1''} (\gamma_{1m}'')^2$ on the last inequality

$$\sum_{m=1}^{n_1''} (\gamma_{1m}'')^2 < c_3 \int_0^\delta f(x, \epsilon) dx + c_3 g^\alpha(\epsilon). \quad (2.28)$$

From (2.20) and (2.28), we find that,

$$\sum_{j=1}^{N(\epsilon)} \lambda_j^2 < \frac{1}{15\pi} \int_0^{g(\epsilon)} f(x, \epsilon) dx + c_4 \int_0^{\delta} f(x, \epsilon) dx + c_4 g^\alpha(\epsilon) \quad (2.29)$$

Here, $c_4 > 0$ is a constant.

3. The Asymptotic Formulas For The Sum Of Squares Of The Negative Eigenvalues

In this section we will find some formulas for the sum $\sum_{\lambda_j < -\epsilon} \lambda_j^2$ as $\epsilon \rightarrow +0$. First of all we suppose that the function $q(x)$ satisfies the following condition:

$$5. \lim_{x \rightarrow \infty} q(x)x^{k-\eta} = \lim_{x \rightarrow \infty} (q(x)x^{k+\eta})^{-1} = 0 \text{ for every } \eta > 0.$$

where k is a constant which belongs to the interval $(0, \frac{2}{5})$.

Theorem 3.1. *If the functions $p(x)$ and $q(x)$ satisfy the conditions 1., 2., 3., and 5. , then the asymptotic formula*

$$\sum_{\lambda_j < -\epsilon} \lambda_j^2 = \frac{1}{15\pi} (1 + O(\epsilon^{t_0})) \int_{q(x) \geq \epsilon} \sqrt{\frac{q(x) - \epsilon}{p(x)}} [8q^2(x) + 4q(x)\epsilon + 3\epsilon^2] dx$$

is satisfied as $\epsilon \rightarrow +0$. Here t_0 is a positive constant.

Proof: By Theorem 2.3, for small positive values of ϵ we have

$$\sum_{j=1}^{N(\epsilon)} \lambda_j^2 > \frac{1}{15\pi} \int_0^{g(\epsilon)} f(x, \epsilon) dx - \frac{1}{15\pi} \int_0^{\delta} f(x, \epsilon) dx - cg^\alpha(\epsilon) \quad (3.1)$$

For the proof of theorem , we will limit the each term on the right side of the inequality (3.1). Since the function $q(x)$ is monotonous decreasing, then we have

$$q(x) \geq q[g(2\epsilon)] = 2\epsilon \quad x \in [0, g(2\epsilon)].$$

Therefore we find that,

$$\begin{aligned} \int_0^{g(\epsilon)} f(x, \epsilon) dx &> \int_0^{g(2\epsilon)} f(x, \epsilon) dx = \int_0^{g(2\epsilon)} \sqrt{\frac{q(x) - \epsilon}{p(x)}} [8q^2(x) + 4q(x)\epsilon + 3\epsilon^2] dx \\ &> \int_0^{g(2\epsilon)} \sqrt{\frac{q(x) - \epsilon}{p(x)}} (8\epsilon^2 + 4\epsilon^2 + 3\epsilon^2) dx = 15\epsilon^{5/2} \int_0^{g(2\epsilon)} \frac{1}{\sqrt{p(x)}} dx. \end{aligned} \quad (3.2)$$

Since $p(x) < c_2$, then we get

$$\int_0^{g(\epsilon)} f(x, \epsilon) dx > 15\epsilon^{5/2} \sqrt{c_2^{-1}} g(2\epsilon) > \epsilon^{5/2} \sqrt{c_2^{-1}} g(2\epsilon). \quad (3.3)$$

If the function $q(x)$ satisfies the condition 5. and $\lim_{\epsilon \rightarrow 0} g(\epsilon) = \infty$, then we obtain that $\lim_{\epsilon \rightarrow 0} [q(g(2\epsilon))(g(2\epsilon))^{k+\eta}] = \infty$. Hence we find

$$g(2\epsilon) > \epsilon^{-\frac{1}{k+\eta}}, \quad (3.4)$$

for the small values with respect to η of ϵ . By using (3.3) and (3.4) we get

$$\int_0^{g(\epsilon)} f(x, \epsilon) dx > \sqrt{c_2^{-1}} \epsilon^{\frac{5}{2} - \frac{1}{k+\eta}} \quad (3.5)$$

Now let us limit the integral $\int_0^\delta f(x, \epsilon) dx$ on the inequality (3.1): Since the function $q(x)$ satisfies the condition 5., there is a function $f_1(\eta)$ such that

$$q(x) \leq f_1(\eta) x^{\eta-k} \quad (0 < \eta < k), \quad (3.6)$$

where $f_1(\eta)$ has positive values. On the other hand since $p(x) \geq c_1$ ($c_1 > 0$), then we have

$$\begin{aligned} \int_0^\delta f(x, \epsilon) dx &= \int_0^\delta \sqrt{\frac{q(x) - \epsilon}{p(x)}} [8q^2(x) + 4\epsilon q(x) + 3\epsilon^2] dx \\ &< \int_0^\delta \sqrt{\frac{q(x)}{p(x)}} [8q^2(x) + 4q(x)\epsilon + 3\epsilon^2] dx \\ &< \int_0^\delta \frac{1}{\sqrt{p(x)}} [8q^{5/2}(x) + 4q^{3/2}(x)\epsilon + 3q^{1/2}(x)\epsilon^2] dx \\ &< \int_0^\delta \frac{1}{\sqrt{p(x)}} [8q^{5/2}(x) + 4q^{3/2}(x)q(x) + 3q^{1/2}(x)q^2(x)] dx \\ &< \frac{15}{\sqrt{c_1}} \int_0^\delta q^{5/2}(x) dx = \frac{15}{\sqrt{c_1}} \int_0^1 q^{5/2}(x) dx + \frac{15}{\sqrt{c_1}} \int_1^\delta q^{5/2}(x) dx \\ &< c_6 + \frac{15}{\sqrt{c_1}} \int_1^\delta q^{5/2}(x) dx < c_6 + \frac{15}{\sqrt{c_1}} f_1^{5/2}(\eta) \int_1^\delta x^{\frac{5}{2}(\eta-k)} dx \\ &< c_6 + f_2(\eta) \delta^{\frac{5}{2}(\eta-k)+1} \\ &< f_3(\eta) \delta^{\frac{5}{2}(\eta-k)+1} \end{aligned} \quad (3.7)$$

where $f_3(\eta)$ is a positive valued function with respect to η ($0 < \eta < k$). By the equality (2.1), for the small values of ϵ we find that,

$$\delta < g^{1-\alpha}(\epsilon) \quad (\alpha \in (0, 1)) \quad (3.8)$$

If we write $g(\epsilon)$ instead of x in (3.6), then we get

$$q(g(\epsilon)) \leq f_1(\eta) (g(\epsilon))^{\eta-k}$$

or

$$g(\epsilon) \leq [f_1(\eta)]^{\frac{1}{k-\eta}} \epsilon^{-\frac{1}{k-\eta}} \quad (3.9)$$

By (3.7), (3.8) and (3.9), we obtain that,

$$\int_0^\delta f(x, \epsilon) dx < f_4(\eta) \epsilon^{-\frac{(1-\alpha)[5(\eta-k)+2]}{2(k-\eta)}}, \quad (3.10)$$

where $f_4(\eta)$ is a positive valued function with respect to η .

By (3.9) we get

$$g^\alpha(\epsilon) \leq f_1(\eta)^{\frac{\alpha}{k-\eta}} \epsilon^{-\frac{\alpha}{k-\eta}}. \quad (3.11)$$

From (3.5), (3.10) and (3.11), we find the following inequalities:

$$\frac{\int_0^\delta f(x, \epsilon) dx}{\int_0^{g(\epsilon)} f(x, \epsilon) dx} < f_5(\eta) \epsilon^{\frac{-(1-\alpha)[5(\eta-k)+2]}{2(k-\eta)} - \frac{5}{2} + \frac{1}{k+\eta}} \quad (3.12)$$

$$\frac{g^\alpha(\epsilon)}{\int_0^{g(\epsilon)} f(x, \epsilon) dx} < f_5(\eta) \epsilon^{-\frac{\alpha}{k-\eta} - \frac{5}{2} + \frac{1}{k+\eta}}. \quad (3.13)$$

Since $k \neq 0$, the functions $\frac{-(1-\alpha)[5(\eta-k)+2]}{2(k-\eta)} - \frac{5}{2} + \frac{1}{k+\eta}$ and $-\frac{\alpha}{k-\eta} - \frac{5}{2} + \frac{1}{k+\eta}$ are continuous with respect to η at the point $\eta = 0$.

Consequently, for every $t > 0$, as $0 < \eta < \omega$ there is a number $\omega = \omega(t) > 0$ such that

$$-\frac{(1-\alpha)[5(\eta-k)+2]}{2(k-\eta)} - \frac{5}{2} + \frac{1}{k+\eta} > -\frac{\alpha(2-5k)}{2k} - t \quad (3.14)$$

and

$$-\frac{\alpha}{k-\eta} - \frac{5}{2} + \frac{1}{k+\eta} > \frac{2-5k-2\alpha}{2k} - t. \quad (3.15)$$

Here if we take $\alpha = \frac{2-5k}{4}$, $t = t_0 = \min\left\{\frac{(2-5k)^2}{16k}, \frac{2-5k}{8k}\right\}$, then from (3.14) and (3.15) we obtain

$$\begin{aligned} & \frac{-(5(\eta-k)+2)(1-\alpha)}{2(k-\eta)} - \frac{5}{2} + \frac{1}{k+\eta} > \frac{(2-5k)^2}{8k} - t_0 \\ & \geq \frac{(2-5k)^2}{8k} - \frac{(2-5k)^2}{16k} = \frac{(2-5k)^2}{16k} \geq t_0 \end{aligned} \quad (3.16)$$

and

$$-\frac{\alpha}{k-\eta} - \frac{5}{2} + \frac{1}{k+\eta} > \frac{2-5k}{4k} - t_0 \geq \frac{2-5k}{4k} - \frac{2-5k}{8k} = \frac{2-5k}{8k} \geq t_0. \quad (3.17)$$

From (3.12), (3.13), (3.16) and (3.17) we find that,

$$\frac{\int_0^\delta f(x, \epsilon) dx}{\int_0^{g(\epsilon)} f(x, \epsilon) dx} < c_7 \epsilon^{t_0} \quad (3.18)$$

$$\frac{g^\alpha(\epsilon)}{\int_0^{g(\epsilon)} f(x, \epsilon) dx} < c_7 \epsilon^{t_0}, \quad (3.19)$$

where $c_7 = f_5(\eta(t_0)) \in (0, \infty)$ is a constant. From (3.1), (3.18) and (3.19) we get

$$\frac{\sum_{j=1}^{N(\epsilon)} \lambda_j^2}{\frac{1}{15\pi} \int_0^{g(\epsilon)} f(x, \epsilon) dx} > 1 - c_8 \epsilon^{t_0} \quad (3.20)$$

From (2.29), (3.18) and (3.19) we find that,

$$\frac{\sum_{j=1}^{N(\epsilon)} \lambda_j^2}{\frac{1}{15\pi} \int_0^{g(\epsilon)} f(x, \epsilon) dx} < 1 + c_9 \epsilon^{t_0} \quad (3.21)$$

From (3.20) and (3.21) we obtain the asymptotic formula

$$\frac{\sum_{\lambda_j < -\epsilon} \lambda_j^2}{\frac{1}{15\pi} \int_0^{g(\epsilon)} f(x, \epsilon) dx} - 1 = O(\epsilon^{t_0})$$

or $\sum_{\lambda_j < -\epsilon} \lambda_j^2 = \frac{1}{15\pi} \left[1 + O(\epsilon^{t_0}) \right] \int_{q(x) \geq \epsilon} \sqrt{\frac{q(x) - \epsilon}{p(x)}} \left[8q^2(x) + 4q(x) \epsilon + 3\epsilon^2 \right] dx$ as $\epsilon \rightarrow +0$. \square

Let us denote the functions of the form $\ln_0 x = x$, $\ln_j x = \ln(\ln_{j-1} x)$ by $\ln_j x$ ($j = 0, 1, 2 \dots$).

Let us suppose that the function $q(x)$ satisfies the following condition:

6. There are a positive number $\xi > 0$ and a natural number $n \geq 1$ such that the function $q(x) - (\ln_n x)^{-\xi}$ is neither negative valued and nor monotonous increasing in an interval $[a, \infty)$ ($a > 0$).

For large values of x , the inequality

$$\ln_n \left(\frac{x}{\ln x} \right) < \ln_n x - \ln^{1-n} x, (n \geq 0) \text{ is satisfied. Let us prove this inequality:}$$

If $n=0$, then we get $\frac{x}{\ln x} < x - \ln x$. Since $\lim_{x \rightarrow \infty} \frac{\ln x}{x - \ln x} = 0$, $\ln x < x - \frac{x}{\ln x}$ is satisfied.

If $n=1$, then we get $\ln x - \ln(\ln x) < \ln x - 1$. Since $\lim_{x \rightarrow \infty} \ln_2 x = \infty$, the inequality is satisfied.

For $n \geq 2$, let us use the induction method: If $n=2$, then we can show the equality $\ln_2 \left(\frac{x}{\ln x} \right) = \ln_2 x + \ln \left(1 - \frac{\ln_2 x}{\ln x} \right)$. Since $\lim_{x \rightarrow \infty} \frac{\ln_2 x}{\ln x} = 0$, $\ln \left(1 - \frac{\ln_2 x}{\ln x} \right) \sim -\frac{\ln_2 x}{\ln x}$; as $x \rightarrow \infty$. From here we obtain that $\ln \left(1 - \frac{\ln_2 x}{\ln x} \right) < -\frac{1}{2} \frac{\ln_2 x}{\ln x}$; for large values of x . So we get $\ln_2 x + \ln \left(1 - \frac{\ln_2 x}{\ln x} \right) < \ln_2 x - \frac{1}{2} \frac{\ln_2 x}{\ln x} < \ln_2 x - \ln^{-1} x$. For $n=m$ ($m \geq 2$), let us suppose that the inequality $\ln_m \left(\frac{x}{\ln x} \right) < \ln_m x - \ln^{1-m} x$ is satisfied. For $n=m+1$, $\ln_{m+1} \left(\frac{x}{\ln x} \right) = \ln \left(\ln_m \frac{x}{\ln x} \right) < \ln \left(\ln_m x - \ln^{1-m} x \right) = \ln \left[\ln_m x \left(1 - \ln_m^{-1} x \ln^{1-m} x \right) \right]$. For large values of x , we can show $\ln \left(1 - \ln_m^{-1} x \ln^{1-m} x \right) < -\frac{1}{2} \ln_m^{-1} x \ln^{1-m} x$ similar to the above. From here we obtain that $\ln_{m+1} \left(\frac{x}{\ln x} \right) < \ln_{m+1} x + \ln \left(1 - \ln_m^{-1} x \ln^{1-m} x \right) < \ln_{m+1} x - \frac{1}{2} \ln_m^{-1} x \ln x \ln^{-m} x$. Here since $\frac{\ln x}{2 \ln_m x} > 1$, ($m \geq 2$), we find that $\ln_{m+1} \left(\frac{x}{\ln x} \right) < \ln_{m+1} x - \frac{1}{2} \ln_m^{-1} x \ln x \ln^{-m} x < \ln_{m+1} x - \ln^{-m} x$. If the function $q(x)$ satisfies the conditions 3., 4., and 6., then by using the last inequality, for the small positive values of ϵ , the inequality

$$q \left(\frac{g(\epsilon)}{\ln g(\epsilon)} \right) - \epsilon > (\ln g(\epsilon))^{-(\xi+1)(n+1)} \quad (3.22)$$

can be proved.

Theorem 3.2. *If the functions $p(x)$ and $q(x)$ satisfy the conditions 1., 2., 3., 4. and 6., then the asymptotic formula*

$$\sum_{\lambda_j < -\epsilon} \lambda_j^2 = \frac{1}{15\pi} \left[1 + O(e^{-\epsilon^{-\beta}}) \right] \int_{q(x) \geq \epsilon} \sqrt{\frac{q(x) - \epsilon}{p(x)}} \left[8q^2(x) + 4q(x) \epsilon + 3\epsilon^2 \right] dx$$

is satisfied as $\epsilon \rightarrow 0$. Here β is a positive constant.

Proof: From the theorem 2.3, for small positive values ϵ , we obtain that

$$\sum_{j=1}^{N(\epsilon)} \lambda_j^2 > \frac{1}{15\pi} \int_0^{g(\epsilon)} f(x, \epsilon) dx - c_{10} \delta - cg^\alpha(\epsilon) \quad (3.23)$$

From (2.1) and (3.23), as $\alpha = \frac{1}{2}$, we find that,

$$\sum_{j=1}^{N(\epsilon)} \lambda_j^2 > \frac{1}{15\pi} \int_0^{g(\epsilon)} f(x, \epsilon) dx - c_{11} g^{1/2}(\epsilon), \quad (3.24)$$

where c_{11} is a positive constant. Let us restrict the integral $\int_0^{g(\epsilon)} f(x, \epsilon) dx$ on the right side of the inequality (3.24).

$$\int_0^{g(\epsilon)} f(x, \epsilon) dx = \int_0^{g(\epsilon)} \sqrt{\frac{q(x) - \epsilon}{p(x)}} [8q^2(x) + 4q(x)\epsilon + 3\epsilon^2] dx > 15\epsilon^2 \int_0^{g(\epsilon)} \sqrt{\frac{q(x) - \epsilon}{p(x)}} dx \quad (3.25)$$

From (3.25), for the small positive values of ϵ , we get

$$\int_0^{g(\epsilon)} f(x, \epsilon) dx > \epsilon^2 \int_{1/2f(\epsilon)}^{f(\epsilon)} \sqrt{\frac{q(x) - \epsilon}{p(x)}} dx > \frac{\epsilon^2 f(\epsilon)}{2} \sqrt{\frac{q(f(\epsilon)) - \epsilon}{c_2}} \quad (3.26)$$

where $f(\epsilon) = g(\epsilon) \ln^{-1} g(\epsilon)$. From (3.22) and (3.26) we obtain that,

$$\int_0^{g(\epsilon)} f(x, \epsilon) dx > \frac{\epsilon^2}{2\sqrt{c_2} \ln g(\epsilon)} \left(\ln g(\epsilon) \right)^{-\frac{1}{2}(\xi+1)(n+1)} > \epsilon^2 g^{3/4}(\epsilon)$$

so

$$\frac{g^{1/2}(\epsilon)}{\int_0^{g(\epsilon)} f(x, \epsilon) dx} < \epsilon^{-2} g^{-1/4}(\epsilon) \quad (3.27)$$

Since the function $q(x)$ satisfies the condition 6., then the inequality $\epsilon = q(p(\epsilon)) \geq (\ln_n p(\epsilon))^{-\xi}$ is satisfied. From this inequality, we get

$$g(\epsilon) \geq e^{\epsilon^{-\frac{1}{\xi}}}. \quad (3.28)$$

From (3.27) and (3.28) we obtain that,

$$\frac{g^{1/2}(\epsilon)}{\int_0^{g(\epsilon)} f(x, \epsilon) dx} < \epsilon^{-2} e^{-\frac{1}{4}\epsilon^{-\frac{1}{\xi}}} < e^{-\epsilon^{-\beta}} \quad (3.29)$$

From (3.24) and (3.29) we find that

$$\frac{\sum_{\lambda_j < -\epsilon} \lambda_j^2}{\frac{1}{15\pi} \int_{q(x) \geq \epsilon}^{g(\epsilon)} f(x, \epsilon) dx} > 1 - c_{12} e^{-\epsilon^{-\beta}} \quad (3.30)$$

From (2.29) we get

$$\sum_{j=1}^{N(\epsilon)} \lambda_j^2 < \frac{1}{15\pi} \int_0^{g(\epsilon)} f(x, \epsilon) dx + c_{13}\delta + c_4 g^\alpha(\epsilon) \quad (3.31)$$

From (2.1) and (3.31) as $\alpha = \frac{1}{2}$, we have

$$\sum_{j=1}^{N(\epsilon)} \lambda_j^2 < \frac{1}{15\pi} \int_0^{g(\epsilon)} f(x, \epsilon) dx + c_{14}g^{1/2}(\epsilon) \quad (3.32)$$

From (3.29) and (3.32) we find that,

$$\frac{\sum_{\lambda_j < -\epsilon} \lambda_j^2}{\frac{1}{15\pi} \int_{q(x) \geq \epsilon} f(x, \epsilon) dx} < 1 + c_{15}e^{-\epsilon^{-\beta}} \quad (3.33)$$

From (3.30) and (3.33) we obtain the asymptotic formula as $\epsilon \rightarrow 0$.

$$\frac{\sum_{\lambda_j < -\epsilon} \lambda_j^2}{\frac{1}{15\pi} \int_{q(x) \geq \epsilon} f(x, \epsilon) dx} - 1 = O\left(e^{-\epsilon^{-\beta}}\right)$$

or

$$\sum_{\lambda_j < -\epsilon} \lambda_j^2 = \frac{1}{15\pi} \left[1 + O(e^{-\epsilon^{-\beta}}) \right] \int_{q(x) \geq \epsilon} \sqrt{\frac{q(x) - \epsilon}{p(x)}} \left[8q^2(x) + 4q(x)\epsilon + 3\epsilon^2 \right] dx.$$

□

Acknowledgements: The author would like to thank Professor Ehliman Adiguzelov for his expert assistance. This research wasn't supported by anyone or any company.

REFERENCES

- [1] M.A. Naimark, "Linear Differential Operators", part I, II, London, 1968.
- [2] B.Y. Skacek, "Asymptot of Negative Part of Spectrum of One Dimensioned Differential Operators", Pribr. metodi reseniya differn. uravneniy, Kiev, 1963.
- [3] E.E. Adiguzelov, O. Baksi and A. Bayramoglu, "The Asymptotic Behaviour of the Negative part of the Spectrum of Sturm-Liouville Opertor with the Operator Coefficient which has singularity", International Journal of Differential Equations and Applications, Vol. 6, No. 3, 315-329, 2002.
- [4] E.E. Adiguzelov, M. Bayramoglu and F.G. Maksudov, "On Asymtoties of Spectrum and Trace High Order Differential Operator Coefficients", Doga-Turkish Journal of Mathematics, vol. 17, No:2, 1993.
- [5] E.E. Adiguzelov, Z. Oer, "Asymptotic Expansion for The Sum of Negative Eigenvalues of Sturm-Liouville Operator Given in Semi-Axis", Journal of YTU, 26-35, 2000/1.
- [6] V.I. Smirnov, "A Course of Higher Mathematics", Vol. 5, New York Pergamon Press, 1964.
- [7] R. Courant and D. Hilbert, "Methods of Mathematical Physics", Vol 1, New York, 1970.
- [8] E. Adiguzelov, S. Sengul, M. Akyol, "The Asymptotic Formulas for the Sum of Squares of Negative Eigenvalues of the Singular Sturm-Liouville Operator", Int. J. Contemp. Math. Sci. Vol 1 2006, No7, 341-358.
- [9] M. Bayramoglu, "Asymptotics of the number of negative eigenvalues with respect to a small parameter for the Sturm-Liouville operator equation on the semi-axis", Akad. Nauk. SSR Ser. Fiz. Mat. Nauk. 1987, No2.
- [10] E. Adiguzelov , S. Karayel, "Asymptotic Formulas for the Number of Negative Eigenvalues of a Differential Operator with Operator Coefficient", Int.Journal of Math. Analysis, Vol3, 2009, No10, 491,504.
- [11] J. Behrndt , C. Trunk, "On The Negative Squares of Indefinite Sturm Liouville operators", Journal of Differential Equations, Volume 238, Issue 2, 2007, Pages 491,519

- [12] A. Laptev, “*The Negative Spectrum of a Class of Two-Dimensional Schrodinger Operators with Potentials Depending Only on Radius*”, Functional Analysis and Its Applications, October 2000, Volume 34, Issue 4, pp 305-307.
- [13] S. Malchonov, B. Vainberg, “*On Negative Spectrum of Scrodinger type Operator, Analysis, Partial Differential Equations and Applications, Operator Theory*”, Advances and Applications, Volume 193, 2009, pp 197-214.
- [14] N. Goloschapova, L. Oridoroga, “*On the Negative Spectrum of One-Dimensional Schrodinger Operators with Point Interactions*”, Integral Equations and Operator Theory, May 2010, Volume 67, Issue 1, pp 1-14.