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In this work, I find the asymptotic formulas for the sum of squares of negative

eigenvalues of the operator L which is formed by differential expression

ℓ(y) = −(p(x)y′(x))′ − q(x)y(x)

in the space L2[0,∞), with the boundary condition y(0) = 0.
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1. Introduction

Let us consider the operator L, which is formed by the differential expression

ℓ(y) = −(p(x)y′(x))′ − q(x)y(x) (1.1)

in the space L2[0,∞), with the boundary condition y(0) = 0. Suppose that the functions

p(x) and q(x) which placed in the expression ℓ(y) satisfy the following conditions:

1.There are constants c1 and c2 such that 0 < c1 ≤ p(x) ≤ c2.

2.p(x) is continuous, nondecreasing function and it has bounded derivative on [0,∞).

3. q(x) is continuous, decreasing and positive valued function on [0,∞).

4. lim
x→∞

q(x) = 0.

5. lim
x→∞

q(x)xk−η = lim
x→∞

(q(x)xk+η)−1 = 0 for every η > 0, where k is a constant

which belongs to the interval (0, 2
5 ).

6.Let us denote the functions of the form ln0 x = x, lnj x = ln(lnj−1 x) by lnj x (j =

0, 1, 2 · · · ) .
There are a positive number ξ > 0 and a natural number n ≥ 1 such that the function

q(x) − (lnn x)
−ξ is neither negative valued and nor monotonous increasing in an interval

[a, ∞) (a > 0).

D(L) denotes the set of all functions y(x) satisfying the following conditions in L2[0,∞) :

a.y(x) and y′(x) are absolutely continuous in every finite interval [0, a) (a ∈ (0,∞)).

b. y(0) = 0.

c.−(p(x)y′(x))′ − q(x)y(x) ∈ L2[0,∞).

Let the operator L be defined by Ly = ℓ(y) from D(L) to L2[0,∞). It is known that the

operator L is self-adjoint, semi-bounded below and negative part of its spectrum is discrete

[1].
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Let λ1 ≤ λ2 ≤ · · · ≤ λn ≤ · · · be negative eigenvalues of the operator L.

In this work, I find the following asymptotic formulas for the sum of squares of negative

eigenvalues of the singular Sturm-Liouville Operator L as ϵ → +0, (ϵ > 0)∑
λj<−ϵ

λ2
j = 1

15π

(
1 +O(ϵt0)

) ∫
q(x)≥ϵ

√
q(x)−ϵ
p(x)

[
8q2(x) + 4q(x)ϵ+ 3ϵ2

]
dx,

under the conditions 1,2,3,5; and∑
λj<−ϵ

λ2
j = 1

15π

[
1 +O(e−ϵ−β

)
] ∫
q(x)≥ϵ

√
q(x)−ϵ
p(x)

[
8q2(x) + 4q(x)ϵ+ 3ϵ2

]
dx,

under the conditions 1,2,3,4,6.

In the work [2], some asymptotic formulas are found for the number of negative eigenvalues

of the operator L. In the work [4], the asymptotic behavior of the negative part of the

spectrum of a differential operator with the operator coefficient is investigated. Later, the

asymptotic formula for the number of eigenvalues of Sturm-Liouville operator with the

operator coefficient which has singularity is studied in [3]. The works [5] and [8] analyzes the

asymptotic behavior of the negative eigenvalues of the operator in the space L2[0,∞) which

is formed by the differential expression −y′′(x) − q(x)y(x), with the boundary condition

y′(0) = 0. The papers [10] and [9] are related to asymptotics of the number of negative

eigenvalues of a differential operator with operator coefficient. In many other works such as

[11], [12], [13], [14] negative spectrum of different type of differential operators is prospected

by using other methods. My work concerns the asymptotics of the summation of the squares

of eigenvalues. To do this I use Courant’s variational principle.

2. Some Inequalities About The Eigenvalues

Since the function q(x) is monotone decreasing, it has inverse. Let g(x) be inverse

function of q(x). Let ϵ is a number belonging the interval (0, q(0)) . Let us consider the

following operators:

Let L′ be operator in the space L2[0, g(ϵ)], which is formed by the expression (1.1), with

the boundary condition y(0) = y(g(ϵ)) = 0.

Let L′′ be operator in the space L2[0, g(ϵ)], which is formed by the expression (1.1), with

the boundary condition y′(0) = y′(g(ϵ)) = 0.

Let the partition points of the interval [0, g(ϵ)] be 0 = x0 < x1 < · · · < xm = g(ϵ).

Let L′
i be operator in the space L2[xi−1, xi], which is formed by expression (1.1), with the

boundary condition y(xi−1) = y(xi) = 0.

Let L′′
i be operator in the space L2[xi−1, xi], which is formed by expression (1.1), with the

boundary condition y′(xi−1) = y′(xi) = 0.

Let L
(1)
i be an operator in the space L2[xi−1, xi], which is formed by expression−p(xi)y

′′(x)−
q(xi)y(x) with the boundary condition y(xi−1) = y(xi) = 0.

Let L
(2)
i be an operator in the space L2[xi−1, xi] which is formed by expression−p(xi−1)y

′′(x)−
q(xi−1)y(x) with boundary condition y′(xi−1) = y′(xi)) = 0.

Let us divide the interval [0, g(ϵ)] into the intervals the with length

δ =
g(ϵ)

[| gα(ϵ) |] + 1
. (2.1)

Here ϵ is a positive constant satisfying the conditions gα(ϵ) ≥ 2 and α ∈ (0, 1).

Let N(λ), N ′(λ), N ′′(λ), n′
i(λ), n

(1)
i (λ) be numbers of eigenvalues smaller than −λ (λ ∈

(0,∞)) of the operators L,L′, L′′, L′
i, L

(1)
i .

Instead of n′
i(ϵ) and n

(1)
i (ϵ) we will simply write n′

i and n
(1)
i .
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In the work [2], the following inequalities

N ′(ϵ) ≤ N(ϵ) ≤ N ′′(ϵ) (2.2)

and

L′
i ≤ L

(1)
i , L′′

i > L
(2)
i

are proved. By the similar way the inequalities (2.2), the inequalities

N ′(λ) ≤ N(λ) ≤ N ′′(λ), (λ ≥ ϵ) (2.3)

can be proved.

Since the inequality L′
i ≤ L

(1)
i and from the work [6], we obtain that

n′
i(λ) ≥ n

(1)
i (λ). (2.4)

On the other hand, from the variation principles of R. Courant [7] we have

N ′(λ) ≥
M∑
i=1

n′
i(λ), (2.5)

and from (2.3), (2.4) and (2.5) we find

N(λ) ≥
M∑
i=1

n
(1)
i (λ), (2.6)

where M any natural number. Let µi1 ≤ µi2 ≤ µi3 ≤ · · · be the eigenvalues of the operator

L
(1)
i .

Moreover let us take the following equality f(x, ϵ) =
√

q(x)−ϵ
p(x) [8q2(x) + 4q(x)ϵ+ 3ϵ2]

Theorem 2.1. For the eigenvalues smaller than −ϵ of the operator L
(1)
i , the inequality

n
(1)
i∑

m=1
µ2
im > δ

15πf(xi, ϵ)− 2q2(xi) is satisfied.

Proof: Since the eigenvalues of the operator L
(1)
i are of the form

µim = p(xi)

(
mπ

xi−xi−1

)2

− q(xi) (m = 1, 2, · · · ) then we have

n
(1)
i∑

m=1

µ2
im =

n
(1)
i∑

m=1

[
q(xi)− p(xi)

(
mπ

xi − xi−1

)2
]2

=

n
(1)
i∑

m=1

[
q(xi)− p(xi)

(
mπ

δ

)2
]2

.

(2.7)

From the relation
(
mπ
δ

)2 ≤
(
tπ
δ

)2
(m ≤ t ≤ m+ 1) , we find that,[

q(xi)− p(xi)

(
mπ
δ

)2
]2

≥

[
q(xi)− p(xi)

(
tπ
δ

)2
]2

, (1 ≤ m ≤ n
(1)
i − 1).

Hence we obtain that,
m+1∫
m

[
q(xi)− p(xi)

(
mπ
δ

)2
]2

dt >
m+1∫
m

[
q(xi)− p(xi)

(
tπ
δ

)2
]2

dt

or

[
q(xi)− p(xi)

(
mπ
δ

)2
]2

>
m+1∫
m

[
q(xi)− p(xi)

(
tπ
δ

)2
]2

dt (1 ≤ m ≤ n
(1)
i − 1).
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By using these inequalities and the relation (2.7) we find that,

n
(1)
i∑

m=1

µ2
im =

n
(1)
i∑

m=1

[
q(xi)− p(xi)

(
mπ

δ

)2
]2

≥
n
(1)
i −1∑
m=1

[
q(xi)− p(xi)

(
mπ

δ

)2
]2

>

n
(1)
i −1∑
m=1

m+1∫
m

[
q(xi)− p(xi)

(
tπ

δ

)2
]2

dt =

n
(1)
i∫

1

[
q(xi)− p(xi)

(
tπ

δ

)2
]2

dt (2.8)

Moreover, from the inequality p(xi)
(
mπ
δ

)2 − q(xi) < −ϵ , we obtain that,

δ

π

√
q(xi)− ϵ

p(xi)
− 1 ≤ n

(1)
i <

δ

π

√
q(xi)− ϵ

p(xi)
. (2.9)

From (2.8) and (2.9), we find that,

n
(1)
i∑

m=1

µ2
im >

a−1∫
0

[
q(xi)− p(xi)

(
tπ

δ

)2
]2

dt− q2(xi) >

a∫
0

[
q(xi)− p(xi)

(
tπ

δ

)2
]2

dt− 2q2(xi)

(2.10)

where a = δ
π

√
q(xi)−ϵ
p(xi)

.

when we calculate the integral on the right side of the relation (2.10), the result is

a∫
0

[
q(xi)− p(xi)

(
tπ

δ

)2
]2

dt =
δ

15π

√
q(xi)− ϵ

p(xi)

[
8q2(xi) + 4q(xi)ϵ+ 3ϵ2

]
. (2.11)

From (2.10) and (2.11) we get
n
(1)
i∑

m=1
µ2
im > δ

15πf(xi, ϵ)− 2q2(xi),

where f(xi, ϵ) =
√

q(xi)−ϵ
p(xi)

[
8q2(xi) + 4q(xi)ϵ+ 3ϵ2

]
.�

Let γ′′
i1 ≤ γ′′

i2 ≤ · · · be eigenvalues of the operator L′′
i and γ

(2)
i1 ≤ γ

(2)
i2 ≤ · · · be

eigenvalues of the operator L
(2)
i .

Let us define the numbers n′′
i (λ), n

(2)
i (λ) , n′′

i (ϵ) and n
(2)
i (ϵ) as follows:

n′′
i (λ) =

∑
γ′′
im<−λ

1 , n
(2)
i (λ) =

∑
γ
(2)
im<−λ

1, n′′
i (ϵ) = n′′

i , n
(2)
i (ϵ) = n

(2)
i .

Theorem 2.2. For the eigenvalues smaller than −ϵ of the operator L
(2)
i , the inequality

n
(2)
i∑

m=1

(γ
(2)
im )2 <

δ

15π
f(xi−1, ϵ) + q2(xi−1)

is satisfied.

Proof: The eigenvalues of the operator L
(2)
i are of the form

γ
(2)
im = p(xi−1)

(
(m− 1)π

xi − xi−1

)2

− q(xi−1) (m = 1, 2, · · · ). (2.12)
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By the relation

(
(m−1)π
xi−xi−1

)2

≥
(

tπ
δ

)2

(m − 2 ≤ t ≤ m − 1; m = 2, 3, · · · ) , we have the

inequalities

p(xi−1)

(
(m− 1)π

δ

)2

≥ p(xi−1)

(
tπ

δ

)2

[
q(xi−1)− p(xi−1)

(
(m− 1)π

δ

)2
]2

≤

[
q(xi−1)− p(xi−1)

(
tπ

δ

)2
]2

(m− 2 ≤ t ≤ m− 1; 2 ≤ m ≤ n
(2)
i ).

Therefore we get the inequalities

m−1∫
m−2

[
q(xi−1)−

(
(m− 1)π

δ

)2
]2

dt <

m−1∫
m−2

[
q(xi−1)− p(xi−1)

(
tπ

δ

)2
]2

dt

or [
q(xi−1)− p(xi−1)

(
(m− 1)π

δ

)2
]2

<

m−1∫
m−2

{
q(xi−1)− p(xi−1)

(
tπ

δ

)2
}2

dt (2.13)

(2 ≤ m ≤ n
(2)
i ).

By using (2.12) and (2.13) we obtain that,

n
(2)
i∑

m=1

(γ
(2)
im )2 =

n
(2)
i∑

m=1

[
q(xi−1)− p(xi−1)

(
(m− 1)π

δ

)2
]2

= q2(xi−1) +

n2
i∑

m=2

[
q(xi−1)− p(xi−1)

(
(m− 1)π

δ

)2]2

< q2(xi−1) +

n
(2)
i∑

m=2

m−1∫
m−2

[
q(xi−1)− p(xi−1)

(
tπ

δ

)2
]2

dt

= q2(xi−1) +

n
(2)
i −1∫
0

[
q(xi−1)− p(xi−1)

( tπ
δ

)2]2
dt.

By the inequality p(xi−1)

(
(m−1)π

δ

)2

− q(xi−1) < −ϵ , we get n
(2)
i < δ

π

√
q(xi−1)−ϵ
p(xi−1)

+ 1. By

the last inequality we have

n
(2)
i∑

m=1

(γ
(2)
im )2 <

b∫
0

[
q(xi−1)− p(xi−1)

( tπ
δ

)2]
dt+ q2(xi−1), (2.14)

here, b = δ
π

√
q(xi−1)−ϵ
p(xi−1)

. From (2.11) and (2.14) we obtain that,

n
(2)
i∑

m=1

(γ
(2)
im )2 <

δ

15π

√
q(xi)− ϵ

p(xi)
[8q2(xi−1) + 4q(xi−1)ϵ+ 3ϵ2] + q2(xi−1)
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or
n
(2)
i∑

m=1

(γ
(2)
im )2 <

δ

15π
f(xi−1, ϵ) + q2(xi−1).� (2.15)

Since q(xi) ≤ q(x) ≤ q(xi−1) in the interval [xi−1, xi] , then L′
i ≤ L

(1)
i and L′′

i ≤ L
(2)
i .

In this case by [6], it is known that,

n′
i(λ) ≥ n

(1)
i (λ) and n′′

i (λ) ≤ n
(2)
i (λ). (2.16)

On the other hand, from the variation principles of R. Courant ([7]) we have

N ′(λ) ≥
M∑
i=1

n′
i(λ), N ′′(λ) ≤

M∑
i=1

n′′
i (λ). (2.17)

From (2.2), (2.3) and (2.17) we find that,

M∑
i=1

n
(1)
i (λ) ≤ N(λ) ≤

M∑
i=2

n
(2)
i (λ) + n′′

i (λ).

By using the last relation, the inequalities

M∑
i=1

n
(1)
i∑

m=1

µ2
im ≤

N(ϵ)∑
j=1

λ2
j ≤

M∑
i=2

n
(2)
i∑

m=1

(γ
(2)
im )2 +

n′′
1∑

m=1

(γ′′
im)2 (2.18)

can be proved.

Theorem 2.3. If the functions p(x) and q(x) satisfy the conditions 1., 2., 3. and 4., then

for small positive values of ϵ we have

N(ϵ)∑
j=1

λ2
j >

1

15π

g(ϵ)∫
δ

f(x, ϵ)dx− cgα(ϵ) (2.19)

N(ϵ)∑
j=1

λ2
j <

n′′
1∑

m=1

(γ′′
1m)2 +

1

15π

g(ϵ)∫
0

f(x, ϵ)dx+ cgα(ϵ) (2.20)

Here, f(x, ϵ) =
√

q(x)−ϵ
p(x) [8q2(x) + 4q(x)ϵ+ 3ϵ2] and c is a positive constant.

Proof : Since the function q(x) is monotonous decreasing, then the function f(x, ϵ) is

monotonous decreasing with respect to x for every ϵ satisfying the conditions ϵ ∈ (0, q(0))

and gα(ϵ) ≥ 2.

Therefore we have

δf(xi, ϵ) =

xi+1∫
xi

f(xi, ϵ)dx >

xi+1∫
xi

f(x, ϵ)dx (1 ≤ i ≤ M − 1) (2.21)

By using theorem 2.1 and (2.21), we get

n
(1)
i∑

i=1

µ2
im >

1

15π

xi+1∫
xi

f(x, ϵ)dx− 2q2(0) (2.22)
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From (2.18) and (2.22), we obtain that,

N(ϵ)∑
j=1

λ2
j >

M−1∑
i=1

[
1

15π

xi+1∫
xi

f(x, ϵ)dx− 2q2(0)

]
>

1

15π

xM∫
x1

f(x, ϵ)dx− 2q2(0)M (2.23)

By (2.1) for small positive values of ϵ, we find that,

M =
g(ϵ)

δ
= [|α(ϵ)|] + 1 < 2gα(ϵ). (2.24)

If we consider that x1 = δ and xM = g(ϵ) then from (2.23) and (2.24) we get

N(ϵ)∑
j=1

λ2
j >

1

15π

p(ϵ)∫
δ

f(x, ϵ)dx− cpk(ϵ).

So the inequality (2.19) is proved. Now, let us prove the inequality (2.20). Again, if we

consider that for every ϵ satisfying the conditions ϵ ∈ (0, q(0)) and gα(ϵ) ≥ 2 , the function

f(x, ϵ) is monotonous decreasing with respect to x then we obtain that,

δf(xi−1, ϵ) =

xi−1∫
xi−2

f(xi−1, ϵ)dx <

xi−1∫
xi−2

f(x, ϵ)dx (2 ≤ i ≤ M). (2.25)

From theorem 2.2 and the relation (2.25), we find that,

n
(2)
i∑

m=1

(γ
(2)
im )2 <

1

15π

xi−1∫
xi−2

f(x, ϵ)dx+ q2(0). (2.26)

From (2.18) and (2.26), we get

N(ϵ)∑
j=1

λ2
j <

n′′
1∑

m=1

(γ′′
1m)2 +

M∑
i=2

[
1

15π

xi−1∫
xi−2

f(x, ϵ)dx+ q2(0)

]

=

n′′
1∑

m=1

(γ′′
1m)2 +

1

15π

xM−1∫
x0

f(x, ϵ)dx+ (M − 1)q2(0)

<

n′′
1∑

m=1

(γ′′
1m)2 +

1

15π

xM∫
0

f(x, ϵ)dx+Mq2(0). (2.27)

By (2.24) and (2.27) we obtain that,

N(ϵ)∑
j=1

λ2
j <

n′′
1∑

m=1

(γ′′
1m)2 +

1

15π

g(ϵ)∫
0

f(x, ϵ)dx+ cgα(ϵ).�

We can proof the following inequality for the sum
n′′
1∑

m=1
(γ′′

1m)2 on the last inequality

n′′
1∑

m=1

(γ′′
1m)2 < c3

δ∫
0

f(x, ϵ)dx+ c3g
α(ϵ). (2.28)
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From (2.20) and (2.28), we find that,

N(ϵ)∑
j=1

λ2
j <

1

15π

g(ϵ)∫
0

f(x, ϵ)dx+ c4

δ∫
0

f(x, ϵ)dx+ c4g
α(ϵ) (2.29)

Here, c4 > 0 is a constant.

3. The Asymptotic Formulas For The Sum Of Squares Of The Negative

Eigenvalues

In this section we will find some formulas for the sum
∑

λj<−ϵ

λ2
j as ϵ → +0. First of all we

suppose that the function q(x) satisfies the following condition:

5. lim
x→∞

q(x)xk−η = lim
x→∞

(q(x)xk+η)−1 = 0 for every η > 0.

where k is a constant which belongs to the interval (0, 2
5 ).

Theorem 3.1. If the functions p(x) and q(x) satisfy the conditions 1.,2.,3., and 5. , then

the asymptotic formula∑
λj<−ϵ

λ2
j =

1

15π

(
1 +O(ϵt0)

) ∫
q(x)≥ϵ

√
q(x)− ϵ

p(x)

[
8q2(x) + 4q(x)ϵ+ 3ϵ2

]
dx

is satisfied as ϵ → +0. Here t0 is a positive constant.

Proof: By Theorem 2.3, for small positive values of ϵ we have

N(ϵ)∑
j=1

λ2
j >

1

15π

g(ϵ)∫
0

f(x, ϵ)dx− 1

15π

δ∫
0

f(x, ϵ)dx− cgα(ϵ) (3.1)

For the proof of theorem , we will limit the each term on the right side of the inequality

(3.1). Since the function q(x) is monotonous decreasing, then we have

q(x) ≥ q[g(2ϵ)] = 2ϵ x ∈ [0, g(2ϵ)].

Therefore we find that,

g(ϵ)∫
0

f(x, ϵ)dx >

g(2ϵ)∫
0

f(x, ϵ)dx =

g(2ϵ)∫
0

√
q(x)− ϵ

p(x)

[
8q2(x) + 4q(x)ϵ+ 3ϵ2

]
dx

>

g(2ϵ)∫
0

√
q(x)− ϵ

p(x)
(8ϵ2 + 4ϵ2 + 3ϵ2)dx = 15ϵ5/2

g(2ϵ)∫
0

1√
p(x)

dx. (3.2)

Since p(x) < c2, then we get

g(ϵ)∫
0

f(x, ϵ)dx > 15ϵ5/2
√

c−1
2 g(2ϵ) > ϵ5/2

√
c−1
2 g(2ϵ). (3.3)

If the function q(x) satisfies the condition 5. and lim
ϵ→∞

g(ϵ) = ∞, then we obtain that

lim
ϵ→0

[q(g(2ϵ))(g(2ϵ))k+η] = ∞. Hence we find

g(2ϵ) > ϵ−
1

k+η , (3.4)
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for the small values with respect to η of ϵ. By using (3.3) and (3.4) we get

g(ϵ)∫
0

f(x, ϵ)dx >

√
c−1
2 ϵ

5
2−

1
k+η (3.5)

Now let us limit the integral
δ∫
0

f(x, ϵ)dx on the inequality (3.1): Since the function q(x)

satisfies the condition 5., there is a function f1(η) such that

q(x) ≤ f1(η)x
η−k (0 < η < k), (3.6)

where f1(η) has positive values. On the other hand since p(x) ≥ c1 (c1 > 0), then we have

δ∫
0

f(x, ϵ)dx =

δ∫
0

√
q(x)− ϵ

p(x)

[
8q2(x) + 4ϵq(x) + 3ϵ2

]
dx

<

δ∫
0

√
q(x)

p(x)

[
8q2(x) + 4q(x)ϵ+ 3ϵ2

]
dx

<

δ∫
0

1√
p(x)

[
8q5/2(x) + 4q3/2(x)ϵ+ 3q1/2(x)ϵ2

]
dx

<

δ∫
0

1√
p(x)

[
8q5/2(x) + 4q3/2(x)q(x) + 3q1/2(x)q2(x)

]
dx

<
15
√
c1

δ∫
0

q5/2(x)dx =
15
√
c1

1∫
0

q5/2(x)dx+
15
√
c1

δ∫
1

q5/2(x)dx

< c6 +
15
√
c1

δ∫
1

q5/2(x)dx < c6 +
15
√
c1

f
5/2
1 (η)

δ∫
1

x
5
2 (η−k)dx

< c6 + f2(η) δ
5
2 (η−k)+1

< f3(η) δ
5
2 (η−k)+1 (3.7)

where f3(η) is a positive valued function with respect to η (0 < η < k). By the equality

(2.1), for the small values of ϵ we find that,

δ < g1−α(ϵ) (α ∈ (0, 1)) (3.8)

If we write g(ϵ) instead of x in (3.6), then we get

q(g(ϵ)) ≤ f1(η)
(
g(ϵ)

)η−k

or

g(ϵ) ≤
[
f1(η)

] 1
k−η

ϵ−
1

k−η (3.9)

By (3.7), (3.8) and (3.9), we obtain that,

δ∫
0

f(x, ϵ)dx < f4(η) ϵ
− (1−α)[5(η−k)+2]

2(k−η) , (3.10)
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where f4(η) is a positive valued function with respect to η .

By (3.9) we get

gα(ϵ) ≤ f1(η)
α

k−η ϵ−
α

k−η . (3.11)

From (3.5), (3.10) and (3.11), we find the following inequalities:

δ∫
0

f(x, ϵ)dx

g(ϵ)∫
0

f(x, ϵ)dx

< f5(η) ϵ
−(1−α)[5(η−k)+2]

2(k−η)
− 5

2+
1

k+η (3.12)

gα(ϵ)
g(ϵ)∫
0

f(x, ϵ)dx

< f5(η) ϵ
− α

k−η− 5
2+

1
k+η . (3.13)

Since k ̸= 0, the functions −[5(η−k)+2](1−α)
2(k−η) − 5

2 +
1

k+η and − α
k−η − 5

2 +
1

k+η are continuous

with respect to η at the point η = 0.

Consequently, for every t > 0, as 0 < η < ω there is a number ω = ω(t) > 0 such that

− (1− α)[5(η − k) + 2]

2(k − η)
− 5

2
+

1

k + η
> −α(2− 5k)

2k
− t (3.14)

and

− α

k − η
− 5

2
+

1

k + η
>

2− 5k − 2α

2k
− t. (3.15)

Here if we take α = 2−5k
4 , t = t0 = min

{
(2−5k)2

16k , 2−5k
8k

}
, then from (3.14) and (3.15) we

obtain
−[5(η − k) + 2](1− α)

2(k − η)
− 5

2
+

1

k + η
>

(2− 5k)2

8k
− t0

≥ (2− 5k)2

8k
− (2− 5k)2

16k
=

(2− 5k)2

16k
≥ t0 (3.16)

and

− α

k − η
− 5

2
+

1

k + η
>

2− 5k

4k
− t0 ≥ 2− 5k

4k
− 2− 5k

8k
=

2− 5k

8k
≥ t0. (3.17)

From (3.12), (3.13), (3.16) and (3.17) we find that,

δ∫
0

f(x, ϵ)dx

g(ϵ)∫
0

f(x, ϵ)dx

< c7 ϵ
t0 (3.18)

gα(ϵ)
g(ϵ)∫
0

f(x, ϵ)dx

< c7 ϵ
t0 , (3.19)

where c7 = f5(η(t0)) ∈ (0,∞) is a constant. From (3.1), (3.18) and (3.19) we get

N(ϵ)∑
j=1

λ2
j

1
15π

g(ϵ)∫
0

f(x, ϵ)dx

> 1− c8 ϵ
t0 (3.20)
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From (2.29), (3.18) and (3.19) we find that,

N(ϵ)∑
j=1

λ2
j

1
15π

g(ϵ)∫
0

f(x, ϵ)dx

< 1 + c9 ϵ
t0 (3.21)

From (3.20) and (3.21) we obtain the asymptotic formula∑
λj<−ϵ

λ2
j

1
15π

g(ϵ)∫
0

f(x, ϵ)dx

− 1 = O(ϵt0)

or
∑

λj<−ϵ

λ2
j = 1

15π

[
1 +O(ϵt0)

] ∫
q(x)≥ϵ

√
q(x)−ϵ
p(x)

[
8q2(x) + 4q(x) ϵ+ 3ϵ2

]
dx as ϵ → +0. �

Let us denote the functions of the form ln0 x = x, lnj x = ln(lnj−1 x) by lnj x (j =

0, 1, 2 · · · ) .
Let us suppose that the function q(x) satisfies the following condition:

6. There are a positive number ξ > 0 and a natural number n ≥ 1 such that the

function q(x) − (lnn x)
−ξ is neither negative valued and nor monotonous increasing in an

interval [a, ∞) (a > 0).

For large values of x, the inequality

lnn

(
x

ln x

)
< lnn x− ln1−n x, (n ≥ 0) is satisfied. Let us prove this inequality:

If n=0, then we get x
lnx < x− lnx. Since lim

x→∞
ln x

x− x
ln x

= 0, lnx < x− x
ln x is satisfied.

If n=1, then we get lnx−ln(lnx) < lnx−1. Since lim
x→∞

ln2 x = ∞, the inequality is satisfied.

For n ≥ 2, let us use the induction method: If n=2, then we can show the equality ln2(
x

ln x ) =

ln2 x + ln(1 − ln2 x
lnx ). Since lim

x→∞
ln2 x
lnx = 0, ln(1 − ln2 x

lnx ) ∼ − ln2 x
ln x ; as x → ∞. From here we

obtain that ln(1− ln2 x
lnx ) < −1

2
ln2 x
ln x ; for large values of x. So we get ln2 x+ln(1− ln2 x

ln x ) < ln2 x−
1
2
ln2 x
ln x < ln2 x − ln−1 x. For n=m (m ≥ 2), let us suppose that the inequality lnm( x

ln x ) <

lnm x− ln1−m x is satisfied. For n=m+1, lnm+1(
x

ln x ) = ln(lnm
x

ln x ) < ln(lnm x− ln1−m x) =

ln
[
lnm x(1− ln−1

m x ln1−m x)
]
. For large values of x, we can show ln(1− ln−1

m x ln1−m x) <

− 1
2 ln

−1
m x ln1−m x similar to the above. From here we obtain that lnm+1(

x
ln x ) < lnm+1 x+

ln(1− ln−1
m x ln1−m x) < lnm+1 x− 1

2 ln
−1
m x ln1−m x. Here since ln x

2 lnm x > 1, (m ≥ 2), we find

that lnm+1(
x

ln x ) < lnm+1 x − 1
2 ln

−1
m x lnx ln−m x < lnm+1 x − ln−m x. If the function q(x)

satisfies the conditions 3., 4., and 6. ,then by using the last inequality, for the small positive

values of ϵ, the inequality

q
( g(ϵ)

ln g(ϵ)

)
− ϵ >

(
ln g(ϵ)

)−(ξ+1)(n+1)
(3.22)

can be proved.

Theorem 3.2. If the functions p(x) and q(x) satisfy the conditions 1.,2., 3., 4.and 6.,

then the asymptotic formula∑
λj<−ϵ

λ2
j =

1

15π

[
1 +O(e−ϵ−β

)

] ∫
q(x)≥ϵ

√
q(x)− ϵ

p(x)

[
8q2(x) + 4q(x) ϵ+ 3ϵ2

]
dx
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is satisfied as ϵ → 0. Here β is a positive constant.

Proof: From the theorem 2.3, for small positive values ϵ , we obtain that

N(ϵ)∑
j=1

λ2
j >

1

15π

g(ϵ)∫
0

f(x, ϵ)dx− c10 δ − cgα(ϵ) (3.23)

From (2.1) and (3.23), as α = 1
2 , we find that,

N(ϵ)∑
j=1

λ2
j >

1

15π

g(ϵ)∫
0

f(x, ϵ)dx− c11g
1/2(ϵ), (3.24)

where c11 is a positive constant. Let us restrict the integral
g(ϵ)∫
0

f(x, ϵ)dx on the right side

of the inequality (3.24).

g(ϵ)∫
0

f(x, ϵ)dx =

g(ϵ)∫
0

√
q(x)− ϵ

p(x)

[
8q2(x) + 4q(x) ϵ+ 3ϵ2

]
dx > 15ϵ2

g(ϵ)∫
0

√
q(x)− ϵ

p(x)
dx (3.25)

From (3.25), for the small positive values of ϵ , we get

g(ϵ)∫
0

f(x, ϵ)dx > ϵ2
f(ϵ)∫

1/2f(ϵ)

√
q(x)− ϵ

p(x)
dx >

ϵ2f(ϵ)

2

√
q(f(ϵ))− ϵ

c2
(3.26)

where f(ϵ) = g(ϵ) ln−1 g(ϵ). From (3.22) and (3.26) we obtain that,

g(ϵ)∫
0

f(x, ϵ)dx >
ϵ2

2
√
c2

g(ϵ)

ln g(ϵ)

(
ln g(ϵ)

)− 1
2 (ξ+1)(n+1)

> ϵ2g3/4(ϵ)

so
g1/2(ϵ)

g(ϵ)∫
0

f(x, ϵ)dx

< ϵ−2g−1/4(ϵ) (3.27)

Since the function q(x) satisfies the condition 6., then the inequality ϵ = q(p(ϵ)) ≥
(lnn p(ϵ))

−ξ is satisfied. From this inequality, we get

g(ϵ) ≥ eϵ
− 1

ξ
. (3.28)

From (3.27) and (3.28) we obtain that,

g1/2(ϵ)
g(ϵ)∫
0

f(x, ϵ)dx

< ϵ−2e−
1
4 ϵ

− 1
ξ
< e−ϵ−β

(3.29)

From (3.24) and (3.29) we find that∑
λj<−ϵ

λ2
j

1
15π

∫
q(x)≥ϵ

f(x, ϵ)dx
> 1− c12e

−ϵ−β

(3.30)
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From (2.29) we get

N(ϵ)∑
j=1

λ2
j <

1

15π

g(ϵ)∫
0

f(x, ϵ)dx+ c13δ + c4g
α(ϵ) (3.31)

From (2.1) and (3.31) as α = 1
2 , we have

N(ϵ)∑
j=1

λ2
j <

1

15π

g(ϵ)∫
0

f(x, ϵ)dx+ c14g
1/2(ϵ) (3.32)

From (3.29) and (3.32) we find that,∑
λj<−ϵ

λ2
j

1
15π

∫
q(x)≥ϵ

f(x, ϵ)dx
< 1 + c15e

−ϵ−β

(3.33)

From (3.30) and (3.33) we obtain the asymptotic formula as ϵ → 0.∑
λj<−ϵ

λ2
j

1
15π

∫
q(x)≥ϵ

f(x, ϵ)dx
− 1 = O

(
e−ϵ−β

)

or ∑
λj<−ϵ

λ2
j =

1

15π

[
1 +O(e−ϵ−β

)
] ∫
q(x)≥ϵ

√
q(x)− ϵ

p(x)

[
8q2(x) + 4q(x)ϵ+ 3ϵ2

]
dx.
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