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CHARACTERIZATION OF THE BOUNDEDNESS OF -WIGNER
TRANSFORM ON HARDY AND BMO SPACES

Ayse Sandikci®

One of the most popular families of time-frequency representations is the T - Wigner
transform. This paper is concerned with the boundedness of the T -Wigner transform.
Boundedness results for the T -Wigner transform are obtained in both Hardy and BMO
spaces. The Hardy and BM O-distance between two T - Wigner transforms associated with
different windows and different argument functions are then studied.
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1. Introduction

The Wigner distribution which was introduced by the 1963 Nobel Prize Winner in
Physics E. Wigner in 1932, [12], has a unique origin in quantum mechanics. Later it has
been investigated by several authors as a tool for time-frequency signal analysis, and several
applications have been recommended in different domains. Since the non-stationary signals
cannot be analyzed completely by the Fourier analysis which is an effective tool for studying
stationary signals, a complete analysis of non-stationary signals requires both time and
frequency representations of signals. As the Wigner distribution provides a high-resolution
representation in both time and frequency for non-stationary signals, it is the most popular
time-frequency representation.

As a natural generalization of the Wigner distribution, depending on a parameter
T € [0, 1], another family of time-frequency representations was first introduced in [3]. This
is called the 7-Wigner distribution. The basic structures and properties of the 7-Wigner
distribution were discussed in some detail in [2, 3, 8], and the multilinear case of the 7-
Wigner distribution is defined and studied in detail in [9].

The present investigation is inspired by the papers of Chuong & Duong and Verma
& Gupta, [4, 11]. The boundedness property of the wavelet integral operator on the Besov,
BMO, and H' spaces was obtained in [4]. Verma and Gupta thereafter introduced in [11]
a new class of continuous fractional wavelet transform and studied its properties in Hardy
space and Morrey space.

This paper is also organized as follows. After this paragraph, we introduce the termi-
nology used throughout this paper. In Section 2.1, we shall establish the H!-boundedness
of the 7-Wigner transform for all 7 € [0,1]. In Section 2.2, we obtained the boundedness
property of the 7-Wigner transform for all 7 € [0, 1] on the space BMO as well. Further,
the Hardy and BM O-distance between two 7-Wigner transforms are studied.

We have compiled some basic facts as in follows:

We denote S§(R?) as the space of complex-valued continuous functions on R rapidly
decreasing at infinity. Let f be a complex valued measurable function on R%. The oper-
ators T,.f (t) = f(t —x) and M, f (t) = 2™t f (t) are called translation and modulation
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operators for z,w € R? respectively. The compositions T, M, f(t) = 2™ (=2) f(t — z) or
M, T, f(t) = e*™ "t f(t — z) are called time-frequency shifts (see [5, 6]) . We consider next
the dilation operator f — f5 which is given by f5(z) = 67¢f (%), 6 > 0.

We write (LP(R?), || . ||,) as the Lebesgue spaces for 1 < p < co. For f € L'(R?) the
Fourier transform (or Ff) is defined as

~

fty=[ flx)e > da,

Rd
where x -t = Z?:l z;t; is the usual scalar product on R%.
Fix a function g # 0 (called the window function). The short-time Fourier transform
(STFT) of a function f with respect to g is given by

Vof(z,w) = y Ft)glt — z)e 2mitw iy,

for all z,w € R It is known that if f,g € L*(RY), then V,f € L*(R? x R?) and V,f is
uniformly continuous (see [5, 6]).
Let define V] f as the function

B 11
Vi f(zw) =V f (1793 T“’)
for 7 € (0,1) and z,w € R?
The cross-Wigner distribution of f,g € L?(R?) is defined to be

W(r o) = [ fa+ Dol — e v

2

If f =g, then W(f, f) = W is called the Wigner distribution of f € L2(R%). For 7 € [0, 1]
and f,g € §(R?), the 7-Wigner transform is defined as

WT (f’ g) (1‘7 ’LU) = iy f(l' + Tt)mef?ﬂ'it-wdt.

If - = %, then the 7-Wigner transform is the cross-Wigner distribution. For 7 = 0, W
is the Rihaczek transform, Wo(f, g)(z,w) = e~2™® f(x)g(w), and the conjugate Rihaczek
transform is Wy (f, g) (z, w) = e2™@vg (z)f (w), if T = 1, (see [2, 3]).

The theory of Hardy spaces has close connections to many branches of mathematics,
including Fourier analysis, harmonic analysis, signal and image processing, control theory,
singular integrals and operator theory. It is known that the Hardy space is much more
suitable than the Lebesgue space for many questions in harmonic analysis. Recall that
an equivalent definition of H'(R?) is given in terms of maximal functions My defined as
follows: We fix an integrable smooth function ¢ on R? supported in the unit ball such that
fRd ¢ = 1 and set ¢; (z) = t~%¢ (%) for t > 0. The maximal operator M, is defined by
Myf (x) = i1>1;0) |f * &¢ (z)] for an integrable function f. The Hardy space H'(RY) is defined

as the set of all f € L'(R?) if, for some ¢ € §(R?) with [, ¢ = 1, the maximal function M, f
is in L'(R9). Tt is also a Banach space. Whenever f € H'(R?), then both the translation
operator T}, f and the dilation operator fs are in H'(R%) with

Tl = I g s I fsllgre = If 1l - (1)

The space of functions of bounded mean oscillation, or BMO (it is also known as the John-
Nirenberg space), arises as the class of functions whose deviation from their means over cubes
is bounded. The space BMO(R?) of functions of bounded mean oscillation was devised by
John-Nirenberg in [7]. BMO(RY) is the Banach space of all locally integrable functions f
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on R? for which ||f| 5170 = sup Q (If — Q (f)]) < oo, where the supremum is taken over
QCR4

all cubes @ with sides parallel to the coordinate axes, |@Q| is the Lebesgue measure of @ and
Q (f) points out the mean of f over the ball @, that is

f)ZIQ_l/Qf(w)de |Q|‘1/Qf<x>|dwsc<oo. (2)

The space BMO(RY) is the dual of the Hardy space H!(R?). The Hardy space H'(R?) is a
substitute for L'(R%) and the space BMO(R?) is the corresponding natural substitute for
the space L>®(R?) of bounded functions on R%. An excellent references for these spaces are
1, 10].

2. 7-Wigner transform on Hardy and BMO spaces

2.1. Boundedness of 7-Wigner transform on Hardy Space

In this section, we present H'(R?)-boundedness of 7-Wigner transform for all 7 €
[0, 1]. Before stating our first theorem on boundedness, we need the following Lemma.

Lemma 2.1. If 7 € [0,1], f € LY(R?) and g € L*(RY) N L2(RY), then W, (f,g) (-,w) €
L1(RY).

Proof. Let 7 € (0,1). For a fixed w € R%, W, (f, g) (z,w) is a function of 2. Then we write
by Lemma 6.2 in [3]

(Wr (f,9) (z,w)| = |1|62’” Lowy, <1 1 )
< fur @l (o= 750)

=|1|/f< 1Tx)]|ATg<v>|dv

du

by changing variable u — ﬁx = v. Hence we have
1
W (7.9) (ol < [ as @l ([ =o' @ng . @)]ds)a
1
=g il
7|

by the dilation invariance of T_,f in L'(RY). Also since the space L!'(R?) is strongly
translation invariant and by the equality (6.3) in [3], we obtain

d

=" _Ir] _

AT gl A1 = llglly 111 -
-7

B
Hence, W, (f,9) (-,w) € LY(R?) for 7 € (0,1). If 7 = 0, we have

Wi () ol < [ 17 ([ lote=lar) az = gl 151,

and so Wy (f, g) (-,w) € L*(R9). Similarly, it is proved that Wy (f,g) (-,w) € L*(R%). O

Theorem 2.1. i) Let 7 €[0,1) and g € L*(R?) N L2(R%). Then the operator W, (-, g) :
HY(RY) — HY(RY) defined by f — Wo(f,g)(-,w) is bounded. In particular,

W= (f,9) o)l g < Nlglly 11 -

W= (f,9) (w)lly =
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(i) Let 7 =1 and f € L*(RY) N L2(RY). Then the operator Wi (f,-) : H*(R?) — H(RY)
defined by g — W1 (f, g)(-,w) is bounded. In particular,

Wi (£5.9) Gl < 111 gl g -

Proof. (i) Let 7 € (0,1). Making the substitution « — ==# = v in Lemma 6.2 in [3], we
write

1 ilow 1
W, (f,9) (ew) = e [ fu) Ag (u -
|T‘ Rd 1

-7

1 1 1 S A w
= |de2mﬂ'w/d f (v + T Tx) Arg (v)e’Q’”(”Jrﬁx)'Tdv.
T Rd -

£L‘> e 2T T gy (3)

Applying the Fubini’s Theorem, we have
W= (f,9) (- w) * ) () (4)
= /Rd W= (f,9) (z —y,w) ¢ (y) dy

1 iL(z—y)w A L
= | ‘d /Rd e2miz(z—y) Arg(v) (/Rd (1— r)d (T_pM_%f)(l_T) (x —y) & (v) dy) dv
T
|]' — 7-|d 2mit(z—y) w4 ()
- y e*mir Arg(v) ((T*va%f)(l,T) * ¢t) (x) dv.
T

So, we obtain

||WT (f’ g) ("w)HHl

B / sup [(W- (f,.9) (-, w) * 1) ()] dz

Rd t>
a1 ([ s |(Crodis )y won) @] de) do
-’

Tl ”ATngu(T‘”M‘%f)(l—r)

0
-7
<

-7
|

HL

By using the equality (6.3) in [3] and the translation and the dilation invariant of
Hardy space (see equations (1)), we get for 7 € (0,1)

d d

N | B s
|| T(f?g)(vw)HHl = d d
I

glly 1 e = Nglly 11N e -

If 7 = 0, we obtain

IWo (£19) () = / sup da

Re >0

:/ sup
Ra >0

<fge)l [ s (7]« oD @) do < gl 11

Rd

/Rd e~ 2milz—y)w ¢ (x—y) W(ﬁt (y) dy

dx
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ii) Let 7 = 1. Recalling that Wi (f,g) (z,w) =€ ‘”“”gmAw,We ave
ii) L 1. Recalli hat Wy (f mi f h

Wi (f,9) (o)l s = / sup

Rd t>0

/Rd e27ri(w—y)‘w‘]/“\(u)) m@ (y) dy| dx

< |Fw)| [ sup ol +le) () < 11, gl
R4 t>0

This completes the proof.
O

Now, we will give the H!(R?)-distance of two 7—Wigner transforms associated with
different window functions and different argument functions.

Theorem 2.2. (i) Let 7 € [0,1) and g1,92 € L*(RY) N L2(RY). If f,h € H'(RY), then
we have

W= (f,91) (w) = We (B, g2) Cow)ll g < Hlgr = g2lly 1 e + lg2lly [1f = Al -
(ii) Let 7 =1 and f,h € L*(RY) N L2(RY). If g1,g> € H'(R?), then
W1 (f,91) (- w) = Wi (B, g2) Cow)ll g < llgr = g2llgn 1 £l + g2l g 1 = Al -
Proof. (i) Let 7 € (0,1). By Lemma 6.2 in [3], (3) and (4), we write
(W2 (f,91) (w) = Wi (f, 92) (o w)) * dp) (2)

l—7 i mit(z—y)w L (. N\ ()
_ | |T|d| /]R @ g = ) () (ToaMosf) 0 () do

Then by Theorem 2.1 i), we have

W= (f,91) (ow) = We (f, 92) (sw)ll g < Mg — g2y (11l - (5)
Also since
(Wr (f,92) (-;w) = Wi (R, g2) (-,w)) * ¢¢) ()
‘1 — 7-|d 2mit (z—y)w A (o
- /R L Ry ey ((T_UM_g (F= 1) g_ry * ¢t) (z) dv,

by Theorem 2.1 i), we write

W= (f,92) (w) = W (B, g2) (w)ll g < Mlgally 1f = Rll o - (6)
Then by (5) and (6), we obtain
Wz (f,91) (w) = W (B, g2) (- w)l| g
< HWT (f7.91) ('7w) - W (f7 gQ) (7w)||H1
+ W= (f,92) (-, w) = Wr (R, g2) (- w) 1
<llgr = gally [1f |2 + llgally 1F = Al g -

Now, let 7 = 0. Because of the definition of Wy (f, g), we write

Wo (£1) (2.0) = Wo (£og2) (2.0) = €2 @) | Gor = ga) (@) 27wy

= TV (2) (91— g2)" (w)
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and hence, we obtain
[Wo (f,91) (-,w) = Wo (f,92) (w)ll g (7)
= [ 5| [ Wotr.00 = Wo (7.2 (2 = o) 64 0) dy
Rd t>0 Rd
= / sup
Re >0

< o =9 @] [ sup (1f1164]) (@) o < s = ol 171

dx

dzr

/Rd e 2@ W (1) (g1 — g2)" (w)y (y) dy

Moreover, we have

Wo (f,92) (2, w) = Wo (h, g2) (2, w) = e 727 (f — h) () G2 (w)

and similarly to (7), we write

IWo (f,92) (- w) = Wo (B, g2) ()l g < Ml g2lly 1f = Rll o - (8)

From the inequalities (7) and (8), we get

Wo (f,91) (-;w) = Wo (h, g2) (- w) | 1
< |[Wo (£, 91) (s w) = Wo (f, 92) (- w)ll g
+ [Wo (f,92) (;w) = Wo (R, g2) (-, w) ||
< llgr = g2lly 1 1s + Ngzlly 1 = Pl o -
So, the first part of the Theorem is proved.
(ii) The same reasoning for 7 = 1 in Theorem 2.1 and for 7 = 0 in Theorem 2.2 i) applies

to the case 7 = 1.
O

2.2. Boundedness of 7-Wigner transform on BMO space

In this part, we will discuss the BM O-boundedness of 7-Wigner transform. To fa-
cilitate the proof of the boundedness of 7-Wigner transform on BMO(RY), we need the
following Lemma related to the space BMO(RY).

Lemma 2.2. The space BMO(R?) is invariant under time-frequency shifts.

Proof. Let f € BMO(R?), Q be an arbitrary ball in R? and z,w € R%. Then we write

1Mo Tl paro
— sup Q" / \Mwm(t)—@l / M, T, f (2)dz| dt
QCR4 Q Q

dt

e27riw~tf (t _ .TC) o ‘Q|*1 e?wiw~t/ f(Z o Z) dz
Q

—1
< s o |
QCR4 Q

+ sup \Q|_1/ ‘|Q|_162m“"t/ f(z—x)dz|dt
QCR4 Q Q

w07 [ NlQ [ s - aasa
QCR4 Q Q
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and so, we have

ML Lo < sup Q17 [ ‘f(t—x)—lQ_l JRCEELEL
QCR4 Q Q

-1 -1 _
w2mup 07 [ (107 [ 1 (=l az)

Now, let us say P = Q — z for € R%. We then obtain by the inequality (2)

T o < s [P [ ‘f(u)—IPll [ 1@
PCR4 P P

1 1
+25up |P /(|P| /|f(v)|dv)du

swp P17 [ 17 )= P(ldu+2 s P17 [ PAsa

PCR4
=l paso +21PI7 CIP| = [Ifll paro +2C-

Note that the space BMO is invariant under modulation if z = 0, and the space BMO is
invariant under translation if w = 0. O

We shall need the following Lemma for the next Theorems.

Lemma 2.3. (i) Let7 € (0,1) and g € L*(R?) be a compactly supported. If f € L}, (R?),
then W, (f,9) (-,w) is in L} (R?).

loc

(ii) Let 7=0. If g € LY(RY) and f € L}, .(RY), then Wy (f,g) (-,w) is in L}

loc

(),
(iii) Let 7 =1. If f € LY(R?) and g € L}, (R?), then W1 (f,9) (-,w) is in L}, (R9).

Proof. (i) Let 7 € (0,1). Recall that W (f, g) (x,w) is a function of z. Also we know
that

Wt < 5 [ (v o) | lang ol

from the proof of Lemma 2.1. Then we write for any ball Q C R?

[0 xw>|dx<|:|/ a1 ([ |7 (o4 1150 a0) v

Let us say K = v + —Q Since K C suppg + TQ is a compact set in R? and
f € L}, (R?), we have by the equality (6.3) in [3]

/Qlwf(f,g)mw)ldxs '1|‘|d'd /. |A79(U)</Kf(u)|du> "
11— 7|

[Arglly = M [lgll, < oc.

Hence W, (f,g) (-,w) € L} (R?).
(ii) Let 7 = 0, f € L} .(R%) and K C R? be a compact set. By the definition of
Wo(f,9)(-,w), we write

/ W (f.9) <x7w>|dx=|a<w>|/ f @) dz < M gl < oo,
K K
and so Wo (f,g) (w) € LL,(RY).

loc
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(iii) Similarly, let 7 =1, g € L{,.(R?) and K C R? be a compact set. By the definition of
Wl(fvg)('a w)7 we get

| (.0 @wlde = |Fw) [ lo@lde < 2151, <.

which proves iii).

Now we will state the BM O-boundedness of the 7-Wigner transform.

Theorem 2.3. (i) Let 7 € (0,1) and g € L*(R?) be a compactly supported. Then the
operator W,(-,g) : BMO(R?) — BMO(R?) defined by f — W, (f,g)(-,w) is bounded.

In particular,
W= (f,9) ()l paro < lglly (1flparo +40)-
(i) Let 7 = 0 and g € L*(R%). Then the operator Wy(-,g) : BMO(RY) — BMO(RY)
defined by f — Wo(f,g)(-,w) is bounded. Moreover, we have,
IWo (f,9) (w0l paro < llglly 1l aso + 2C)-
(iii) Let 7 = 1 and f € L*(R%). Then the operator Wi(f,-) : BMO(R?Y) — BMO(R?)
defined by g — W1(f, g)(-,w) is bounded. Moreover, we have,
Wi (f,9) Cwllgaro < IS (gl garo +20)-

Proof. (i) Let 7 € (0,1), Q be an arbitrary ball in R? and f € BMO(RY). Then f €
L} (RY) and so W, (f,9) (-,w) € L}, (R?) by Lemma 2.3 i). By using Fubini Theorem,
we have

QW, (f.9) = 1QI" /Q W, (f.g) (2, w) d

(o
= [ e (e [ arer (v

1 .
T z) 62771,_,1_2~de> dv
—
11— 7|

- /Rde(M_%(T_UM_%f)(l_TJdv.

Thus we get
||WT (fa g) ('7w)||BMO

= sup Q" [ W, (f.9) (z,w) — Q (Wy (f,9))| da
QCR4 Q

-7
< m RdlATg(v)l

( sup Q|1/Q ‘M,% (T,UM,%f)(liT) () —Q (M,% (vaMf%f)(l,T)) ‘ dx) dv

QCRd

1= T\d
- |’7’|d Ra |A7'g (U)| HM—% (T—v _%f)(l—r)

also by using Lemma 2.2, the dilation invariant property of the space BMO and the
equality (6.3) in [3], we obtain

v,

BMO

1 d
W2 (7:9) Cullpaso < we [ 48 @)1 (1 pas0 + 4C) do

= gl (a0 +4C) -
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(ii) Let 7 =0, Q be an arbitrary ball in R? and f € BMO(RY). Then f € L}, (R%) and
so Wy (f,9) (- w) € L} (RY) by Lemma 2.3 ii). Then we have

loc

QWo(f,9) = IQI_l/Qe_%”'”f(Z)ﬁ(w)dz =g (w)Q(M_yf).
Hence we obtain by Lemma 2.2

[Wo (f,9) ('vw)HBMO: sup |Q|_l/ [Wo (f, 9) (z,w) —Q (Wo (f,9))|dx
QCR? Q

= s 1@ [ |e7 e () 50) ~ 5 )@ (M) de

QCR4

5 (w)] sup |QI™" / (M f) (2) — Q (M f)| da
QCR4 Q

g (@) IM-wfllparo < l9lly (£l prro +2€)

which proves ii).
(iii) The proof is omitted as it is similar to the proof of ii).

Now, we will give the BMO(R%)-distance of two 7-Wigner transforms.

Theorem 2.4. (i) Let 7 € (0,1) and g1, 92 € L*(R?) be a compactly supported. If f h €
BMO(R?), then

HWT (f7 gl) ('7w) - W: (h792) ('7w)HBMO
< g1 = g2ll Uflgaro +4C) + llg2lly (If = Al garo +4C)-

(i) Let 7 =0 and g1,g2 € L*(RY). If f,h € BMO(R?), then

HWO (f7gl)(aw) _WO (haQQ) ('7w)||BMO
< g1 = g2ll (Ifllparo +2C) + llg2lly (If = Rl garo +2€).

(iii) Let 7 =1 and f,h € L*R?). If g1, 92 € BMO(RY), then

HWl (f7gl) (-,’LU) - (h, 92) ('7w)||BMO
<l (lgr = g2llparo + 2C) + [If = Rll; (g2l paro +2€)-
Proof. (i) Let T € (0,1), g1, g2 € L'(R?) be a compactly supported and f,h € BMO(R?

).
Then f,h € L} _(R?%) and so, W, (f,g1) (-,w), Wr (f,92) (-,w) and W, (h, g2) (-,w) €

loc
L} .(RY) by Lemma 2.3 i). Then we obtain by Theorem 2.3 i)

W= (f,91) (s w) = Wr (R, g2) (5 w)l paso
< Wz (f,91) (w) = We (f, 92) (5 w)ll paso
+ W= (f,92) (5 w) = Wr (R, g2) (5 w)ll paso
=[Wr(f,91 = g2) (w)ll paso + W= (f = by g2) (w)ll pao
< g1 = g2lly (1f saro +4C) + llg2lly (If = Al paro +4C)

which proves i).
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(11) Let 7 = 07 g1,92 € Ll(Rd) and f7 h e BMO(Rd) Then WO (f?gl) ('7’11)), WO (f792) ('a w)
and Wy (h, g2) (-,w) € L} _(R?) by Lemma 2.3 ii). Thus we have by Theorem 2.3 ii)

loc

Wo (f, 91) (s w) = Wo (h, g2) (-,0) | paro
< |[[Wo (f,91) (sw) = Wo (f,92) (w)ll gaso
+ [[Wo (f, 92) (,w) = Wo (h, g2) (- w)ll saro
= Wo (f, 91 = g2) (s w)ll gaso + [[Wo (f = hs g2) (5wl paso
< llgr = g2lly Ifll paro +2C) + llgzll; (If = Rl garo +20) -

This is the desired result.
(iii) The proof is similar in spirit to ii).
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