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          In this paper, we introduce a new self-adaptive subgradient extragradient algorithm 
with inertial effects for variational inequality, for which the stepsize is chosen by a new 
way. The weak convergence of the algorithm is established. The numerical examples are 
given which illustrate the efficiency and advantage of the proposed algo-rithms.
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1. Introduction

Let C be a nonempty, closed and convex set in a real Hilbert space H and f : H → H
be a given mapping. In this article, we consider the classical variational inequality (V I(C, f))

Find x∗ ∈ C, such that 〈f(x∗), x− x∗〉 ≥ 0, ∀x ∈ C. (1)

The theory of variational inequality has applications in many fields such as mathematical
economy, physics, society, and engineering, and provides a simple, natural and unified frame-
work for many issues, such as the minimization problems, fixed point problems, equilibrium
problems and so on, see [1, 3, 5, 6, 11,21,24–26,29,30,32–37,42–48,50].

A great deal of projection methods for solving V I(C, f) have been studied (see, e.g.,
[4, 8, 10,13,14,17,27,38–41,49]), where the simplest one is

xk+1 = PC(xk − τf(xk)), k ≥ 0 (2)

where τ is some positive real number and PC is the metric projection onto C (see its definition
in Definition 2.1).

If f is Lipschitz continuous and strongly monotone, then the sequence {xk}k∈N gener-
ated by (2) converges to the solution of the problem (1). However, if the strong monotonicity
hypothesis reduces to the plain monotonicity, then the sequence may be divergent.

In order to deal with this situation, Korpelevich [16] proposed the well-known extra-
gradient algorithm {

yk = PC(xk − τf(xk)),

xk+1 = PC(xk − τf(yk)),
(3)

which is convergent when f is Lipschitz continuous and monotone. If C is a general closed
and convex set, then a minimal distance problem has to be solved (twice) in order to obtain
the next iterate. This might seriously affect the efficiency of the extragradient method.
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To overcome this problem, Censor et al. [4] introduced a subgradient extragradient
algorithm which replaces the second projection onto C of the extragradient method (3)
by a projection onto a specific constructible half-space Tk. The subgradient extragradient
algorithm is defined by

yk = PC(xk − τf(xk)),

T k := {w ∈ H | 〈xk − τf(xk)− yk, w − yk〉 ≤ 0},

xk+1 = PTk
(xk − τf(yk)),

(4)

where τ is a positive real number.
To accelerate the speed of the extragradient-type algorithms, the inertial extrapo-

lation technique was combined with the projection methods by some authors [7, 9, 31] for
solving the variational inequality problems. These inertial projection algorithms have excel-
lent numerical performance.

Recently, Thong and Hieu [27] proposed the following inertial subgradient extragra-
dient algorithm: 

wk = xk + αn(xk − xk−1),

yk = PC(wk − τf(wk)),

Tn := {x ∈ H | 〈wk − τf(wk)− yk, x− yk〉 ≤ 0},

xk+1 = PTn
(wk − τf(yk)),

(5)

where τ is a positive real number.
Thong and Hieu [28] also applied the self-adaptive technique to give the stepsize τk

which is the largest τ ∈ {γ, γl, γl2, ...} satisfying τ‖f(wk)−f(yk)‖ ≤ µ‖wk−yk‖, l, µ ∈ (0, 1).
Yang [31] introduced another self-adaptive technique as follows:

τk+1 =

min

{
µ(‖wk − yk‖2 + ‖xk+1 − yk‖2)

2〈f(wk)− f(yk), xk+1 − yk〉
, τn

}
, if 〈f(wk)− f(yk), xk+1 − yk〉 > 0,

τn, otherwise,

(6)
where µ ∈ (0, 1).

The main purpose of this article is to introduce a new inertial subgradient extragra-
dient algorithm, for which the stepsize is chosen through a different way from (6) and that
in [28].

This paper is organized as follows. In Section 2, we recall some definitions and
preliminary results used in the proof of the main results. Section 3 introduces an inertial
subgradient extragradient algorithm and shows its weak convergence. In section 4, we
provide two numerical experiments to illustrate the behaviors of the proposed algorithm
by comparing with other methods.

2. Preliminaries

We use xk ⇀ x (xk → x) to indicate that the sequence (xk)k∈N converges weakly
(strongly) to x.

Let C be a closed convex subset of real Hilbert space H. Denote by NC(v) the normal
cone ( [19], p.76) of C at v ∈ C, i.e.,

NC(v) := {d ∈ H|〈d, y − v〉 ≤ 0, ∀y ∈ C}.

Recall that in a Hilbert space H

‖λx+ (1− λ)y‖2 = λ‖x‖2 + (1− λ)‖y‖2 − λ(1− λ)‖x− y‖2, (7)
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for all x, y ∈ H and λ ∈ R (see Corollary 2.14 in [2]). There also holds

‖x+ y‖2 ≤ ‖x‖2 + 2〈y, x+ y〉, ∀x, y ∈ H. (8)

Definition 2.1. Let C be a closed convex subset of real Hilbert space H. PC is called the
(metric or nearest point) projection from H onto C if for x ∈ H, PCx is the unique
point in C such that

‖x− PCx‖ = inf{‖x− z‖ : z ∈ C}.

Lemma 2.1. Given x ∈ H and z ∈ C. Then z = PCx if and only if there holds the relation:

〈x− z, y − z〉 ≤ 0, for all y ∈ C.

Lemma 2.2 ( [4]). For any x, y ∈ H and z ∈ C, it holds
(i) ‖PC(x)− PC(y)‖ ≤ ‖x− y‖;
(ii) ‖PC(x)− z‖2 ≤ ‖x− z‖2 − ‖PC(x)− x‖2.
(iii) ‖PC(x)− PC(y)‖2 ≤ 〈PC(x)− PC(y), x− y〉.

Lemma 2.3 ( [2]). Assume that {uk}, {vk} and {αk} are three sequences in [0,∞) such
that

(i) uk+1 − uk ≤ αk(uk − uk1) + vk for all k ≥ 0;
(ii) 0 ≤ αk ≤ α(∀k ≥ 0) for some α ∈ (0, 1);
(iii)

∑∞
k=0 vk <∞.

Then limk→∞ uk exists.

Lemma 2.4 ( [20]). Let f : H → H be a monotone and L-Lipschitz continuous mapping.
Assume that the sequence {xk} ⊂ H satisfies xk ⇀ u† and xk − PC(I − τf)xk → 0(τ > 0).
Then u† ∈ SOL(f, C).

Lemma 2.5. (Opial’s lemma) Let C be a nonempty set of H and {xk} be a sequence in H
such that the following two conditions hold:

(i) for every u ∈ C, limk→∞ ‖xk − u‖ exists;
(ii) ωw(xk) ⊂ C.

Then {xk} converges weakly to a point in C.

3. The main results

In this section, we introduce a new self-adaptive inertial subgradient extragradient
algorithm and establish its weak convergence.

We firstly impose the following assumptions on the variational inequality.
Condition 3.1 The solution set of (1), denoted by SOL(C, f), is nonempty.
Condition 3.2 The mapping f is monotone on H, i.e.

〈f(x)− f(y), x− y〉 ≥ 0, ∀x, y ∈ H.
Condition 3.3 The mapping f is Lipschitz continuous on H with constant L > 0, that is,

‖f(x)− f(y)‖ ≤ L‖x− y‖, ∀x, y ∈ H.

3.1. Algorithm

Now we present the self-adaptive inertial subgradient extragradient algorithm.

Algorithm 3.1.

Initialization: Let {αk} be a sequence in [0,∞). Let µ, l ∈ (0, 1), σ > 0 and x0, x−1 ∈ H
be arbitrary.

Iterative Steps: Assume that xk has been given. Calculate xk+1 as follows:
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Step 1. Compute

wk = xk + αk(xk − xk−1),

and

yk = PC(wk − τkf(wk)), (9)

where τk is the largest τ ∈ {σ, σl, σl2, ...} satisfying

τ‖f(wk)− f(yk)‖ ≤ µ‖wk − yk‖. (10)

If yk = wk then stop. Otherwise, go to Step 2.

Step 2. Construct the half-space

Tk :=
{
z ∈ H : 〈wk − γτkβkf(wk)− yk, z − yk〉 ≤ 0

}
and compute

xk+1 = PTk
(wk − γτkβkf(yk)), (11)

where γ is a positive real number and

βk :=


ϕ(wk, yk)/‖d(wk, yk)‖2, if d(wk, yk) 6= 0,

1

(1− µ)2
, if d(wk, yk) = 0,

(12)

and

ϕ(wk, yk) := 〈wk − yk, d(wk, yk)〉,
and

d(wk, yk) = (wk − yk)− τk(f(wk)− f(yk)).

Let k := k + 1 and return to Step 1.

Remark 3.1. We have the following remarks for the stepsize and the inertial parameters
αk.
(i) The stepsizes in yk and xk+1 in Algorithm 3.1 are different and the choice of the

stepsizes of our algorithm is different from (6) and that in (5).

(ii) By (10), it is easy to show that
µl
L ≤ τk ≤ σ.

(iii) In Algorithm 3.1, {αk}k∈N is assumed to be nondecreasing with α1 = 0 and satisfy

0 ≤ αk ≤ α <
√

5− 2. The parameters µ and α satisfy the following inequality

0 < γ ≤ (1− µ)2(1− 4α− α2 − 2δ)

µ(1− α)2
. (13)

where δ ∈
(

0, 1− 4α− α2

2

)
.

From (13), it is easy to verify that

0 <
γµ

(1− µ)2
≤ (1− 4α− α2 − 2δ)

(1− α)2
< 1. (14)

Remark 3.2. By Lemma 2.1, we know that w† ∈ SOL(C, f) ⇔ w† = PC(w† − τf(w†))
for some τ > 0. Thus, if at some iterative step wk = yk = PC(wk − τkf(wk)), then
wk ∈ SOL(C, f).

Remark 3.3. We assume that f is L-Lipschitz continuous. However, the information of L
is not necessary priority to be known. That is, we need not to estimate the value of L.

Lemma 3.1. Let {βk}k∈N be generated by (12). Under the Condition 3.2, it holds

βk ≤
1

(1− µ)2
. (15)
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Proof. By the monotonicity of f , we have

〈f(wk)− f(yk), wk − yk〉 ≥ 0.

Using Condition 3.2 and the definition of d(wk, yk), we obtain

ϕ(wk, yk) =〈d(wk, yk), wk − yk〉

=〈wk − yk, wk − yk〉 − τk〈f(wk)− f(yk), wk − yk〉

≤‖wk − yk‖2,
(16)

and

‖d(wk, yk)‖2 = ‖(wk − yk)− τk(f(wk)− f(yk))‖2

= ‖wk − yk‖2 + τ2k‖f(wk)− f(yk)‖2 − 2τk〈f(wk)− f(yk), wk − yk〉

≥ ‖wk − yk‖2 + τ2k‖f(wk)− f(yk)‖2 − 2τk‖f(wk)− f(yk)‖‖wk − yk‖

= (‖wk − yk‖ − τk‖f(wk)− f(yk)‖)2

≥ (1− µ)2‖wk − yk‖2.

(17)

From (16) and (17), (15) follows. �

3.2. The convergence analysis

We present some convergence results for Algorithm 3.1 as follows.

Lemma 3.2. Let u ∈ SOL(C, f) and {xk}k∈N be the sequence generated by Algorithm 3.1.
Then, under Conditions 3.1, 3.2 and 3.3, we have

‖xk+1 − u‖2 ≤ ‖wk − u‖2 − 1

2

(
1− γµ

(1− µ)2

)
‖xk+1 − wk‖2.

Proof. Applying Lemma 2.2(ii) to (11), we obtain

‖xk+1 − u‖2 ≤ ‖wk − γτkβkf(yk)− u‖2 − ‖wk − γτkβkf(yk)− xk+1‖2

= ‖wk − u‖2 − 2γτkβk〈wk − u, f(yk)〉+ γ2τ2kβ
2
k‖f(yk)‖2

− ‖wk − xk+1‖2 + 2γτkβk〈wk − xk+1, f(yk)〉 − γ2τ2kβ2
k‖f(yk)‖2

= ‖wk − u‖2 + 2γτkβk〈u− xk+1, f(yk)〉 − ‖wk − xk+1‖2

= ‖wk − u‖2 + 2γτkβk〈u− yk, f(yk)− f(u)〉 − ‖wk − xk+1‖2

+ 2γτkβk〈u− yk, f(u)〉+ 2γτkβk〈yk − xk+1, f(yk)〉.

(18)

Since f is monotone, 〈u − yk, f(yk) − f(u)〉 ≤ 0. Noting that u ∈ SOL(C, f) and yk ∈ C,
we deduce that 〈u− yk, f(u)〉 ≤ 0. It follows from (18) that

‖xk+1 − u‖2 ≤ ‖wk − u‖2 − ‖wk − xk+1‖2 + 2γτkβk〈yk − xk+1, f(yk)〉

= ‖wk − u‖2 − ‖wk − yk + yk − xk+1‖2 + 2γτkβk〈yk − xk+1, f(yk)〉

= ‖wk − u‖2 − ‖wk − yk‖2 − 2〈wk − yk, yk − xk+1〉 − ‖yk − xk+1‖2

+ 2γτkβk〈yk − xk+1, f(yk)〉.

(19)

By the definition of Tk and xk+1 ∈ Tk, we have

〈wk − γτkβkf(wk)− yk, xk+1 − yk〉 ≤ 0,

which implies that

〈wk − yk, yk − xk+1〉 ≥ γτkβk〈f(wk), yk − xk+1〉. (20)
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By virtue of (19) and (20), we obtain

‖xk+1 − u‖2 ≤ ‖wk − u‖2 − ‖wk − yk‖2 − 2γτkβk〈f(wk), yk − xk+1〉

− ‖yk − xk+1‖2 + 2γτkβk〈yk − xk+1, f(yk)〉

≤ ‖wk − u‖2 + 2γτkβk〈yk − xk+1, f(yk)− f(wk)〉

− ‖wk − yk‖2 − ‖yk − xk+1‖2.

(21)

In the light of (10), we deduce

2γτkβk〈yk − xk+1, f(yk)− f(wk)〉 ≤ 2γβkτk‖f(yk)− f(wk)‖‖yk − xk+1‖

≤ 2γβkµ‖yk − wk‖‖yk − xk+1‖

≤ γβkµ‖yk − wk‖2 + γβkµ‖yk − xk+1‖2.

This together with (21) implies that

‖xk+1 − u‖2 ≤ ‖wk − u‖2 + γβkµ‖yk − wk‖2 + γβkµ‖yk − xk+1‖2

− ‖wk − yk‖2 − ‖yk − xk+1‖2

= ‖wk − u‖2 − (1− γβkµ)‖wk − yk‖2 − (1− γβkµ)‖xk+1 − yk‖2.
(22)

By the mean value inequality and the trigonometric inequality,

‖xk+1 − u‖2 ≤‖wk − u‖2 − (1− γβkµ)

2
(‖wk − yk‖+ ‖xk+1 − yk‖)2

≤‖wk − u‖2 − (1− γβkµ)

2
‖xk+1 − wk‖2.

(23)

Combining (15) with (23), we have

‖xk+1 − u‖2 ≤‖wk − u‖2 − 1

2

(
1− γµ

(1− µ)2

)
‖xk+1 − wk‖2. (24)

The proof is complete. �

Theorem 3.1. Assume that Conditions 3.1, 3.2 and 3.3 hold. Then the sequence {xk}k∈N
generated by Algorithm 3.1 converges weakly to SOL(C, f).

Proof. From the definition of wk, we have

‖xk+1 − wk‖2 =‖xk+1 − (xk + αk(xk − xk−1))‖2

=‖xk − xk+1‖2 + α2
k‖xk − xk+1‖2 + 2αk〈xk − xk+1, xk − xk−1〉

≥(1− αk)‖xk+1 − xk‖2 + (α2
k − αk)‖xk − xk−1‖2.

Using (7), we obtain

‖wk − u‖2 = (1 + αk)‖xk − u‖2 − αk‖xk−1 − u‖2 + αk(1 + αk)‖xk − xk−1‖2.

Then, from (14) and Lemma 3.2, we get

‖xk+1 − u‖2

≤(1 + αk)‖xk − u‖2 − αk‖xk−1 − u‖2 + αk(1 + αk)‖xk − xk−1‖2

− 1

2

(
1− γµ

(1− µ)2

)[
(1− αk)‖xk+1 − xk‖2 + (α2

k − αk)‖xk − xk−1‖2
]

≤(1 + αk)‖xk − u‖2 − αk‖xk−1 − u‖2 − ζk‖xk+1 − xk‖2 + ξk‖xk − xk−1‖2,

(25)

where

ζk :=
1

2

(
1− γµ

(1− µ)2

)
(1− αk) ≥ 0, (26)
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and

ξk := αk(1 + αk)− 1

2

(
1− γµ

(1− µ)2

)
(α2
k − αk) ≥ 0. (27)

Let h = 1
2

(
1− γµ

(1− µ)2

)
. By (13), it is easy to show

ζk − ξk+1 =h(1− αk)− αk+1(1 + αk+1) + h(α2
k+1 − αk+1)

≥h(1− αk+1)− αk+1(1 + αk+1) + h(α2
k+1 − αk+1)

=h(1− αk+1)2 − αk+1 − α2
k+1

≥h(1− α)2 − α− α2

≥(
1

2
− 2α− 1

2
α2)− 1

2
(1− α)2

γµ

(1− µ)2

≥δ.

(28)

We define the sequence, for all k ≥ 1,

Γk := ‖xk − u‖2 − αk‖xk−1 − u‖2 + ξk‖xk − xk−1‖2. (29)

Using the monotonicity of {αk}k≥1, we get

Γk+1 − Γk ≤‖xk+1 − u‖2 − αk‖xk − u‖2 + ξk+1‖xk+1 − xk‖2

− ‖xk − u‖2 + αk‖xk−1 − u‖2 − ξk‖xk − xk−1‖2

=‖xk+1 − u‖2 − (1 + αk)‖xk − u‖2 + αk‖xk−1 − u‖2

+ ξk+1‖xk+1 − xk‖2 − ξk‖xk − xk−1‖2

≤− ζk‖xk+1 − xk‖2 + ξk+1‖xk+1 − xk‖2

=− (ζk − ξk+1)‖xk+1 − xk‖2

≤− δ‖xk+1 − xk‖2 ≤ 0.

(30)

Hence, {Γk} is a monotone decreasing sequence.
According to (29), we get

‖xk − u‖2 ≤ αk‖xk−1 − u‖2 + Γk

≤ α‖xk−1 − u‖2 + Γ1

≤ . . .

≤ αk‖x0 − u‖2 + (1 + α+ · · ·+ αk−1)Γ1

≤ αk‖x0 − u‖2 +
1

1− α
Γ1.

(31)

Note that

Γk+1 = ‖xk+1 − u‖2 − αk+1‖xk − u‖2 + ξk+1‖xk+1 − xk‖2

≥ −αk+1‖xk − u‖2.
(32)

Combining (31) and (32), we deduce

−Γk+1 ≤ αk+1‖xk − u‖2 ≤ α‖xk − u‖2 ≤ αk+1‖x0 − u‖2 +
α

1− α
Γ1.
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This together with (30) implies that

δ

i∑
k=1

‖xk+1 − xk‖2 ≤
i∑

k=1

(Γk − Γk+1) = Γ1 − Γk+1

≤ αi+1‖x0 − u‖2 +
1

1− α
Γ1

≤ ‖x0 − u‖2 +
1

1− α
Γ1.

which implies that

∞∑
k=1

‖xk+1 − xk‖2 <∞. (33)

Therefore,

lim
k→∞

‖xk+1 − xk‖ = 0. (34)

Note that

‖wk − xk‖ = ‖αk(xk − xk−1)‖ ≤ αk‖xk − xk−1‖ ≤ α‖xk − xk−1‖. (35)

By (34) and (35), we derive

lim
k→∞

‖xk − wk‖ = 0. (36)

By the definition (27) of ξk, there exists a positive constant ξ such that ξk ≤ ξ for all k ≥ 0.
From (25), we have

‖xk+1 − u‖2 ≤ (1 + αk)‖xk − u‖2 − αk‖xk−1 − u‖2 + ξk‖xk − xk−1‖2

≤ (1 + αk)‖xk − u‖2 − αk‖xk−1 − u‖2 + ξ‖xk − xk−1‖2.

It follows that

‖xk+1 − u‖2 − ‖xk − u‖2 ≤ αk(‖xk − u‖2 − ‖xk−1 − u‖2) + ξ‖xk − xk−1‖2. (37)

Applying Lemma 2.3 to (37), we deduce that the limit limk→∞ ‖xk − u‖ exists. Thus, the
sequence {xk} is bounded.

From (22), we obtain

(1− γµβk)‖wk − yk‖2 ≤ ‖wk − u‖2 − ‖xk+1 − u‖2

≤ ‖wk − xk+1‖(‖wk − u‖+ ‖xk+1 − u‖).
(38)

By (14) and (15), γµβk ≤ (1−4α−α2−2δ)
(1−α)2 < 1. Thus, 1 − γµβk > 1 − (1−4α−α2−2δ)

(1−α)2 > 0.

Thanks to (34) and (36), limk→∞ ‖wk − xk+1‖ = 0. At the same time, {‖wk − u‖} and
{‖xk − u‖} are all bounded. Therefore, from (38), we get

lim
k→∞

‖wk − yk‖ = 0. (39)

Let u† ∈ ωw(xn). There exists a subsequence {xki} ⊂ {xk} such that xki ⇀ u†. Thus,
wki ⇀ u† due to (36). Applying Lemma 2.4 to (39), we conclude that u† ∈ SOL(f, C).
Hence, limk→∞ ‖xk − u†‖ exists. Therefore, by Lemma 2.5, we deduce that xk weakly
converges to an element in SOL(f, C). The proof is completed. �
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4. Numerical illustrations

In this section, we provide two numerical examples to show the practicability and
the advantage of our proposed algorithm by comparing it with Algorithm 1 in [22] and
Algorithm 3.1 in [23].

In numerical results listed in the following tables, ‘Iter.’ and ‘Sec.’ denote the number
of iterations and the cpu time in seconds, respectively.

We take αk = 0.1 in these Algorithms and σ = 0.2 in Algorithm 3.1 and Algorithm
1 in [22]. Take γ = 0.9 and µ = 0.5 in Algorithm 3.1 and choose µ = 0.5 in Algorithm 3.1
in [23]. Set l = 0.01 in Example 4.1 and l = 0.01 in Example 4.2, respectively.

Example 4.1. Let the operator f(x) := Mx+ q, x ∈ Rm. This example is taken from [12]
and has been considered by many authors for numerical experiments (see, for example,
[15, 18,23]), where

M = BBT + F +D,

and B is an m×m matrix, F is an m×m skew-symmetric matrix, D is an m×m diagonal
matrix, whose diagonal entries are nonnegative (so M is positive semidefinite), q is a vector
in Rm. The feasible set C ⊂ Rm is a closed and convex subset defined by C := {x ∈ Rm :
Qx ≤ b}, where Q is an l × m matrix and b is a nonnegative vector. It is clear thatf is
monotone and L-Lipschitz-continuous with L = ‖M‖. Let q = 0. Then, the solution set
Γ := {0}.
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Figure 1. Comparison of Algorithm 3.1 and Algorithm 1 in [22] and Al-
gorithm 3.1 in [23].

Take ‖xk‖ < 10−5 as the stopping criterion in Table 1. Figure 1 and Table 1 show
that Algorithm 3.1 is better than Algorithm 1 in [22] and Algorithm 3.1 in [23] in the number
of iterations and the cpu time.

Next we give an example in an infinite dimensional Hilbert space.
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m Algorithm 3.1 Algorithm 1 in [22] Algorithm 3.1 in [23]
Iter. Sec. Iter. Sec. Iter. Sec.

20 2545 0.304765 3517 0.453531 5025 1.016516
30 2520 0.378789 3743 1.895805 6839 3.411048
40 2523 0.436611 4621 2.439548 20891 12.074621
50 2219 1.366350 - - 42706 38.102084

Table 1. Comparison of Algorithm 3.1 and Algorithm 1 in [22] and Algo-
rithm 3.1 in [23] for different m.

Example 4.2. Suppose that H = L2([0, 1]) with norm ‖x‖ :=
( ∫ 1

0
|x(t)|2dt

) 1
2

and inner

product 〈x, y〉 :=
∫ 1

0
x(t)y(t)dt, x, y ∈ H. Let C := {x ∈ H : ‖x‖ ≤ 1} be the unit ball.

Define an operator A : C → H by

A(x)(t) =

∫ 1

0

(x(t)− F (t, s)f(x(s)))ds+ g(t), x ∈ C, t ∈ [0, 1], (40)

where

F (t, s) =
2tset+s

e
√
e2 − 1

, f(x) = cosx, g(t) =
2tet

e
√
e2 − 1

.

A is monotone and L-Lipschitz-continuous with L = 2 (hence uniformly continuous) and
Γ = {0}.
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Figure 2. Comparison of Algorithm 3.1 and Algorithm 1 in [22] and Al-
gorithm 3.1 in [23].

Take ‖xk‖ < 10−15 as the stopping criterion in Table 2. Figure 2 and Table 2 illustrate
that Algorithm 3.1 is better than Algorithm 1 in [22] and Algorithm 3.1 in [23].
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Algorithm 3.1 Algorithm 1 in [22] Algorithm 3.1 in [23]
x0(t) Iter. Sec. Iter. Sec. Iter. Sec.

1 84 0.159966 124 0.163477 186 0.246614
1
t

83 0.163891 124 0.171908 189 0.271120
t2 83 0.167847 125 0.187206 193 0.266201
et 85 0.186619 127 0.189535 183 0.281754

Table 2. Comparison of Algorithm 3.1 and Algorithm 1 in [22] and Algo-
rithm 3.1 in [23] in different initial point.
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