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ANALYSIS OF TRIPARTITE GAME IN POWER SYSTEMS BASED ON

UNCERTAIN NASH EQUILIBRIUM THEORY

Liang Wu1, Xiaolin Yan2, Zhangsong Yao3, Teng Zhao4

Power systems serve as the fundamental infrastructure for the socioeconomic

development of modern societies. Researching power systems can stimulate the growth of

the power industry and contribute to the sustainable development of society. This paper
aims to address uncertainties prevalent in power systems, including extreme weather

events, disruptions in renewable energy supply, and adjustments in economic policies. To
achieve this objective, an uncertain Nash equilibrium model is established. Subsequently,

a game theoretic analysis is conducted to maximize the interests of users, grid companies,

and proxy purchasers. Under the condition of not necessarily continuous differentiability,
the Riemann-Stieltjes discrete approximation method has been proposed. The difficulty

of calculating the expectation of the optimal revenue function has been resolved. Weak

first-order equilibrium condition based on Clarke’s generalized gradient, the convergence
and convergence rate of uncertain Nash equilibrium solutions are proved.

Keywords: uncertain Nash equilibrium, power system, tripartite game, uncertainty

theory.

1. Introduction

Power systems represent essential and intricate engineering systems within modern
society. The development of the power industry is closely tied to economic progress, as
electrical energy plays an indispensable role in socio-economic production. With the trans-
formation of the electricity market, the decision objectives of participating entities have
shifted from complying with uniform and centralized dispatch to pursuing individual profit
maximization. Consequently, scholars have recognized the theoretical and practical value
of applying game theory to study the competitive behavior of stakeholders in the electrical
markets.

Game theory, originally proposed by Von Neumann in the early 20th century, is a dis-
cipline that primarily explores human decision-making behavior and interactions. It enables
the investigation of optimal strategies and expected payoffs of decision-makers in differen-
t scenarios. In a game, each decision-maker faces a problem influenced by the decisions
of others, leading to different outcomes and payoffs. Nash equilibrium, a central concept
in non-cooperative games, provides a framework for understanding and analyzing various
game situations. Studying Nash equilibrium helps us comprehend and explain social and
economic phenomena such as market competition, political games, and decision-making in
warfare. Game theory has been successfully applied to electrical markets related to economic
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interests, yielding significant achievements in power systems research [1, 2, 8, 13]. Qin et
al. [16] established a game theory model to determine the market equilibrium by minimiz-
ing the operating costs of the power system and maximizing the profits of mobile energy
storage, using the sequential dispatch algorithm to obtain the optimal strategy. Moafi et
al. [14] evaluated the cooperative strategies of participants in the power system based on a
three-level game-playing framework, proposing particle swarm optimization and fuzzy logic
algorithms to obtain effective cooperative strategies, thereby reducing electrical costs and
increasing profits.

Addressing large-scale complex electrical market equilibrium problems presents schol-
ars with new challenges. In such cases, Nash equilibrium has become a crucial theoretical tool
for studying the behavior and decision-making of power system participants. Wu et al. [24]
established a multi-player non-cooperative differential game model based on optimal control
theory. They successfully proved the existence and uniqueness of Nash equilibrium prices by
utilizing a distributed algorithm that incorporates neural dynamics and consensus theory. In
the electricity market, the pricing strategy of the participants directly affect the competitive-
ness and efficiency of the market. By analyzing the strategic interactions of the participants,
the equilibrium prices and supply-demand relationship in the market can be predicted, which
can be used to optimize the market design and regulatory policies. Moreover, the study of
Nash equilibrium contributes to risk management and coordination in the power system,
promoting its stability and reliable operation [3, 4, 9, 12, 17–22, 26, 27, 29, 30, 32–34].

However, due to the complex multi-stakeholder nature of the power systems, encom-
passing power plants, transmission lines, distribution networks, and end-users, interdepen-
dency, and mutual influence among these participants, and their decisions have significant
impacts on the entire system. The power system is also subject to various uncertainty factors
affecting its operation and planning, including extreme weather events leading to load uncer-
tainty, interruptions or reductions in renewable energy supply causing energy uncertainty,
and uncertainties in electricity market prices due to economic impacts, policy changes, or
energy storage technologies. Addressing these uncertainties is crucial for ensuring the re-
silience and efficiency of the power system [23, 25, 28]. Gao and Sheble [5] demonstrated
the high sensitivity of equilibrium solutions to the level of asymmetric information faced by
two-stage renewable energy in the presence of uncertainty. Qiao et al. [15] constructed a
game model for real-time markets, taking into account the uncertainty of electrical supply
and analyzing its impact on hourly electricity prices. They solved the optimal electrici-
ty pricing problem by maximizing expected revenue under risk conditions, obtaining the
optimal electricity price under risk conditions.

While the existing literature has made significant contributions to power system re-
search, there has been limited attention given to the phenomenon of uncertainty, charac-
terized by a lack of historical sample data. To address this issue, Liu [11] proposed the
uncertainty theory. In this paper, we aim to maximize the profits of users, power com-
panies, and agent power purchasers by thinking over the uncertainties present in power
systems. To achieve these objectives, an uncertain Nash equilibrium model is established.
In cases where the optimal revenue function expectation cannot be computed and the ob-
jective function is non-differentiable, the Riemann-Stieltjes discrete approximation method
is employed. Finally, the convergence of uncertain Nash equilibrium solutions is analyzed.

The remainder of the paper is structured as follows: Section 2 provides some necessary
definitions. Section 3 considers user-based uncertain loads and establishes an uncertain Nash
equilibrium model. Section 4 formulates the equilibrium solution within a three-layer game
aiming to maximize participants’ profits. Section 5 presents the convergence and convergence
rate of uncertain Nash equilibrium solutions based on the weak clarke first-order equilibrium
conditions.
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2. Preliminaries

Definition 2.1 ([31]). If lim sup
h→h̄

H(h) ⊂ H(h̄), it is equivalent to lim sup
h→h̄

H(h) = H(h̄). In

this case, a set-valued mapping H : Rn → Rm is said to be upper semi-continuous at h̄.
Here, τ is a non-negative integer, and

lim sup
h→h̄

H(h) : =
⋃

hτ→h̄

lim sup
τ→∞

H(hτ )

=
{
j | ∃hτ → h̄,∃jτ → j with jτ ∈ H(hτ )

}
.

Definition 2.2 ([7]). Suppose we have a sequence of functions {n(x)} that satisfies the
following two conditions: (1) For all n, the function n(§) is bounded and integrable, i.e.,∫
|n(§)|d§ < ∞, and there exist constants µn such that |n(§)| ≤ µn holds for almost all

§. (2) The function sequence {n(§)} converges to the function (§), i.e., limn→∞ n(§) = (§)
holds for almost all §. Under these conditions, the function (§) is uniformly integrable.

Definition 2.3 ([7]). Consider a sequence of integrable and bounded random closed sets in
a separable Banach space, denoted as Tn. If ‖Tn‖ is uniformly bounded and, as n→∞, the
expectation of Tn denoted by E(Tn), converges to the expectation of T denoted by E(T), we
have lim

n→∞
E(Tn) = E(T).

Definition 2.4 ([6]). Let (Ω,Γ,Θ) be a measure space, and let ϑn be a sequence of mea-
surable functions defined on (Ω,Γ,Θ) such that ϑn converges almost everywhere to ϑ. Fur-
thermore, assume there exists an integrable function ζ such that |ϑn(θ)| ≤ ζ(θ) for all n and
θ ∈ Ω. Then, the following equalities hold:∫

Ω

ϑ(θ)dΘ(θ) = lim
n→∞

∫
Ω

ϑn(θ)dΘ(θ) =

∫
Ω

lim
n→∞

ϑn(θ)dΘ(θ).

Definition 2.5 ([6]). Let ‖P‖ := max
§∈P
‖§‖, then the deviation between the sets P1 and

P2 is defined as D(P1,P2) := sup
§∈P1

dist(§,P2), where P represents a compact vector set.

dist(§,P) := inf
§′∈P
‖§− §′‖ represents the distance from a point § to P.

The deviation function D satisfies the following properties for sets Z1,Z2,Z3:

D (Z1,Z2) ≤ D (Z1,Z3) + D (Z3,Z2) , (1)

D (Z1 + Z3,Z2 + Z3) ≤ D (Z1,Z2) , (2)

D (Z1 + Z2,Z3 + Z4) ≤ D (Z1,Z3) + D (Z2,Z4) . (3)

This paper encompasses several definitions related to the theory of uncertainty. For
detailed information, please refer to [10].

3. Uncertain Nash Equilibrium Model in Power Systems

3.1. User Game Model D

The user model D comprises d load-consuming users. Each user possesses multiple
electrical devices, and we represent the user set as D = {1, 2, · · · , d}, with corresponding
geographic locations Sd = [S1, S2, · · · , Sd]. Throughout the game process, based on the
different load attributes of the electrical devices, we classify the user loads into four categories
based on their load attributes: quantitatively adjustable but time-dependent loads (A1),
time-dependent but quantitatively adjustable loads (A2), fixed loads (A3), and uncertain
loads (A4).

Assuming that the electricity consumption for each day is divided into time intervals,
denoted as ∆m = m −m−1, we represent the set of time points as M = (m1,m2, · · · ,m).
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The total electricity consumption of all electrical devices owned by user d at time m is
determined by the following expression: (d, , θ) = (d,A1, ) + (d,A2, ) + (d,A3, ) + (d,A4, ).

In the context of this academic paper, the electricity consumption of user d for devices
A1, A2, A3, and A4 during time interval m is represented by (d,A1, ), (d,A2, ), (d,A3, ),
and (d,A4, ), respectively. These quantities indicate the amount of electricity consumed by
user d for each specific device during the given time interval. The distribution matrix of
electricity consumption for all users is defined as follows:

Q(d, , θ) =


(1, 1, θ) (1, 2, θ) · · · (1, , θ)
(2, 1, θ) (2, 2, θ) · · · (2, , θ)

...
...

...
(d, 1, θ) (d, 2, θ) · · · (d, , θ)

 .
Unit electricity price chosen by user d in time interval is represented by the vector:

(d) = [(d, 1), (d, 2), · · · , (d, )],

(d, ) =

{
f(), f() = min{f(n, )−∆f(n), f()};
f(n, ), f(n, )−∆f(n) = min{f(n, )−∆f(n), f()},

where f = [f(1), f(2), · · · , f()] represents the price vector corresponding to the time vector
published by the power company. There are n proxy power retailers, and the price vector
for retailer Dn is denoted as f(n) = [f(n, 1), f(n, 2), · · · , f(n, )]. ∆f(n) represents the unit
electricity subsidy obtained when a user chooses proxy retailer Dn.

The payment distribution matrix for user d is given by:

Π =


Π(1, 1) Π(1, 2) · · · Π(1, )
Π(2, 1) Π(2, 2) · · · Π(2, )

...
...

...
Π(d, 1) Π(d, 2) · · · Π(d, )

 ,
where Π(d, ) represents the payment made by user d at time m, defined as: Π(d, ) = (d, ) ·
(d, , θ). The payment matrix for all users is defined as follows:

F =


F (1)
F (2)

...
F (d)

 =


Π(1, 1) + Π(1, 2) + · · ·+ Π(1, )
Π(2, 1) + Π(2, 2) + · · ·+ Π(2, )

...
Π(d, 1) + Π(d, 2) + · · ·+ Π(d, )

 ,
where F (d) represents the total payment made by user d in one cycle, given by:

F (d) =
∑
m∈M

Π(d, ) = Π(d, 1) + Π(d, 2) + · · ·+ Π(d, ).

The electricity consumed by various types of devices within m brings the utility value to
user d as follows: B1 = a·(d,A1, ), B2 = b ·(d,A2, ), B3 = c·(d,A3, ) and B4 = wθ ·(d,A4, , θ),
here, a and c are constants representing the proportional relationship between the utility of
A1 and A3 devices, respectively, and the amount of energy consumed. b is a function of m
that represents user d’s requirements for the operating time of A2 devices. wθ is a function
of θ that reflects user d’s requirement regarding the uncertain energy consumption of A4

devices.
Utility obtained from the energy consumption of all devices for user d within m is

given by: B = B1 +B2 +B3 +B4, the total utility obtained by user d within one time period
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is defined as B(d) =
∑
m∈M (B1 +B2 +B3 +B4), and thus the utility matrix for the users

is:

B =


B(1)
B(2)

...
B(d)

 =


a · (1, A1, ) + b · (1, A2, ) + c · (1, A3, ) + wθ · (1, A4, , θ)
a · (2, A1, ) + b · (2, A2, ) + c · (2, A3, ) + wθ · (2, A4, , θ)

...
a · (d,A1, ) + b · (d,A2, ) + c · (d,A3, ) + wθ · (d,A4, , θ)

 .
User revenue C(D) = B − F.

3.2. Grid company model D

The income distribution matrix of the power grid company is given by:

I0 = Φ0 ·Π · Φ′0 + µ · Φ0 ·Π · Φ
′
0,

where µ represents the transaction fee coefficient for interregional transactions. Φ0 and Φ′0
are the selection matrices of users, while Φ0 and Φ

′
0 are used to calculate the supply volume

of the power purchasing agent. Power grid company’s income is I = I0(1)+I0(2)+· · ·+I0(d).
C represents the cost of the power grid company. The revenue of the power grid company
is denoted as: C(D) = I − C.

3.3. Agent Power Purchasing Model Dn

There are n agent power purchasing entities, represented by the collective set Dn =
{1, 2, · · · , n}, corresponding to geographical locations Sn = [S1, S2, · · · , Sn]. The income
distribution matrix for the agent power purchasing entities is given by:

I ′n = Φn ·Π · Φ′n =


I ′1(1) I ′1(2) · · · I ′1()
I ′2(1) I ′2(2) · · · I ′2()

...
...

...
I ′n(1) I ′n(2) · · · I ′n()

 ,
here, Φn and Φ′n represent the user selection matrices. In = I ′n(1) + I ′n(2) + · · ·+ I ′n() said
agent power purchase business income. Cn represents the cost of the purchasing agent for
electricity. This income matrix of the agent power purchasing entities is represented as:[

I1 I2
... In

]T
.

Profit of agent power purchasing entities C(Dn) = In − Cn.

4. Equilibrium Solution in the Tripartite Game of Users, Power Grid Com-
panies and Power Purchasing Agents

For users, their optimal strategy is determined by maximizing the profit of the agent
power purchasing entities:

Q∗ = arg max
(d,)

C(D),

such that


∑
m∈M (d,A1, ) = Q(d,A1),∑
m∈M (d,A2, ) = [Qmin(d,A2),Qmax(d,A2)],∑
m∈M (d,A3, ) = Q(d,A3),∑
m∈M (d,A4, , θ) = [Qmin(d,A4, θ),Qmax(d,A4, θ)].

For both the power grid company and the agent power purchasing entities, their
optimal strategy is determined by maximizing the profit of the power purchasing operation:

f∗ = arg max
f()

C(D), f∗(n) = arg max
f(n,)

C(Dn),
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s.t.

 f() ∈ [fmin, fmax],
f(n, ) ∈ [fmin(n), fmax(n)],
Q(n, ) ∈ [Qmin(n),Qmax(n)].

Assuming the strategy combination of the three-party game is denoted as k′ =
[f, f1, f2, · · · , fn, 1, 2, · · · , d], we can define the problem of uncertain Nash equilibrium from
a mathematical perspective as follows:

Definition 4.1. To find a point k′ that satifies the inequality Cg(k
′
g, k
′
−g, θ) ≥ Cg(kg, k′−g, θ),

where kg represents the decision variable of the g-th participant with its strategy selection as
k′g; k−g represents the decision variables of all other participants except the g-th participant
with their strategy selection as k′−g. d represents the electricity allocation vector for user d,
f represents the electricity pricing arrangement vector for the power grid company, and fn
represents the electricity pricing arrangement vector for the agent power purchasing entities.

Assuming that participant g achieves the optimal value Cg(k
′
g, k
′
−g, θ) at the equilib-

rium point k′, we can further define the uncertain Nash equilibrium problem as follows:

Definition 4.2. Consider an uncertain Nash equilibrium problem: the objective is to find a
point k′ that satisfies the following condition:

Cg(k
′
g, k
′
−g, θ) := min

kg∈Kg
E[Cg, C

′
−g, θ], (4)

where Kg represents the decision set for participant g, Cg(·, k−g, θ) : Rnm → R is Lipschitz
continuous function, θ ∈ Θ is an uncertain variable defined in the uncertain space (Υ,Θ, U),
and E denotes the mathematical expectation with respect to the distribution of the uncertain
vector θ.

Let Cg(kg, k−g, θ) represent the optimal profit function, when it is not possible to
express E [Cg(kg, k−g, θ)] in a closed form, the objective function in equation (4) is approx-
imated by discretizing it using Riemann-Stieltjes integration. This approximation can be

expressed as: CLg (kg, k−g, θ) := 1
L

∑L
l=1 Cg(kg, k−g, θ

l). Therefore, we consider the Nash e-
quilibrium problem with a discrete approximation using Riemann-Stieltjes integration. The
gogal is to find a point kL := (kL1 , k

L
2 , · · · , kLg ) ∈ K1 ×K2 × · · · ×Kg that satisfies:

CLg (kLg , k
L
−g, θ

l) := min
kg∈Kg

CLg (kg, k
L
−g, θ

l). (5)

In practice, equation (4) is referred to as the true problem, while equation (5) is known as
the discrete approximation problem.

5. Convergence Analysis of Uncertain Nash Equilibrium Solutions

For uncertain optimization problems involving multiple participant g, when the op-
timal profit function Cg(kg, k−g, θ) is not necessarily continuously differentiable, this paper
consider a weak Clarke first-order equilibrium conditions for (4) and (5) based on the Clarke
generalized gradient. These conditions can be formulated as follows:

0 ∈ E
[
∂kgCg(kg, k−g, θ)

]
+ OKg (kg), (6)

0 ∈ 1

L

L∑
l=1

∂kgCg(kg, k−g, θ
l) + OKg (kg), (7)

where ∂kgCg(kg, k−g, θ) represents the Clarke generalized gradient of Cg(kg, k−g, θ) with
respect to kg. We refer to the points k′ that satisfy (6) as weak uncertain Clarke Nash
equilibrium points. The points kL that satisfy (7) are referred to as discrete approximate
weak uncertain Clarke Nash equilibrium points.
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To simplify the notation, let’s denote∏
g

∂kgCg(kg, k−g, θ) := ∂k1C1(k1, k−1, θ)× · · · × ∂kgCg(kg, k−g, θ)

and ∏
g

OKg (kg) = OK1(k1)× · · · × OKg (kg).

Let

E
[∏
g

∂kgCg(kg, k−g, θ)
]

:= E
[
∂k1C1(k1, k−1, θ)

]
× · · · × E

[
∂kgCg(kg, k−g, θ)

]
,

then equation (6) can be formulated as follows:

0 ∈ E
[∏
g

∂kgCg(kg, k−g, θ)
]

+
∏
g

OKg (kg). (8)

If {kL} is a sequence of approximate clarke Nash equilibrium points for problem (5),
then its accumulation point represent a weak uncertain clarke Nash equilibrium point for
the true problem (4). In some cases, it is possible to obtain an uncertain Nash equilibrium
when solving the discrete approximation problem, i.e., {kL} serves as an uncertain Nash
equilibrium for (5). To substantiate this claim, we present the following theorem for proof.

Theorem 5.1. Consider kL as a solution to (7). Assuming the following conditions hold:
(1) C(·, k−g, θ) is Lipschitz continuous on Kg with modulus ~g(θ), where ~ : Ω → R+ is a
measurable and integrable function satisfying E[~g(θ)] <∞. (2) ∂kgCg(kg, k−g, θ) is closed

for (kg, k−g) in the space Kg×K−g, then the sequence {kL} possesses a bounded subsequence
that lies within a compact subset K of K. A limit point from this subsequence satisfies (6).

Proof. Taking into account the case where {kL} is contained in K . Since ∂kgCg(kg, k−g, θ)

is closed for (kg, k−g) in the space Kg ×K−g, it following that ∂k̂gCg(k̂g, k̂−g, θ) contains all

its limit points. In other words,

lim sup
k→k̂

∂kgCg(kg, k−g, θ) ⊂ ∂k̂gCg(k̂g, k̂−g, θ).

By utilizing the Definition 2.1 of outer semi-continuity, we conclude that ∂kgCg(kg, k−g, θ)
is outer semi-continuous. Consequently,

∏
g ∂kgCg(kg, k−g, θ) is also outer semi-continuous

on K. Based on assumption (2), we have∥∥∏
g

∂kgCg(kg, k−g, θ)
∥∥ ≤∑

g

~g(θ),

where E
[∑

g ~g(θ)
]
<∞.

For ∀k ∈ K , ‖Cg(kg, k−g, θ)‖ ≤ ~g(θ), which implies ‖clconvC(kg, k−g, θ)‖ ≤ ~g(θ).
In other words, E[‖clconvC(kg, k−g, θ)‖] ≤ E[~g(θ)] < ∞. For ∀k, k̂ ∈ K and θ ∈ Ω, we
can obtain from (3) that

D
(

clconvC(k̂g, k̂−g, θ), clconvC(kg, k−g, θ)
)

≤ D
(

clconvC(k̂g, k̂−g, θ) + clconvC(kg, k−g, θ), N(k̂g, k̂−g, θ) + C(kg, k−g, θ)
)

≤ D
(

clconvC(k̂g, k̂−g, θ), C(k̂g, k̂−g, θ)
)

+ D (clconvC(kg, k−g, θ), C(kg, k−g, θ))

≤ ~g(θ) + ~g(θ)
≤ 2~g(θ).
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Consider a monotonically decreasing sequence x → 0. Let S (k, x) denote a ball
centered at k with a radius of x. Based on Definition 2.4, we have

lim
x→∞

∫
Ω

sup
k̂∈S (k,x)

D
(

clconvC(k̂g, k̂−g, θ), clconvC(kg, k−g, θ)
)
dΦ(θ)

=

∫
Ω

lim
x→∞

sup
k̂∈S (k,x)

D
(

clconvC(k̂g, k̂−g, θ), clconvC(kg, k−g, θ)
)
dΦ(θ).

Since C(·, k−g, θ) and clconvC(·, k−g, θ) is outer semi-continuous at Kg and point k.

For all θ ∈ Ω, sup
k̂∈S (k,x)

D
(

clconvC(k̂g, k̂−g, θ), clconvC(kg, k−g, θ)
)
→ 0, we have

lim
x→∞

∫
Ω

sup
k̂∈S (k,x)

D
(

clconvC(k̂g, k̂−g, θ), clconvC(kg, k−g, θ)
)
dΦ(θ) = 0. (9)

According to (3), we can conclude the following for any k, k̂ ∈ K :

D
( 1

L

L∑
l=1

Cg(k̂g, k̂−g, θ
l),

1

L

L∑
l=1

Cg(kg, k−g, θ
l)
)

=
1

L

[
D
(
Cg(k̂g, k̂−g, θ

1) + · · ·+ Cg(k̂g, k̂−g, θ
L), Cg(kg, k−g, θ

1) + · · ·+ Cg(kg, k−g, θ
L)
)]

≤ 1

L

[
D
(
Cg(k̂g, k̂−g, θ

1), Cg(kg, , k−g, θ
1)
)

+ · · ·+ D
(
Cg(k̂g, k̂−g, θ

L), Cg(kg, k−g, θ
L)
)]

=
1

L

L∑
l=1

D
(
Cg(k̂g, k̂−g, θ

l), Cg(kg, k−g, θ
l)
)
,

therefore, we have

sup
k̂∈S (k,x)

D

(
1

L

L∑
l=1

Cg(k̂g, k̂−g, θ
l),

1

L

L∑
l=1

Cg(kg, k−g, θ
l)

)

≤ 1

L

L∑
l=1

sup
k̂∈S (k,x)

D
(
Cg(k̂g, k̂−g, θ

l), Cg(kg, k−g, θ
l)
)
.

(10)

Using the method of discrete approximation, we can derive the following:

lim
x→∞

1

L

L∑
l=1

sup
k̂∈S (k,x)

D
(
Cg(k̂g, k̂−g, θ

l), Cg(kg, k−g, θ
l)
)

= E
[

sup
k̂∈S (k,x)

D
(
Cg(k̂g, k̂−g, θ), Cg(kg, k−g, θ)

)]
.

(11)

With an increased level of discretization, we can observe that for any given ε > 0, the
following inequality holds based on equations (9), (10), and (11):

sup
k̂∈S (k,x)

D

(
1

L

L∑
l=1

Cg(k̂g, k̂−g, θ
l),

1

L

L∑
l=1

Cg(kg, k−g, θ
l)

)
≤ ε.

Since K is a compact set, there exist a finite set of points kg ∈ K , each with its own
neighborhood S (kg,

′
x), such that K ⊂

⋃
g S (kg,

′
x). For ∀θ ∈ Ω, there exists an integer L′

such that when L ≥ L′ and r′ ≤ r, the following inequality holds:

sup
k̂∈S (kg,′x)

D

(
1

L

L∑
l=1

Cg(k̂g, k̂−g, θ
l),

1

L

L∑
l=1

Cg(kg, k−g, θ
l)

)
≤ ε.
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Therefore, for each point kg when L ≥ L′, the following inequality holds:

D
( 1

L

L∑
l=1

Cg(kg, k−g, θ
l),

1

L

L∑
l=1

Cg(kg, k−g, θ
l)
)
≤ ε.

For any point k ∈ K , there exists k ∈ S (kg,
′) for some g, and we have

D
( 1

L

L∑
l=1

Cg(kg, k−g, θ
l), E

[ ⋃
k̂∈S (k,)

clconvC(k̂g, k̂−g, θ)
])

≤ D
( 1

L

L∑
l=1

Cg(kg, k−g, θ
l),

1

L

L∑
l=1

Cg(kg, k−g, θ
l)
)

+ D
( 1

L

L∑
l=1

Cg(kg, k−g, θ
l), E

[
clconvC(kg, k−g, θ)

])
+ D

(
E
[
clconvC(kg, k−g, θ)

]
, E
[ ⋃
k̂∈S (k,)

clconvC(k̂g, k̂−g, θ)
])

≤ 2ε.

Since ε can be arbitrarily small, we can conclude that:

lim
L→∞

1

L

L∑
l=1

Cg(kg, k−g, θ
l) ⊂ E

[ ⋃
k̂∈S (k,)

clconvC(k̂g, k̂−g, θ)
]
. (12)

According to (12), consider any fixed positive value for . For k ∈ K , the product∏
g

[
1
L

∑L
l=1 ∂kgCg(kg, k−g, θ

l)
]

over the compact set K satisfies the following:

lim
L→∞

∏
g

[ 1

L

L∑
l=1

∂kgCg(kg, k−g, θ
l)
]
⊂ E

[ ⋃
k̂∈S (k,)

clconv
∏
g

∂kgCg(k̂g, k̂−g, θ)
]
.

Let k′ be an accumulation point of {KL}, and assume (if necessary, by considering a
subsequence) that {KL} → k′. Utilizing the properties of D described in (1), we obtain:

D
(∏
g

[ 1

L

L∑
l=1

∂kLg Cg(k
L
g , k

L
−g, θ

l)
]
, E
[ ⋃
k′∈S (k,)

clconv
∏
g

∂k′gCg(k
′
g, k
′
−g, θ)

])
≤ D

(∏
g

[ 1

L

L∑
l=1

∂kLg Cg(k
L
g , k

L
−g, θ

l)
]
, E
[ ⋃
kL∈S (k,)

clconv
∏
g

∂kLg Cg(k
L
g , k

L
−g, θ)

])
+ D

(
E
[ ⋃
kL∈S (k,)

clconv
∏
g

∂kLg Cg(k
L
g , k

L
−g, θ)

]
, E
[ ⋃
k′∈S (k,)

clconv
∏
g

∂k′gCg(k
′
g, k
′
−g, θ)

])
.

From equation (12), it is evident that as L → ∞, the first term on the right-hand side of
the inequality approaches 0. Furthermore, based on the convergence of {KL} → k′, we can
conclude that the second term also tends to 0. In other words,

lim
L→∞

∏
g

[ 1

L

L∑
l=1

∂kLg Cg(k
L
g , k

L
−g, θ

l)
]
⊂ E

[ ⋃
k′∈S (k,)

clconv
∏
g

∂k′gCg(k
′
g, k
′
−g, θ)

]
. (13)

Since k′ is an uncertain clarke Nash stationary point, it satisfies (6). The clarke
normal cone OKg (kg) is outer semi-continuous, which implies that

∏
g OKg (kg) is also outer
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semi-continuous. From (13), we can deduce that k′ satisfies

0 ∈ E
[ ⋃
k′∈S (k,)

clconv
∏
g

∂k′gCg(k
′
g, k
′
−g, θ)

]
+
∏
g

OKg (k′g). (14)

Considering that
⋃

k′∈S (k,)

∏
g ∂k′gCg(k

′
g, k
′
−g, θ) is bounded and integrable by

∑
g ~g(θ), and

since
lim
r→0

⋃
k′∈S (k,)

∏
g

∂k′gCg(k
′
g, k
′
−g, θ) =

∏
g

∂k′gCg(k
′
g, k
′
−g, θ),

as per the definition of uniform integrability, we have ‖ ∪
k′∈S (k,)

∏
g ∂k′gCg(k

′
g, k
′
−g, θ)‖ is

uniformly integrable.
Moreover, since ‖ ∪

k′∈S (k,)

∏
g ∂k′gCg(k

′
g, k
′
−g, θ)‖ is closed, we can apply Definition 2.3,

resulting in:

lim
r→0

E
[ ⋃
k′∈S (k,)

∏
g

∂k′gCg(k
′
g, k
′
−g, θ)

]
= E

[
lim
r→0

⋃
k′∈S (k,)

∏
g

∂k′gCg(k
′
g, k
′
−g, θ)

]
= E

[∏
g

∂k′gCg(k
′
g, k
′
−g, θ)

]
.

According to (14), this implies that k′ satisfies (8), thereby demonstrating the convergence
of weakly uncertain clarke Nash equilibrium points. �

The following theorem establishes the exponential convergence of the discrete approx-
imately stationary sequence

{
kL
}

to the solution K ′ of (4), without requiring the condition
of the metric regularity type.

Assume the following hold:
(a) The mapping C(·, k−g, θ) is Lipschitz continuous on Kg with a modulus ~g(θ), where

E[~g(θ)] <∞.
(b) E[(Cg)kg (kg, k−g, θ, vg)] is continuous on K .
(c) Define fg(θ) ≡ ~g(θ) + `g(θ), where ~g represent the moment generating function of

fg(θ), and E[etfg(θ)] is finite for t close to 0.

(d) (Cg)kg (kg, k−g, θ, vg) has a modulus `g(θ) and order δ on K , for k̂ ∈ K with ‖k̂−k‖ ≤ ,

satisfying |℘(k̂, θ)− ℘(k, θ)| ≤ `g(θ)‖k̂ − k‖δ, where ℘ is a real-valued function.

Theorem 5.2. Let K ⊂ K be a non-empty compact subset of K, and K ′ be a set of weak
clarke Nash equilibria of the true problem (4) within K . Assuming that for a sufficiently

large L̂, the sequence
{
kL
}
L>L̂

lies within K , under assumptions (a)-(d), the sequence{
kL
}

converges to K ′ at an exponential rate. In other words, for any small positive ε > 0,
there exist positive integers ρ and σ independent of K, such that when L is sufficiently large,
we have: U

{
dist(kL,K ′) ≥ ε

}
≤ ρ · e−Mσ.

Proof. See [10] for detailed proof. �

6. Conclusion

Based on an uncertain Nash equilibrium model, this paper investigates the game s-
trategies of users, power grid companies, and proxy electricity purchasers in a power system.
We develop a model based on the uncertain load of the users and derive the profit function
for the three parties. Finally, the uncertain Nash equilibrium solutions are obtaine, and its
convergence is analyzed. Theorem 5.1 provides proof of convergence for weakly uncertain
Clarke Nash equilibrium points. Furthermore, Theorem 5.2 demonstrates the convergence
rate of weakly uncertain Clarke Nash equilibrium points, indicating that the discrete approx-
imation sequence

{
kL
}

converges exponentially to the solution K ′. This research is critical
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in providing risk management and decision support tools to assist participants in power
systems in making informed decisions, mitigating risks, and optimizing system operations
in uncertain environments.
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