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DIFFERENTIATION AND WEAK INTEGRATION FOR 
CONE-VALUED CURVES 

Davood AYASEH1,Asghar RANJBARI2 

Locally convex cones are a generalization of locally convex topological 
vector spaces which are not necessarily embedded in vector spaces. We define the 
concepts of differentiation and weak integration for cone-valued curves. Also, we 
prove the Fundamental Theorems of Calculus for this type of functions. We find 
some conditions for the existence of weak integral in locally convex cones. 
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1. Introduction 

The theory of locally convex cones as developed in [4] and [5], uses an 
order theoretical concept or convex quasiuniform structure to introduce a 
topological structure on a cone. Examples of locally convex cones contain classes 
of functions that take infinite values and families of convex subsets of vector 
spaces. These types of structures are not vector space and also may not even 
be embedded into a larger vector spaces in order to apply technics from 
topological vector spaces. These structures are studied in the general theory of 
locally convex cones. 

A cone is a set 𝓟𝓟 endowed with an addition and a scalar multiplication 
for nonnegative real numbers. The addition is supposed to be associative and 
commutative, and there is a neutral element 0 ∈ 𝓟𝓟. For the scalar multiplication 
we must have 𝜶𝜶(𝜷𝜷𝜷𝜷) = (𝜶𝜶𝜶𝜶)𝒂𝒂, (𝜶𝜶 + 𝜷𝜷)𝒂𝒂 =  𝜶𝜶𝜶𝜶 + 𝜷𝜷𝜷𝜷, 𝜶𝜶(𝒂𝒂 +  𝒃𝒃) = 𝜶𝜶𝜶𝜶 + 𝜶𝜶𝜶𝜶, 
𝟏𝟏𝟏𝟏 = 𝒂𝒂 and 𝟎𝟎𝟎𝟎 =  𝟎𝟎 for all 𝒂𝒂,𝒃𝒃 ∈ 𝓟𝓟 and 𝜶𝜶,𝜷𝜷 ≥ 𝟎𝟎. 

Let 𝓟𝓟 be a cone. A collection 𝓤𝓤 of convex subsets U⊆ 𝓟𝓟𝟐𝟐 = 𝓟𝓟 × 𝓟𝓟 is 
called a convex quasiuniform structure on𝓟𝓟, if the following properties hold: 
(U1) ∆ ⊆  𝑼𝑼 for every 𝑼𝑼 ∈ 𝓤𝓤 (∆ = {(𝒂𝒂,𝒂𝒂) ∶ 𝒂𝒂 ∈ 𝓟𝓟}); 
(U2) for all 𝑼𝑼,𝑽𝑽 ∈ 𝓤𝓤 there is a 𝑾𝑾 ∈ 𝓤𝓤 such that 𝑾𝑾 ⊆ 𝑼𝑼 ∩ 𝑽𝑽; 
(U3) 𝝀𝝀𝝀𝝀𝝀𝝀µ𝑼𝑼 ⊆ (𝝀𝝀 + µ)𝑼𝑼 for all 𝑼𝑼 ∈ 𝓤𝓤 and 𝝀𝝀, µ > 𝟎𝟎; 
(U4) 𝜶𝜶𝜶𝜶 ∈ 𝓤𝓤 for all 𝑼𝑼 ∈ 𝓤𝓤 and α >0. 
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Here, for 𝑼𝑼,𝑽𝑽 ⊆  𝓟𝓟𝟐𝟐, by 𝑼𝑼𝑼𝑼𝑼𝑼 we mean the set of all (a, b) 𝓟𝓟𝟐𝟐 such that there is 
some 𝒄𝒄 ∈ 𝓟𝓟 with (𝒂𝒂, 𝒄𝒄) ∈ 𝑼𝑼 and (𝒄𝒄,𝒃𝒃)  ∈  𝑽𝑽. 
Let 𝓟𝓟 be a cone and 𝓤𝓤 be a convex quasiuniform structure on 𝓟𝓟. We shall say 
(𝓟𝓟,𝓤𝓤) is a locally convex cone if 
(U5) for each 𝒂𝒂 ∈  𝓟𝓟 and 𝑼𝑼 ∈  𝓤𝓤 there is some ρ >0 such that (𝟎𝟎,𝒂𝒂) ∈ 𝝆𝝆𝝆𝝆. 
With every convex quasiuniform structure 𝓤𝓤 on 𝓟𝓟 we associate two 
topologies: The neighborhood bases for an element a in the upper and lower 
topologies are given by the sets 
𝑼𝑼(𝒂𝒂) = {𝒃𝒃 ∈ 𝓟𝓟 ∶ (𝒃𝒃,𝒂𝒂) ∈ 𝑼𝑼}, 𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝒓.  (𝒂𝒂)𝑼𝑼 = {𝒃𝒃 ∈ 𝓟𝓟 ∶  (𝒂𝒂,𝒃𝒃) ∈ 𝑼𝑼},    𝑼𝑼 ∈ 𝓤𝓤. 
The common refinement of the upper and lower topologies is called symmetric 
topology. A neighborhood base for a ∈ 𝓟𝓟 in this topology is given by the sets 

𝑼𝑼(𝒂𝒂)𝑼𝑼 =  𝑼𝑼(𝒂𝒂)  ∩  (𝒂𝒂)𝑼𝑼, 𝑼𝑼 ∈ 𝓤𝓤. 
 Let 𝓤𝓤 and 𝓦𝓦 be convex quasiuniform structures on 𝓟𝓟. We say that 𝓤𝓤 is 
finer than 𝓦𝓦 if for every 𝑾𝑾 ∈𝓦𝓦  there is 𝑼𝑼 ∈  𝓤𝓤 such that 𝑼𝑼 ⊆ 𝑾𝑾. 
           The extended real number system ℝ�  =  ℝ ∪ {+∞} is a cone endowed 
with the usual algebraic operations, in particular 𝒂𝒂 + ∞ = +∞ for all a ∈ℝ� , 
𝜶𝜶 · (+∞)  = +∞ for all 𝜶𝜶 >  𝟎𝟎 and 𝟎𝟎 . (+∞)  =  𝟎𝟎. We set 𝓥𝓥�  =  { 𝜺𝜺 � : 𝜺𝜺 >  𝟎𝟎}, 
where 𝜺𝜺 � =  {(𝒂𝒂,𝒃𝒃)  ∈  ℝ�𝟐𝟐 ∶  𝒂𝒂 ≤  𝒃𝒃 +  𝜺𝜺}. Then 𝓥𝓥� is a convex quasiuniform 
structure on ℝ�  and (ℝ� ,𝓥𝓥�) is a locally convex cone. For 𝒂𝒂 ∈ ℝ the intervals 
(−∞,𝒂𝒂 + 𝜺𝜺]  are the upper and the intervals [𝒂𝒂 − 𝜺𝜺, +∞] are the lower 
neighborhoods, while for 𝒂𝒂 = +∞ the entire cone ℝ�  
is the only upper neighborhood, and {+∞} is open in the lower topology. The 
symmetric topology is the usual topology on ℝ with as an isolated point +∞. 
          For cones 𝓟𝓟 and 𝓠𝓠, a mapping 𝑻𝑻 ∶  𝓟𝓟 →  𝓠𝓠 is called a linear operator if 
𝑻𝑻(𝒂𝒂 +  𝒃𝒃) = 𝑻𝑻(𝒂𝒂)  +  𝑻𝑻(𝒃𝒃) and 𝑻𝑻(𝜶𝜶𝜶𝜶)  = 𝜶𝜶𝜶𝜶(𝒂𝒂) hold for all 𝒂𝒂,𝒃𝒃 ∈  𝓟𝓟 and 
𝜶𝜶 ≥  𝟎𝟎. If both (𝓟𝓟,𝓤𝓤) and (𝓠𝓠,𝓦𝓦) are locally convex cones, the operator 𝑻𝑻  is 
called (uniformly) continuous if for every 𝑾𝑾 ∈𝓦𝓦 one can find 𝑼𝑼 ∈ 𝓤𝓤 such that 
𝑻𝑻 ×  𝑻𝑻(𝑼𝑼) ⊆ 𝑾𝑾. A (uniformly) continuous linear operator is continuous with 
respect to upper, lower and symmetric topologies. 
          A linear functional on 𝓟𝓟 is a linear operator µ:𝓟𝓟 → ℝ� . We denote the 
set of all linear functional on 𝓟𝓟 by 𝑳𝑳(𝓟𝓟) (the algebraic dual of 𝓟𝓟). For a subset 
F of  𝓟𝓟𝟐𝟐 we define polar 𝑭𝑭°as below 

𝑭𝑭° = {µ ∈  𝑳𝑳(𝓟𝓟) ∶  µ(𝒂𝒂)  ≤  µ(𝒃𝒃)  +  𝟏𝟏,∀(𝒂𝒂,𝒃𝒃) ∈ 𝑭𝑭 }. 
 Clearly ({(𝟎𝟎,𝟎𝟎)}°) = 𝑳𝑳(𝓟𝓟). A linear functional µ on (𝓟𝓟,𝓤𝓤) is (uniformly) 
continuous if there is 𝑼𝑼 ∈  𝓤𝓤 such that µ ∈ 𝑼𝑼°. The dual cone 𝓟𝓟∗ of a locally 
convex cone (𝓟𝓟,𝓤𝓤) consists of all continuous linear functionals on 𝓟𝓟 and is the 
union of all polars 𝑼𝑼°of neighborhoods 𝑼𝑼 ∈  𝓤𝓤. Foe example, the dual cone ℝ�∗ 
of ℝ�  consists of all nonnegative reals and the singular functional 𝟎𝟎� such that 
𝟎𝟎� (x) = 0 for all 𝒙𝒙 ∈ ℝ�  and 𝟎𝟎�(+∞)  =  +∞. 
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We shall say that a locally convex cone (𝓟𝓟,𝓤𝓤) has the strict separation 
property if the following holds: 
(SP) For all 𝒂𝒂,𝒃𝒃 ∈ 𝓟𝓟 and 𝑼𝑼 ∈ 𝓤𝓤 such that (𝒂𝒂,𝒃𝒃)  ∉  𝝆𝝆𝝆𝝆 for some ρ >1,there is a 
linear functional µ ∈ 𝑼𝑼°such that µ(a) > µ(b) + 1 ([4], II, 2.12). 
          The locally convex cone (𝓟𝓟,𝓤𝓤) is called separated whenever its symmetric 
topology is Hausdorff. Also, we say that 𝓟𝓟∗ separates the points of 𝓟𝓟, whenever 
for 𝒂𝒂,𝒃𝒃 ∈ 𝓟𝓟 we have 𝒂𝒂 = 𝒃𝒃 if and only if µ(𝒂𝒂) = µ(𝒃𝒃) for all µ ∈ 𝓟𝓟∗. If 
𝓟𝓟∗ separates the points of 𝓟𝓟, then (𝓟𝓟,𝓤𝓤) is a separated locally convex cone. 
Indeed, if 𝒂𝒂,𝒃𝒃 ∈  𝓟𝓟 and 𝒂𝒂 ≠  𝒃𝒃, then there is µ ∈ 𝓟𝓟∗ such that µ(𝒂𝒂) ≠  µ(𝒃𝒃). 
Since the symmetric topology of (ℝ� ,𝓥𝓥�) is Hausdorff, there is ε >0 such that 
𝜺𝜺 �(a)𝜺𝜺 �∩ 𝜺𝜺 �(b)𝜺𝜺 �=∅. Now, by the continuity of µ, there is 𝑼𝑼 ∈ 𝓤𝓤 such that 
(µ ×  µ)(𝑼𝑼)  ⊆ 𝜺𝜺 � and we have  𝑼𝑼(𝒂𝒂)𝑼𝑼 ∩ 𝑼𝑼(𝒃𝒃)𝑼𝑼 = ∅. 
The convex subset 𝑼𝑼 ⊆ 𝓟𝓟 is called uniformly convex if 
 (1) for each 𝒂𝒂 ∈  𝓟𝓟, (𝒂𝒂,𝒂𝒂)  ∈  𝑼𝑼, 
 (2) for 𝜶𝜶,𝜷𝜷 >  𝟎𝟎, (𝜶𝜶𝜶𝜶) ○ (𝜷𝜷𝜷𝜷)  ⊆  (𝜶𝜶 +  𝜷𝜷)𝑼𝑼. 
Also, we shall say that the subset F of 𝓟𝓟𝟐𝟐 has the property (CP) if the 
following holds: 
(CP) if (𝒂𝒂,𝒃𝒃) ∉ 𝑭𝑭, then there is µ ∈ 𝓟𝓟∗ such that µ(a) > µ(b) + 1 and 
µ(𝒄𝒄) ≤  µ(𝒅𝒅) + 𝟏𝟏 for all (𝒄𝒄,𝒅𝒅)  ∈  𝑭𝑭. 
      In [4], a dual pair is defined as follows: A dual pair (𝓟𝓟,𝓠𝓠) consists of two 
cones 𝓟𝓟 and 𝓠𝓠 with a bilinear mapping (𝒂𝒂,𝒙𝒙) →<  𝒂𝒂,𝒙𝒙 > : 𝓟𝓟 ×  𝓠𝓠 → ℝ� . 
Suppose that (𝓟𝓟,𝓤𝓤) is a locally convex cone. We shall say that 𝑭𝑭 ⊆ 𝓟𝓟𝟐𝟐 is u-
bounded (uniformly-bounded) if it is absorbed by each 𝑼𝑼 ∈ 𝓤𝓤. A subset A of 𝓟𝓟 is 
called bounded above(below) whenever 𝑨𝑨 ×  {𝟎𝟎}(𝒓𝒓𝒓𝒓𝒓𝒓. {𝟎𝟎}  ×  𝑨𝑨) is u-bounded 
(see [2]). 
        If (𝓟𝓟,𝓠𝓠)  is a dual pair, then every 𝒙𝒙 ∈ 𝓠𝓠 is a linear mapping on 𝓟𝓟. We 
denote the coarsest convex quasiuniform structure on 𝓟𝓟 that makes all 𝒙𝒙 ∈ 𝓠𝓠 
continuous by 𝓤𝓤𝝈𝝈(𝓟𝓟,𝓠𝓠). In fact, (𝓟𝓟,𝓤𝓤𝝈𝝈(𝓟𝓟,𝓠𝓠)) is the projective limit of (ℝ� ,𝓥𝓥�) 
by 𝒙𝒙 ∈ 𝓠𝓠 as linear mappings on 𝓟𝓟 (projective limits of locally convex cones 
were defined in [3]). 
Let (𝓟𝓟,𝓠𝓠) be a dual pair. We shall say that a subset B of P is 𝓤𝓤𝝈𝝈(𝓟𝓟,𝓠𝓠)- 
bounded below whenever it is bounded below in locally convex cone 
(𝓟𝓟,𝓤𝓤𝝈𝝈(𝓟𝓟,𝓠𝓠)). 
Let 𝓑𝓑 be a collection of (𝓟𝓟,𝓤𝓤𝝈𝝈(𝓟𝓟,𝓠𝓠))-bounded below subsets of 𝓟𝓟 such that 
(a) 𝜶𝜶𝜶𝜶 ∈ 𝓑𝓑 for all 𝑩𝑩 ∈ 𝓑𝓑 and 𝜶𝜶 > 𝟎𝟎, 
(b) For all X, Y ∈𝓑𝓑 there is Z ∈𝓑𝓑 such that 𝑿𝑿 ∪ 𝒀𝒀 ⊂ 𝒁𝒁. 
(c) 𝓟𝓟 is spanned by ⋃  𝑩𝑩𝑩𝑩∈𝓑𝓑 . 
For 𝑩𝑩 ∈  𝓑𝓑  we set 

𝑼𝑼𝑩𝑩 = {(𝒙𝒙,𝒚𝒚) ∈  𝓠𝓠𝟐𝟐 ∶<  𝒃𝒃,𝒙𝒙 >≤<  𝒃𝒃,𝒚𝒚 >  +𝟏𝟏, 𝐟𝐟𝐟𝐟𝐟𝐟 𝐚𝐚𝐚𝐚𝐚𝐚 𝒃𝒃 ∈ 𝑩𝑩} 
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and 
𝓤𝓤𝓑𝓑(𝓟𝓟,𝓠𝓠) =  {𝑼𝑼𝑩𝑩 ∶ 𝑩𝑩 ∈  𝓑𝓑}. 

It is proved in [4], page 37, that 𝓤𝓤𝓑𝓑(𝓟𝓟,𝓠𝓠)  is a convex quasiuniform structure 
on 𝓠𝓠 and (𝓠𝓠,𝓤𝓤𝓑𝓑(𝓟𝓟,𝓠𝓠)) is a locally convex cone. If 𝒃𝒃 ∈ 𝑩𝑩 for 𝑩𝑩 ∈ 𝓑𝓑, then 𝒃𝒃 ∈
 𝑩𝑩 ⊆ 𝑼𝑼𝑩𝑩

°. Now 𝓟𝓟 ⊆ (𝑸𝑸, (𝓠𝓠,𝓤𝓤𝓑𝓑(𝓟𝓟,𝓠𝓠))∗  by (c). This shows that 𝓤𝓤𝓑𝓑(𝓟𝓟,𝓠𝓠) is 
finer than 𝓤𝓤𝝈𝝈(𝓟𝓟,𝓠𝓠). 

        2. Differentiation and weak integration for cone-valued curves 

We define the concept of differentiation for cone-valued curves. 
Definition 2.1.Let (𝓟𝓟,𝓤𝓤) be a separated locally convex cone. We consider 
on  𝓟𝓟 and [𝟎𝟎, +∞), the symmetric topology and the usual Euclidean topology, 
respectively. A 𝓟𝓟-valued continuous map γ, defined on an interval 𝑰𝑰 = (𝒂𝒂,𝒃𝒃) ⊆ 
[𝟎𝟎,∞) for some 𝒂𝒂,𝒃𝒃 ∈ [𝟎𝟎, +∞) and 𝒂𝒂 < 𝒃𝒃, is called a 𝑪𝑪𝟎𝟎-curve. A 𝑪𝑪𝟎𝟎-curve 
𝜸𝜸 ∶ 𝑰𝑰 → 𝓟𝓟 is called a 𝑪𝑪𝟏𝟏-curve, whenever 
(1) for every 𝒕𝒕 ∈ 𝑰𝑰 there is 𝜸𝜸′(𝒕𝒕) ∈ 𝓟𝓟 such that for each 𝑼𝑼 ∈ 𝓤𝓤 there is δ >0 
such that 𝒔𝒔 < 𝜹𝜹 implies that (𝜸𝜸(𝒕𝒕 + 𝒔𝒔),𝜸𝜸(𝒕𝒕) + 𝒔𝒔𝒔𝒔′(𝒕𝒕)) ∈ 𝒔𝒔𝒔𝒔 and (𝜸𝜸(𝒕𝒕) +
𝒔𝒔𝒔𝒔′(𝒕𝒕),𝜸𝜸(𝒕𝒕 + 𝒔𝒔)) ∈ 𝒔𝒔𝒔𝒔, 
 (2) the map 𝜸𝜸′: 𝑰𝑰 → 𝓟𝓟 ∶ 𝒕𝒕 → 𝜸𝜸′(𝒕𝒕) is continuous. 
We set 𝜸𝜸(𝟏𝟏) = 𝜸𝜸′ and 𝜸𝜸(𝒌𝒌) =  (𝜸𝜸(𝒌𝒌−𝟏𝟏))′. Recursively, for 𝒌𝒌 ∈ ℕ, we call γ, 
𝑪𝑪𝒌𝒌-curve if γ is a 𝑪𝑪𝒌𝒌−𝟏𝟏-curve and 𝜸𝜸(𝒌𝒌−𝟏𝟏) is 𝑪𝑪𝟏𝟏-curve. We note that for each 
𝒕𝒕 ∈ 𝑰𝑰, if 𝜸𝜸′(𝒕𝒕) exists, then it is unique, since (𝓟𝓟,𝓤𝓤) is a separated locally convex 
cone. 
        It is easy to see that if 𝜸𝜸 ∶ 𝑰𝑰 → 𝓟𝓟 and 𝝋𝝋 ∶ 𝑰𝑰 → 𝓟𝓟 are 𝑪𝑪𝒌𝒌-curve, then 
γ + φ and 𝜶𝜶𝜶𝜶, are Ck-curve for 𝜶𝜶 ≥ 𝟎𝟎. Therefore the collection of all 𝓟𝓟-valued 
𝑪𝑪𝒌𝒌-curves on the interval I  is a cone denoted by 𝑪𝑪𝒌𝒌(𝑰𝑰,𝓟𝓟). Obviously, we have 
𝑪𝑪𝒌𝒌+𝟏𝟏(𝑰𝑰,𝓟𝓟) ⊆ 𝑪𝑪𝒌𝒌(𝑰𝑰,𝓟𝓟) for all 𝒌𝒌 ∈ ℕ. 
      The cone 𝑪𝑪∞(𝑰𝑰,𝓟𝓟):  Let (𝓟𝓟,𝓤𝓤)  be a separated locally convex cone. Then 
the collection of 𝓟𝓟-valued infinitely differentiable functions on I is a cone 
denoted by 𝑪𝑪∞(𝑰𝑰,𝓟𝓟). For 𝜸𝜸,𝜼𝜼 ∈ 𝑪𝑪∞(𝑰𝑰,𝓟𝓟), 𝑼𝑼 ∈ 𝓤𝓤 and 𝒏𝒏 ∈ ℕ, we set (𝜸𝜸,𝜼𝜼)  ∈ 
𝝑𝝑𝑼𝑼𝒏𝒏  if and only if (𝜸𝜸(𝒏𝒏)(𝒙𝒙),𝜼𝜼(𝒏𝒏)(𝒙𝒙))  ∈ 𝑼𝑼 for all 𝒙𝒙 ∈ 𝑰𝑰. The collection of all 
neighborhoods 𝝑𝝑𝑼𝑼𝒏𝒏  is a base for a convex quasiuniform structure on 𝑪𝑪∞(𝑰𝑰,𝓟𝓟), 
denoted by 𝓤𝓤∞. The collection of all bounded below functions in 𝑪𝑪∞(𝑰𝑰,𝓟𝓟), 
with respect to 𝓤𝓤∞ is a cone, denoted by 𝑪𝑪𝒃𝒃∞(𝑰𝑰,𝓟𝓟). Therefore (𝑪𝑪𝒃𝒃∞(𝑰𝑰,𝓟𝓟),𝓤𝓤∞) 
is a locally convex cone. For each 𝒙𝒙 ∈ 𝑰𝑰, 𝒏𝒏 ∈ ℕ and µ ∈ 𝓟𝓟∗, we claim that 
the linear functional µ𝒙𝒙𝒏𝒏 ∶  𝑪𝑪𝒃𝒃∞(𝑰𝑰,𝓟𝓟) → ℝ� , µ𝒙𝒙𝒏𝒏(𝜸𝜸)  =  µ(𝜸𝜸(𝒏𝒏)(𝒙𝒙)) is an element of 
(𝑪𝑪𝒃𝒃∞(𝑰𝑰,𝓟𝓟) ,𝓤𝓤∞)∗. Indeed, there is 𝑼𝑼 ∈ 𝓤𝓤 such that µ ∈ 𝑼𝑼° . Now, if (𝜸𝜸,𝜼𝜼)  ∈ 𝝑𝝑𝑼𝑼𝒏𝒏 , 
then (𝜸𝜸(𝒏𝒏)(𝒙𝒙),𝜼𝜼(𝒏𝒏)(𝒙𝒙))  ∈ 𝑼𝑼. Therefore µ(𝜸𝜸(𝒏𝒏)(𝒙𝒙))  ≤  µ(𝜼𝜼(𝒏𝒏)(𝒙𝒙))  +  𝟏𝟏. This 
shows that µ𝒙𝒙𝒏𝒏 ∈ (𝝑𝝑𝑼𝑼𝒏𝒏)°. In the special case, for the linear functional µ𝒙𝒙𝟎𝟎 ∶
 𝑪𝑪𝒃𝒃∞(𝑰𝑰,𝓟𝓟) → ℝ� , µ𝒙𝒙𝟎𝟎(𝜸𝜸)  =  µ(𝜸𝜸(𝒙𝒙)), we have µ𝒙𝒙𝟎𝟎 ∈ (𝝑𝝑𝑼𝑼𝟎𝟎 )°. 
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Example 2.1.We consider the locally convex cone (ℝ� ,𝓥𝓥�). The constant curve 
𝜸𝜸 ∶ (𝟎𝟎, +∞) → ℝ� , 𝜸𝜸(𝒕𝒕) = +∞ is a 𝑪𝑪∞-curve. We have 𝜸𝜸(𝒌𝒌)(𝒕𝒕)  =  +∞ for each 
𝒌𝒌 ∈ ℕ. This function acts similar to the exponential function 𝒇𝒇(𝒙𝒙)  =  𝒆𝒆𝒙𝒙 in the 
classical calculus. If we consider constant curve 𝜸𝜸 ∶ (𝟎𝟎, +∞) → ℝ� , 𝜸𝜸(𝒔𝒔) = 𝒃𝒃, 
where 𝒃𝒃 ∈ ℝ, then we have 𝜸𝜸′(𝒕𝒕) = 𝟎𝟎. 
Theorem 2.2.Let (𝓟𝓟,𝓤𝓤) and (𝓠𝓠,𝓦𝓦)be locally convex cones and 𝑻𝑻: 𝓟𝓟 → 𝓠𝓠 
be a continuous linear mapping. If 𝜸𝜸 ∶ 𝑰𝑰 → 𝓟𝓟 is a 𝑪𝑪𝟏𝟏-curve, then 𝑻𝑻𝑻𝑻𝑻𝑻 is also 
a 𝑪𝑪𝟏𝟏-curve and (𝑻𝑻𝒐𝒐𝜸𝜸)′ =  𝑻𝑻𝒐𝒐𝜸𝜸′. 
Proof. Let 𝑾𝑾 ∈ 𝓦𝓦 be arbitrary. There is 𝑼𝑼 ∈ 𝓤𝓤 such that (𝒂𝒂,𝒃𝒃) ∈ 𝑼𝑼 implies that 
(𝑻𝑻(𝒂𝒂),𝑻𝑻(𝒃𝒃)) ∈ 𝑾𝑾 for each 𝒂𝒂,𝒃𝒃 ∈ 𝓟𝓟. Now, since γ is 𝑪𝑪𝟏𝟏-curve, there 
is δ >0 such that for s < δ, we have (𝜸𝜸(𝒕𝒕 +  𝒔𝒔),𝜸𝜸(𝒕𝒕) + 𝒔𝒔𝒔𝒔′(𝒕𝒕) ∈  𝒔𝒔𝒔𝒔 and 
(𝜸𝜸(𝒕𝒕) +  𝒔𝒔𝒔𝒔′(𝒕𝒕),𝜸𝜸(𝒕𝒕 +  𝒔𝒔)) ∈ 𝒔𝒔𝒔𝒔. Then (𝑻𝑻(𝜸𝜸(𝒕𝒕 +  𝒔𝒔)),𝑻𝑻(𝜸𝜸(𝒕𝒕)  +  𝒔𝒔𝒔𝒔′(𝒕𝒕)))  ∈
𝒔𝒔𝒔𝒔 and (𝑻𝑻(𝜸𝜸(𝒕𝒕)  +  𝒔𝒔𝒔𝒔′(𝒕𝒕)),𝑻𝑻(𝜸𝜸(𝒕𝒕 +  𝒔𝒔))) ∈ 𝒔𝒔𝒔𝒔. The linearity of T implies that 
(𝑻𝑻(𝜸𝜸(𝒔𝒔 + 𝒕𝒕)),𝑻𝑻(𝜸𝜸(𝒕𝒕)) +  𝒔𝒔𝒔𝒔(𝜸𝜸′(𝒕𝒕))  ∈ 𝒔𝒔𝒔𝒔 and (𝑻𝑻(𝜸𝜸(𝒕𝒕)) + 𝒔𝒔𝒔𝒔(𝜸𝜸′(𝒕𝒕)),𝑻𝑻(𝜸𝜸(𝒔𝒔 +
𝒕𝒕)))  ∈ 𝒔𝒔𝒔𝒔. Then we have (𝑻𝑻𝑻𝑻𝑻𝑻)′ =  𝑻𝑻𝑻𝑻𝑻𝑻′. 
 
Lemma 2.3. Consider the locally convex cone �ℝ� ,𝓥𝓥��endowed with its symmetric 
topology. For every continuous curve 𝜸𝜸: 𝑰𝑰 → ℝ� , we have 𝜸𝜸(𝒙𝒙) = ∞ for 
all 𝒙𝒙 ∈ 𝑰𝑰 or γ(x) < ∞  for all x ∈I. 
 Proof. Let the assertion is false. Then there is x ∈I such that γ(x) = ∞ and 
γ(y) < ∞ for all 𝒚𝒚 ∈ 𝑰𝑰\{𝒙𝒙}. We choose the sequence (𝒙𝒙𝒏𝒏)𝒏𝒏∈ℕ in 𝑰𝑰\{𝒙𝒙} such 
that 𝒙𝒙𝒏𝒏  →  𝒙𝒙. Now the continuity of 𝜸𝜸yields that (𝜸𝜸(𝒙𝒙𝒏𝒏))𝒏𝒏∈ℕ is convergent to 
𝜸𝜸(𝒙𝒙 ) =  +∞. Since +∞ is an isolated point in the symmetric topology of (ℝ� ,𝓥𝓥�), 
we realize that there is 𝒎𝒎 ∈ ℕ such that 𝜸𝜸(𝒙𝒙𝒏𝒏)  =  +∞ for all n ≥ m. This is a 
contradiction. Therefore, the assertion is true.  
Now, by considering the Lemma 2.3, we introduce the integral ∫ 𝜸𝜸(𝒕𝒕)𝒅𝒅𝒅𝒅𝒃𝒃

𝒂𝒂  
for a continuous curve 𝜸𝜸 ∶  𝑰𝑰 → ℝ� : if γ(x) < ∞ for all 𝒙𝒙 ∈ 𝑰𝑰, we mean 
∫ 𝜸𝜸(𝒕𝒕)𝒅𝒅𝒅𝒅𝒃𝒃
𝒂𝒂  the usual Riemann integral and when γ(x) = +∞ for all 𝒙𝒙 ∈ 𝑰𝑰, we set 

∫ 𝜸𝜸(𝒕𝒕)𝒅𝒅𝒅𝒅𝒃𝒃
𝒂𝒂 :=+∞ for 𝒂𝒂 ≠  𝒃𝒃 and ∫ 𝜸𝜸(𝒕𝒕)𝒅𝒅𝒅𝒅𝒃𝒃

𝒂𝒂 =  𝟎𝟎 for 𝒂𝒂 = 𝒃𝒃. 
 
Definition 2.4. Let (𝓟𝓟,𝓤𝓤)be a locally convex cone such that 𝓟𝓟∗ separates the 
points of 𝓟𝓟, and 𝜸𝜸 ∶ 𝑰𝑰 → 𝓟𝓟 be a𝑪𝑪𝟎𝟎-curve, and a, b ∈ I with a ≤ b. If there is 
𝒑𝒑 ∈ 𝓟𝓟 such that for each µ ∈ 𝓟𝓟∗, 

µ(𝒑𝒑) =  � µ�𝜸𝜸(𝒕𝒕)�𝒅𝒅𝒅𝒅
𝒃𝒃

𝒂𝒂
 , 

𝒑𝒑 ∈  𝓟𝓟 is called the weak integral of the 𝜸𝜸, from a to b, and denoted by 

𝒑𝒑: = � 𝜸𝜸(𝒕𝒕)𝒅𝒅𝒅𝒅
𝒃𝒃

𝒂𝒂
. 
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      In Definition 2.4, if a = b, then ∫ µ(𝜸𝜸(𝒕𝒕))𝒅𝒅𝒅𝒅𝒃𝒃

𝒂𝒂 =0=µ(0) for all µ ∈ 𝓟𝓟∗. 

This shows that ∫ 𝜸𝜸(𝒕𝒕)𝒅𝒅𝒅𝒅𝒃𝒃
𝒂𝒂 =  𝟎𝟎 for 𝒂𝒂,𝒃𝒃 ∈ 𝑰𝑰, with a = b. Also, we note that the 

element 𝒑𝒑 ∈ 𝓟𝓟 in Definition 2.4 is uniquely determined if it exists, since 𝓟𝓟∗ 
separates the points of  𝓟𝓟. 
Lemma 2.5. Let (𝓟𝓟,𝓤𝓤)be a locally convex cone such that 𝓟𝓟∗ separates the 
points of 𝓟𝓟. Suppose γ: I → 𝓟𝓟 and φ: I → 𝓟𝓟 are continuous curves such 
that the weak integrals ∫ 𝜸𝜸(𝒕𝒕)𝒅𝒅𝒅𝒅𝒃𝒃

𝒂𝒂  and ∫ 𝝋𝝋(𝒕𝒕)𝒅𝒅𝒅𝒅𝒃𝒃
𝒂𝒂  exist for 𝒂𝒂,𝒃𝒃 ∈I. Then the 

followings hold. 
(a) ∫ �𝜸𝜸(𝒕𝒕) + 𝝋𝝋(𝒕𝒕)�𝒅𝒅𝒅𝒅 = ∫ 𝜸𝜸(𝒕𝒕)𝒅𝒅𝒅𝒅𝒃𝒃

𝒂𝒂 +𝒃𝒃
𝒂𝒂 ∫ 𝝋𝝋(𝒕𝒕)𝒅𝒅𝒅𝒅𝒃𝒃

𝒂𝒂 , 

(b) for 𝜶𝜶 ≥  𝟎𝟎, ∫ 𝜶𝜶𝜶𝜶(𝒕𝒕)𝒅𝒅𝒅𝒅𝒃𝒃
𝒂𝒂  =  𝜶𝜶 ∫ 𝜸𝜸(𝒕𝒕)𝒅𝒅𝒅𝒅𝒃𝒃

𝒂𝒂 , 
(c) if for a, b, c ∈I, with a < c < b, the integrals ∫ 𝜸𝜸(𝒕𝒕)𝒅𝒅𝒅𝒅𝒄𝒄

𝒂𝒂  and ∫ 𝜸𝜸(𝒕𝒕)𝒅𝒅𝒅𝒅𝒃𝒃
𝒄𝒄 exist, 

then ∫ 𝜸𝜸(𝒕𝒕)𝒅𝒅𝒅𝒅𝒄𝒄
𝒂𝒂 +  ∫ 𝜸𝜸(𝒕𝒕)𝒅𝒅𝒅𝒅𝒃𝒃

𝒄𝒄 =  ∫ 𝜸𝜸(𝒕𝒕)𝒅𝒅𝒅𝒅𝒃𝒃
𝒂𝒂 . 

    Proof. For (a), let 𝒑𝒑 = ∫ 𝜸𝜸(𝒕𝒕)𝒅𝒅𝒅𝒅𝒃𝒃
𝒂𝒂  and 𝒒𝒒 = ∫ 𝝋𝝋(𝒕𝒕)𝒅𝒅𝒅𝒅𝒃𝒃

𝒂𝒂 . Then for each µ ∈ 𝓟𝓟∗, 

we have µ(𝒑𝒑) = ∫ µ�𝜸𝜸(𝒕𝒕)�𝒅𝒅𝒅𝒅𝒃𝒃
𝒂𝒂  and µ(𝒒𝒒) = ∫ µ(𝝋𝝋(𝒕𝒕))𝒅𝒅𝒅𝒅𝒃𝒃

𝒂𝒂 . This yields that for 
every µ ∈ 𝓟𝓟∗, 
∫ µ(𝜸𝜸(𝒕𝒕) +𝝋𝝋(𝒕𝒕))𝒅𝒅𝒅𝒅𝒃𝒃
𝒂𝒂 = ∫ µ(𝜸𝜸(𝒕𝒕))𝒅𝒅𝒅𝒅𝒃𝒃

𝒂𝒂  + ∫ µ(𝝋𝝋(𝒕𝒕))𝒅𝒅𝒅𝒅𝒃𝒃
𝒂𝒂 =  µ(𝒑𝒑) + µ(𝒒𝒒) = µ(𝒑𝒑 +  𝒒𝒒). 

  Therefore ∫ �𝜸𝜸(𝒕𝒕) + 𝝋𝝋(𝒕𝒕)�𝒅𝒅𝒅𝒅𝒃𝒃
𝒂𝒂 =  𝒑𝒑 +  𝒒𝒒, by definition of weak integral. 

For (b), let 𝒑𝒑 = ∫ 𝜸𝜸(𝒕𝒕)𝒅𝒅𝒅𝒅 𝒃𝒃
𝒂𝒂 and 𝜶𝜶 ≥  𝟎𝟎. Then for each µ ∈ 𝓟𝓟∗, µ(𝒑𝒑)  = 

∫ µ(𝜸𝜸(𝒕𝒕))𝒅𝒅𝒅𝒅𝒃𝒃
𝒂𝒂 . Now, we have 

µ(𝜶𝜶𝜶𝜶) = 𝜶𝜶µ(𝒑𝒑) =  (𝜶𝜶µ)(𝒑𝒑) =  � (𝜶𝜶µ)�𝜸𝜸(𝒕𝒕)�𝒅𝒅𝒅𝒅
𝒃𝒃

𝒂𝒂
= �  µ�𝜶𝜶𝜶𝜶(𝒕𝒕)�𝒅𝒅𝒅𝒅.

𝒃𝒃

𝒂𝒂
 

Now, by the definition of weak integral, we have ∫ 𝜶𝜶𝜶𝜶(𝒕𝒕)𝒅𝒅𝒅𝒅 𝒃𝒃
𝒂𝒂  = 𝜶𝜶 ∫ 𝜸𝜸(𝒕𝒕)𝒅𝒅𝒅𝒅𝒃𝒃

𝒂𝒂  . 
 
For (c), let 𝒎𝒎 =  ∫  𝜸𝜸(𝒕𝒕)𝒅𝒅𝒅𝒅𝒄𝒄

𝒂𝒂 ,𝒏𝒏 =  ∫ 𝜸𝜸(𝒕𝒕)𝒅𝒅𝒅𝒅𝒃𝒃
𝒄𝒄 and 𝒑𝒑 = ∫ 𝜸𝜸(𝒕𝒕)𝒅𝒅𝒅𝒅𝒃𝒃

𝒂𝒂  . Then for 
µ ∈ 𝓟𝓟∗, 

µ(𝒎𝒎 + 𝒏𝒏) = µ(𝒎𝒎) + µ(𝒏𝒏) =  � µ(𝜸𝜸(𝒕𝒕))𝒅𝒅𝒅𝒅
𝒄𝒄

𝒂𝒂
 + � µ(𝜸𝜸(𝒕𝒕))

𝒃𝒃

𝒄𝒄
 𝒅𝒅𝒅𝒅 =  � µ(𝜸𝜸(𝒕𝒕))𝒅𝒅𝒅𝒅

𝒃𝒃

𝒂𝒂
  

=  µ(𝒑𝒑). 
Since 𝓟𝓟∗ separates the points of  𝓟𝓟, we have m + n = p. 
Theorem 2.6 (The First Fundamental Theorem of Calculus).Let (𝓟𝓟,𝓤𝓤) be 
a locally convex cone such that 𝓟𝓟∗ separates the points of 𝓟𝓟, γ: I → 𝓟𝓟 be 
a continuous curve and 𝒂𝒂 ∈ 𝑰𝑰. Also assume that the weak integral 𝝋𝝋(𝒕𝒕)  = 
∫ 𝜸𝜸(𝒎𝒎)𝒅𝒅𝒅𝒅𝒕𝒕
𝒂𝒂  exists for each 𝒕𝒕 ∈ 𝑰𝑰. Then 𝝋𝝋 ∶ 𝑰𝑰 → 𝓟𝓟 is a 𝑪𝑪𝟏𝟏-curve and φ′ = γ. 
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  Proof. Since the weak integral 𝝋𝝋(𝒕𝒕)  =  ∫  𝜸𝜸(𝒕𝒕)𝒅𝒅𝒅𝒅𝒕𝒕
𝒂𝒂 exists, we have 

µ(𝝋𝝋(𝒕𝒕))  =  ∫ µ(𝜸𝜸(𝒎𝒎))𝒅𝒅𝒅𝒅𝒕𝒕
𝒂𝒂 , for all µ ∈ 𝓟𝓟∗. For µ ∈ 𝓟𝓟∗, if µ(𝜸𝜸(𝒎𝒎))  <  ∞ for all 

𝒎𝒎 ∈ 𝑰𝑰, the usual First Fundamental Theorem of Calculus yields that (µ(𝝋𝝋(𝒕𝒕))′ =
µ(𝜸𝜸(𝒕𝒕)). Then we have µ(𝝋𝝋′(𝒕𝒕) = µ(𝜸𝜸(𝒕𝒕)) by Lemma 2.2. Now, since 
𝓟𝓟∗separates the points of  𝓟𝓟, we have 𝝋𝝋′(𝒕𝒕) = 𝜸𝜸(𝒕𝒕). If µ(γ(t)) = ∞ for all 𝒕𝒕 ∈ 𝑰𝑰, 
Example 2.1 shows that the relation (µ(𝝋𝝋(𝒕𝒕))′ = µ(𝜸𝜸(𝒕𝒕)) is true. Then the 
assertion holds.  
 
Theorem 2.7 (The Second Fundamental Theorem of Calculus). Let(𝓟𝓟,𝓤𝓤) be a 
separated locally convex cone such that 𝓟𝓟∗ separates the points of 𝓟𝓟, and 𝜸𝜸: 𝑰𝑰 →
𝓟𝓟 be a 𝑪𝑪𝟏𝟏-curve, and 𝒂𝒂,𝒃𝒃 ∈ 𝑰𝑰. Then 𝜸𝜸(𝒃𝒃) = 𝜸𝜸(𝒂𝒂) + 𝒑𝒑, where 𝒑𝒑 = ∫ 𝜸𝜸′(𝒕𝒕)𝒅𝒅𝒅𝒅.𝒃𝒃

𝒂𝒂  
Proof. Let µ ∈ 𝓟𝓟∗. By Lemma 2.2, µ𝒐𝒐𝒐𝒐 ∶  𝑰𝑰 → ℝ�  is a 𝑪𝑪𝟏𝟏-curve and we have 
(µ𝒐𝒐γ)′= µ𝒐𝒐γ′. By Lemma 2.3, (µ𝒐𝒐𝜸𝜸)′(𝒙𝒙) =  ∞ for all 𝒙𝒙 ∈ 𝑰𝑰 or (µ𝒐𝒐γ)′(x) < ∞ 
for all 𝒙𝒙 ∈ 𝑰𝑰. Let (µ𝒐𝒐γ)′(x) < ∞ for all 𝒙𝒙 ∈ 𝑰𝑰. Now the Classical Fundamental 
Theorem of Calculus yields that 

� µ𝒐𝒐𝒐𝒐′(𝒕𝒕)𝒅𝒅𝒅𝒅
𝒃𝒃

𝒂𝒂
  =  � (µ𝒐𝒐𝒐𝒐)′(𝒕𝒕)𝒅𝒅𝒅𝒅

𝒃𝒃

𝒂𝒂
 = µ(𝜸𝜸(𝒃𝒃)) − µ(𝜸𝜸(𝒂𝒂)). 

This shows that 

µ(𝒑𝒑+ 𝜸𝜸(𝒂𝒂))  = µ(𝒑𝒑) + µ(𝜸𝜸(𝒂𝒂)) = � µ(𝜸𝜸′(𝒕𝒕))𝒅𝒅𝒅𝒅
𝒃𝒃

𝒂𝒂
 +  µ(𝜸𝜸(𝒂𝒂))  =  µ(𝜸𝜸(𝒃𝒃)). 

Now, since 𝓟𝓟∗ separates the points of 𝓟𝓟, we conclude that p + γ(a) = γ(b). 
If (µ𝒐𝒐𝜸𝜸)′(𝒙𝒙) =  ∞  for all 𝒙𝒙 ∈ 𝑰𝑰, then (µ𝒐𝒐𝜸𝜸)(𝒙𝒙) =  ∞ for all 𝒙𝒙 ∈ 𝑰𝑰  by 
Example 2.1. Then the relation µ(𝒑𝒑)  +  µ(𝜸𝜸(𝒂𝒂))  =  µ(𝜸𝜸(𝒃𝒃)) holds too in this 
case. Therefore p + γ(a) = γ(b), since 𝓟𝓟∗ separates the points of  𝓟𝓟.  
 
Proposition 2.8.Let (𝓟𝓟,𝓤𝓤)be a locally convex cone such that 𝓟𝓟∗ separates the 
points of 𝓟𝓟, γ : I → 𝓟𝓟 be a continuous curve and a, 𝒃𝒃 ∈ 𝑰𝑰 with a ≤ b. Suppose 
that the weak integral ∫ 𝜸𝜸(𝒕𝒕)𝒅𝒅𝒅𝒅𝒃𝒃

𝒂𝒂  exists, and V is a uniformly convex subset of 
𝓟𝓟𝟐𝟐 with (CP) such that γ(I) ⊆V (0)V = {m ∈𝓟𝓟 : (m,0) ∈V,(0, m) ∈V }. Then 

∫ 𝜸𝜸(𝒕𝒕)𝒅𝒅𝒅𝒅𝒃𝒃
𝒂𝒂 ∈ (𝒃𝒃 −  𝒂𝒂)𝑽𝑽 (𝟎𝟎)𝑽𝑽. 

 Proof. We remember that 𝑽𝑽 (𝟎𝟎) = {𝒎𝒎 ∶  (𝒎𝒎,𝟎𝟎) ∈ 𝑽𝑽 }, (0)V = {m : (0, m) ∈ V} 
and 𝑽𝑽 (𝟎𝟎)𝑽𝑽 = 𝑽𝑽 (𝟎𝟎) ∩ 𝑽𝑽 (𝟎𝟎). If 𝒂𝒂 = 𝒃𝒃, then ∫ 𝜸𝜸(𝒕𝒕)𝒅𝒅𝒅𝒅𝒃𝒃

𝒂𝒂 ∈ (𝒃𝒃 − 𝒂𝒂)𝑽𝑽 (𝟎𝟎)𝑽𝑽. 

Suppose 𝒂𝒂 ≠  𝒃𝒃 and 𝒑𝒑 = ∫ 𝜸𝜸(𝒕𝒕)𝒅𝒅𝒅𝒅𝒃𝒃
𝒂𝒂  ∉ (𝒃𝒃 − 𝒂𝒂)𝑽𝑽 (𝟎𝟎)𝑽𝑽. Then 𝒑𝒑 ∉ (𝒃𝒃 − 𝒂𝒂)𝑽𝑽 (𝟎𝟎) 

or 𝒑𝒑 ∉ (𝒃𝒃 −  𝒂𝒂)(𝟎𝟎)𝑽𝑽. Let 𝒑𝒑 ∉ (𝒃𝒃 −  𝒂𝒂)𝑽𝑽 (𝟎𝟎). Then (𝒑𝒑,𝟎𝟎)  ∉  (𝒃𝒃 −  𝒂𝒂)𝑽𝑽. Since 
𝑽𝑽 has (CP), there is µ ∈ 𝓟𝓟∗such that µ(𝒑𝒑) > 𝒃𝒃 − 𝒂𝒂and µ(m) ≤ µ(n) + 1 for all (m, 
n) ∈V. This shows that µ(𝜸𝜸(𝒕𝒕)) ≤ µ(𝟎𝟎) + 𝟏𝟏 for all 𝒕𝒕 ∈ 𝑰𝑰. Then for each 
𝒕𝒕 ∈ 𝑰𝑰, µ(𝜸𝜸(𝒕𝒕))  ≤  𝟏𝟏. Therefore, we have 
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µ(𝒑𝒑) = � µ(𝜸𝜸(𝒕𝒕))𝒅𝒅𝒅𝒅
𝒃𝒃

𝒂𝒂
  ≤  � 𝒅𝒅𝒅𝒅

𝒃𝒃

𝒂𝒂
 = 𝒃𝒃 − 𝒂𝒂. 

  This contradiction yields that 

� 𝜸𝜸(𝒕𝒕)𝒅𝒅𝒅𝒅 
𝒃𝒃

𝒂𝒂
∈ (𝒃𝒃 − 𝒂𝒂)𝑽𝑽 (𝟎𝟎). 

We can prove that ∫ 𝜸𝜸(𝒕𝒕)𝒅𝒅𝒅𝒅 𝒃𝒃
𝒂𝒂 ∈ (𝒃𝒃 − 𝒂𝒂)(𝟎𝟎)𝑽𝑽in a similar way. Therefore 

∫ 𝜸𝜸(𝒕𝒕)𝒅𝒅𝒅𝒅 𝒃𝒃
𝒂𝒂 ∈ (𝒃𝒃 − 𝒂𝒂)𝑽𝑽(𝟎𝟎)𝑽𝑽. 

Example 2.2.Let 𝑿𝑿 be a topological space, and let 𝓕𝓕(𝑿𝑿,ℝ�)be the cone of 
all ℝ� -valued lower semicontinuous functions on X, where ℝ� is endowed with 
the usual, that is, the one-point compactification topology. The cone 𝓕𝓕(𝑿𝑿,ℝ�) 
is considered endowed with the pointwise operations. For ρ >0, we set 𝝆𝝆� =
{(𝒇𝒇,𝒈𝒈)  ∈ 𝓟𝓟𝟐𝟐 ∶  𝒇𝒇(𝒙𝒙)  ≤  𝒈𝒈(𝒙𝒙)  +  𝝆𝝆}. The collection 𝓦𝓦 =  {𝝆𝝆� ∶  𝝆𝝆 >  𝟎𝟎} is a 
convex quasiuniform structure on 𝓕𝓕(𝑿𝑿,ℝ�). We denote the subcone of all bound 
below elements of 𝓕𝓕(𝑿𝑿,ℝ�) with respect to 𝓦𝓦 by 𝓟𝓟. Then (𝓟𝓟,𝓦𝓦)is a locally 
convex cone. If 𝒙𝒙 ∈ 𝑿𝑿 and µ ∈ ℝ�∗, then µ𝒙𝒙 ∶  𝓟𝓟 → ℝ� , defined by µ𝒙𝒙(𝒇𝒇)  = 
µ�𝒇𝒇(𝒙𝒙)� is a continuous functional on 𝓟𝓟. The dual cone 𝓟𝓟∗separates the 
points of  𝓟𝓟. Consider the continuous curve 𝜸𝜸 ∶ [𝟎𝟎, +∞) → 𝓟𝓟, 𝜸𝜸(𝒕𝒕)  =  𝒇𝒇𝒕𝒕, 
where 𝒇𝒇𝒕𝒕 ∶  𝑿𝑿 → ℝ� , 𝒇𝒇𝒕𝒕(𝒙𝒙)  =  𝒕𝒕 for each x ∈X. We claim that 𝜸𝜸′(𝒕𝒕)  =  𝒇𝒇𝟏𝟏. Let 
ρ >0. Then we have 𝒕𝒕 + 𝒔𝒔 ≤ 𝒕𝒕 + 𝒔𝒔 + 𝒔𝒔𝒔𝒔 for each 𝒔𝒔 ∈ 𝑰𝑰. This shows that 
𝒇𝒇𝒕𝒕+𝒔𝒔(𝒙𝒙)  ≤  𝒇𝒇𝒕𝒕(𝒙𝒙) + 𝒔𝒔𝒇𝒇𝟏𝟏(𝒙𝒙) + 𝒔𝒔𝒔𝒔 and 𝒇𝒇𝒕𝒕(𝒙𝒙) + 𝒔𝒔𝒇𝒇𝟏𝟏(𝒙𝒙)  ≤  𝒇𝒇𝒕𝒕+𝒔𝒔(𝒙𝒙) + 𝒔𝒔𝒔𝒔. This 
yields that (𝒇𝒇𝒕𝒕+𝒔𝒔,𝒇𝒇𝒕𝒕  +  𝒔𝒔𝒇𝒇𝟏𝟏)  ∈ 𝒔𝒔𝝆𝝆� and (𝒇𝒇𝒕𝒕  +  𝒔𝒔𝒇𝒇𝟏𝟏,𝒇𝒇𝒕𝒕+𝒔𝒔)  ∈ 𝒔𝒔𝝆𝝆�. 
Therefore 𝜸𝜸′(𝒕𝒕) = 𝒇𝒇𝟏𝟏. If 𝝋𝝋(𝒕𝒕)  =  𝒇𝒇𝒕𝒕𝟐𝟐, we can prove that 𝝋𝝋′(𝒕𝒕)  =  𝒇𝒇𝟐𝟐𝟐𝟐 and by 
theinduction 𝒊𝒊𝒊𝒊 𝝋𝝋(𝒕𝒕)  =  𝒇𝒇𝒕𝒕𝒏𝒏, for 𝒏𝒏 ∈ ℕ, then 𝝋𝝋′(𝒕𝒕)  =  𝒇𝒇𝒏𝒏𝒕𝒕𝒏𝒏−𝟏𝟏. Now, we conclude 
that∫ 𝝋𝝋′(𝒔𝒔)𝒅𝒅𝒅𝒅 𝒕𝒕

𝟎𝟎  =  𝝋𝝋(𝒕𝒕). 
Remark 2.9. Let 𝓟𝓟�  be a locally convex cone such that 𝓟𝓟∗ separates the 
points of 𝓟𝓟. We claim that for the constant curve 𝛄𝛄(𝐭𝐭)  =  𝐜𝐜, where 𝐜𝐜 ∈ 𝓟𝓟, 
we have 𝐚𝐚𝐚𝐚 + ∫ 𝛄𝛄(𝐭𝐭)𝐝𝐝𝐝𝐝𝐛𝐛

𝐚𝐚   =  𝐛𝐛𝐛𝐛 for a, b ∈[0, ∞) with 𝐚𝐚 ≠  𝐛𝐛 (in the case a = b, 
the relation is obvious). Indeed, if for µ ∈ 𝓟𝓟∗, µ(𝛄𝛄(𝐭𝐭) = µ(𝐜𝐜) = ∞, then 
∫ µ(𝛄𝛄(𝐭𝐭))𝐝𝐝𝐝𝐝𝐛𝐛
𝐚𝐚 = ∞ and 𝐛𝐛µ(𝐜𝐜) = ∞. Therefore 𝐚𝐚𝐚𝐚 + ∫ 𝛄𝛄(𝐭𝐭)𝐝𝐝𝐝𝐝𝐛𝐛

𝐚𝐚   =  𝐛𝐛𝐛𝐛 is true. If 
for µ ∈ 𝓟𝓟∗, µ(𝛄𝛄(𝐭𝐭) = µ(𝐜𝐜) < ∞, then by the classical integration, we have 
∫ µ(𝐜𝐜)𝐝𝐝𝐝𝐝𝐛𝐛
𝐚𝐚  = (𝐛𝐛 −  𝐚𝐚)µ(𝐜𝐜) = µ((𝐛𝐛 − 𝐚𝐚)𝐜𝐜). Therefore for each µ ∈ 𝓟𝓟∗, µ(𝐚𝐚𝐚𝐚)  + 

∫ µ(𝛄𝛄(𝐭𝐭))𝐝𝐝𝐝𝐝𝐛𝐛
𝐚𝐚  = µ(𝐛𝐛𝐛𝐛). Since 𝓟𝓟∗ separates the points of 𝓟𝓟, we conclude that 

𝐚𝐚𝐚𝐚 + ∫ 𝛄𝛄(𝐭𝐭)𝐝𝐝𝐝𝐝𝐛𝐛
𝐚𝐚   =  𝐛𝐛𝐛𝐛. 

The concept of completion for locally convex cones has been established 
in [1]. It is proved in [4] that if (𝓟𝓟,𝓤𝓤) is a locally convex cone with (SP), then 
for 𝓑𝓑 =  {𝑼𝑼°: 𝑼𝑼 ∈ 𝓤𝓤}, the convex quasiuniform structure 𝓤𝓤𝓑𝓑(𝓟𝓟,𝓟𝓟∗) and 𝓤𝓤 are 
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equivalent. For a locally convex cone (𝓟𝓟,𝓤𝓤) with (SP), the completion 𝓟𝓟�  of 
𝓟𝓟, is the subcone ⋂ (𝓟𝓟 +  ({𝟎𝟎}  ×  𝑼𝑼° )°)𝑼𝑼∈𝓤𝓤  of 𝑳𝑳(𝓟𝓟∗) endowed with the convex 
convex quasiuniform structure 𝓤𝓤� = 𝓤𝓤𝓑𝓑(𝓟𝓟� ,𝓟𝓟∗), where 𝓑𝓑 =  {𝑼𝑼°: 𝑼𝑼 ∈ 𝓤𝓤}. For 
details see [1]. 
Theorem 2.10.Let (𝓟𝓟,𝓤𝓤)be a locally convex cone such that 𝓟𝓟∗ separates 
the points of 𝓟𝓟, and 𝜸𝜸 ∶  [𝟎𝟎, +∞) → 𝓟𝓟be a continuous curve. Then there is 
a unique differentiable curve 𝝋𝝋 ∶  [𝟎𝟎, +∞)  → 𝓟𝓟� , where 𝓟𝓟�  is the completion of 
𝓟𝓟� such that 𝝋𝝋′(𝒕𝒕) = 𝜸𝜸(𝒕𝒕) for each 𝒕𝒕 ∈ [𝟎𝟎, +∞)and 𝝋𝝋(𝟎𝟎) =  𝟎𝟎. 
Proof. Firstly, we show uniqueness. Let 𝝋𝝋 ∶  [𝟎𝟎, +∞)  → 𝓟𝓟�  be a curve with 
derivative γ and φ(0) = 0. For every µ ∈ 𝓟𝓟∗ the composition µ𝒐𝒐𝒐𝒐 is an 
antiderivative of µ𝒐𝒐𝒐𝒐 with initial value 0, so it is uniquely determined, and since 
𝓟𝓟∗separates the points of 𝓟𝓟, φ is also uniquely determined. Now, we show the 
existence of φ. For each 𝒕𝒕 ∈ [𝟎𝟎, +∞), we define 𝝋𝝋𝒕𝒕 ∶  (𝓟𝓟∗,𝓤𝓤𝓑𝓑(𝓟𝓟∗,𝓟𝓟)) → (ℝ� ,𝓥𝓥�), 
𝝋𝝋𝒕𝒕(µ) = ∫ (µ𝒐𝒐𝒐𝒐)(𝒔𝒔)𝒅𝒅𝒅𝒅𝒕𝒕

𝟎𝟎 . For each 𝒕𝒕 ∈ [𝟎𝟎, +∞), 𝝋𝝋𝒕𝒕 is a linear functional on 𝓟𝓟∗. 
Then 𝝋𝝋𝒕𝒕(∈ 𝑳𝑳(𝓟𝓟∗) for all 𝒕𝒕 ∈ [𝟎𝟎, +∞). Now, we define 𝝋𝝋: [𝟎𝟎, +∞) →  𝑳𝑳(𝓟𝓟∗), 
𝝋𝝋(𝒕𝒕)  =  𝝋𝝋𝒕𝒕. We claim that φ′ = γ. Let µ ∈ 𝓟𝓟∗. Then we have µ𝒐𝒐𝒐𝒐(𝒕𝒕)  =  ∞ or 
µ𝒐𝒐𝒐𝒐(𝒕𝒕)  <  ∞ for each 𝒕𝒕 ∈ [𝟎𝟎,∞) by the Example 2.1. If for each 𝒕𝒕 ∈ [𝟎𝟎,∞), 
µ𝒐𝒐𝒐𝒐(𝒕𝒕)  =  ∞, then for t >0, we have 𝝋𝝋𝒕𝒕(µ)  =  ∫ µ𝒐𝒐𝒐𝒐(𝒔𝒔)𝒅𝒅𝒅𝒅𝒕𝒕

𝟎𝟎 =  ∫ ∞𝒅𝒅𝒅𝒅𝒕𝒕
𝟎𝟎  = ∞. 

This shows that 𝝋𝝋(𝒕𝒕)  =  ∞. Therefore the assertion holds in this case by the 
Example 2.1. Now, let for each 𝒕𝒕 ∈ [𝟎𝟎,∞), µ𝒐𝒐𝒐𝒐(𝒕𝒕)  <  ∞. We identify 𝒂𝒂 ∈ 𝓟𝓟 
with the linear mapping 𝝍𝝍𝒂𝒂 ∶  𝓟𝓟∗ → ℝ� , 𝝍𝝍𝒂𝒂(µ)  =  µ(𝒂𝒂). Let 𝑼𝑼 ∈ 𝓤𝓤, 𝒕𝒕 ∈ [𝟎𝟎,∞) 
and s >0. There is 𝜹𝜹𝒕𝒕 >  𝟎𝟎 such that 𝜸𝜸(𝒎𝒎)  ∈ (𝜹𝜹𝒕𝒕𝑼𝑼)(𝜸𝜸(𝒕𝒕))(𝜹𝜹𝒕𝒕𝑼𝑼), for each 𝒎𝒎 ∈
[𝒕𝒕, 𝒕𝒕 + 𝒔𝒔] by the continuity of γ. We set 𝑽𝑽 =  𝜹𝜹𝒕𝒕𝑼𝑼. Clearly, we have 𝑼𝑼𝑽𝑽° ∈
𝓤𝓤𝓑𝓑(𝓟𝓟∗,𝓟𝓟).Now, for 𝒕𝒕 ∈ [𝟎𝟎,∞), 𝒔𝒔 ≤  𝜹𝜹and µ ∈ 𝑽𝑽°we have 

µ(𝜸𝜸(𝒎𝒎))  ≤  µ(𝜸𝜸(𝒕𝒕)) +  𝟏𝟏, 
for all 𝒎𝒎 ∈ [𝒕𝒕, 𝒕𝒕 +  𝒔𝒔]. Therefore 

�  µ(𝜸𝜸(𝒎𝒎))𝒅𝒅𝒅𝒅
𝒕𝒕+𝒔𝒔

𝒕𝒕
  ≤  � (µ(𝜸𝜸(𝒕𝒕))  +  𝟏𝟏)𝒅𝒅𝒅𝒅.

𝒕𝒕+𝒔𝒔

𝒕𝒕
 

This shows that 
∫ (µ𝒐𝒐𝒐𝒐)(𝒎𝒎)𝒅𝒅𝒅𝒅𝒕𝒕+𝒔𝒔
𝒕𝒕   ≤  𝒔𝒔µ(𝜸𝜸(𝒕𝒕))  +  𝒔𝒔. 

Then 

� (µ𝒐𝒐𝜸𝜸)(𝒎𝒎)𝒅𝒅𝒅𝒅
𝒕𝒕+𝒔𝒔

𝟎𝟎
 −  � (µ𝒐𝒐𝒐𝒐)(𝒎𝒎)𝒅𝒅𝒅𝒅

𝒕𝒕

𝟎𝟎
 ≤  𝒔𝒔µ(𝜸𝜸(𝒕𝒕))  +  𝒔𝒔. 

This shows that 

� (µ𝒐𝒐𝜸𝜸)(𝒎𝒎)𝒅𝒅𝒅𝒅
𝒕𝒕+𝒔𝒔

𝟎𝟎
 ≤  � (µ𝒐𝒐𝒐𝒐)(𝒎𝒎)𝒅𝒅𝒅𝒅

𝒕𝒕

𝟎𝟎
 +  𝒔𝒔µ�𝜸𝜸(𝒕𝒕)� +  𝒔𝒔. 

Therefore 
𝝋𝝋𝒕𝒕+𝒔𝒔(µ) + 𝒔𝒔(µ)  ≤  𝝋𝝋𝒕𝒕(µ)  +  𝒔𝒔µ(𝜸𝜸(𝒕𝒕))  +  𝒔𝒔. 
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This yields that 
 �𝝋𝝋(𝒕𝒕 +  𝒔𝒔),𝝋𝝋(𝒕𝒕) +  𝒔𝒔𝒔𝒔(𝒕𝒕)� ∈ 𝒔𝒔𝑼𝑼𝑽𝑽° ◦. 

In a similar way we can prove that 
�𝝋𝝋(𝒕𝒕) +  𝒔𝒔𝒔𝒔(𝒕𝒕),𝝋𝝋(𝒕𝒕 +  𝒔𝒔)� ∈ 𝒔𝒔𝑼𝑼𝑽𝑽° . 

Then we have φ′ = γ by the definition of differentiation. It remains to show 
that 𝝋𝝋𝒕𝒕 ∈ 𝓟𝓟�  for all 𝒕𝒕 ∈ [𝟎𝟎,∞). If 𝒕𝒕 = 𝟎𝟎, it is clear. For each 𝒕𝒕 ∈ (𝟎𝟎,∞) there 
is 𝜹𝜹𝒕𝒕 such that 𝜸𝜸([𝟎𝟎, 𝒕𝒕])  ⊆ (𝜹𝜹𝒕𝒕𝑼𝑼)(𝟎𝟎)(𝜹𝜹𝒕𝒕𝑼𝑼) by the continuity of γ. We claim 
that 𝝋𝝋𝒕𝒕 ∈ ({𝟎𝟎}  ×  (𝒕𝒕𝜹𝜹𝒕𝒕𝑼𝑼)°)°. Let µ ∈ (𝒕𝒕𝜹𝜹𝒕𝒕𝑼𝑼)°.  Then µ ∈ 𝟏𝟏

𝒕𝒕𝜹𝜹𝒕𝒕
𝑼𝑼° . For 𝒔𝒔 ∈ [𝟎𝟎, 𝒕𝒕], 

since, (𝟎𝟎, 𝟏𝟏
𝜹𝜹𝒕𝒕

 𝜸𝜸(𝒔𝒔))  ∈ 𝑼𝑼, we have (𝒕𝒕𝜹𝜹𝒕𝒕µ)( 𝟏𝟏
𝜹𝜹𝒕𝒕

 𝜸𝜸(𝒔𝒔))  ≥  −𝟏𝟏. Then for 𝒔𝒔 ∈ [𝟎𝟎, 𝒕𝒕], 

µ(𝜸𝜸(𝒔𝒔))  ≥  −  𝟏𝟏
𝒕𝒕
. This yields that 

𝝋𝝋𝒕𝒕(µ)  =  �  µ𝒐𝒐𝒐𝒐(𝒔𝒔)𝒅𝒅𝒅𝒅
𝒕𝒕

𝟎𝟎
  ≥  � −  

𝟏𝟏
𝒕𝒕

𝒕𝒕

𝟎𝟎
 𝒅𝒅𝒅𝒅 =  −𝟏𝟏. 

Then 𝟎𝟎 ≤  𝝋𝝋𝒕𝒕(µ)  +  𝟏𝟏. In fact, for ({𝟎𝟎}, µ)  ∈ 𝟎𝟎 ×  (𝒕𝒕𝜹𝜹𝒕𝒕𝑼𝑼) we have 𝝋𝝋𝒕𝒕(𝟎𝟎)  =
 𝟎𝟎 ≤  𝝋𝝋𝒕𝒕(µ)  +  𝟏𝟏. This shows that 𝝋𝝋𝒕𝒕 ∈ ({𝟎𝟎}  ×  (𝒕𝒕𝜹𝜹𝒕𝒕𝑼𝑼)°)°. Then 𝝋𝝋𝒕𝒕 ∈ 𝓟𝓟�  for all 
𝒕𝒕 ∈ [𝟎𝟎,∞). 
Corollary 2.11.Let (𝓟𝓟,𝓤𝓤)be an upper complete locally convex cone such that 
𝓟𝓟∗separates the points of 𝓟𝓟, and 𝜸𝜸 ∶  [𝟎𝟎,∞)  → 𝓟𝓟 be a continuous curve. Then 
the weak integral ∫ 𝜸𝜸(𝒕𝒕)𝒅𝒅𝒅𝒅 𝒃𝒃 

𝒂𝒂 exists. In fact, if (𝓟𝓟,𝓤𝓤) is upper complete, 
then�𝓟𝓟� ,𝓤𝓤�� =  (𝓟𝓟,𝓤𝓤) and therefore 𝝋𝝋𝒕𝒕 ∈ 𝓟𝓟 for each 𝒕𝒕 ∈ [𝒂𝒂,𝒃𝒃], by Theorem 
2.10.Also, we have ∫ 𝜸𝜸(𝒕𝒕)𝒅𝒅𝒅𝒅𝒃𝒃

𝒂𝒂 + 𝝋𝝋(𝒂𝒂) =  𝝋𝝋(𝒃𝒃) by Theorem 2.7. 
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