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d- STATISTICAL CONVERGENCE OF ORDER a AND d-
STATISTICAL BOUNDEDNESS OF ORDER a
IN METRIC SPACES

Emine KAYAN!, Rifat COLAK? and Yavuz ALTIN3

In the present paper, we introduce and study d- statistical convergence of
order o d-statistical boundedness of order a and d- strong p -Cesaro summability of
order o, for sequences in a metric space. Furthermore, we investigate the relations
between the sets of sequences which are d-statistically convergent of order o,
between the sets of sequences which are d- statistically bounded of order o and
between the sets of sequences which are d- strongly p -Cesdro summable of order a
for various values of a’s in (0,1].
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1. Introduction

The main topic of this paper is to study the statistical convergence of order
a, the statistical boundedness of order o (a<(0,1]) and strong p- Cesaro

summability of order « (a >0) for sequences in metric spaces. We will start by
saying a few words about the history of these concepts which are also related to
each other.

The thinking of statistical convergence was first given by Zygmund [1] in
1935. Statistical convergence was introduced for the first time by Steinhaus [2]
and Fast [3] and then by Schoenberg [4] independently. Some authors studied also
the statistical convergence of a sequence along density of the sets of natural
numbers that we could mention R. C. Buck [5] for instance. In the last decades
and under different names the subject was discussed in many different theories
such as in the theory of Fourier analysis, number theory, ergodic theory, measure
theory, trigonometric series and Banach spaces. It was further investigated from
the sequence spaces and summability theory point of view and via summability
theory by Fridy [6], Connor [7], Mursaleen [8], Salat [9], Bhardwaj [10] and
many others.

From beginning to the last years, the statistical convergence has been
defined and investigated for the sequences of real or complex numbers. In this
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paper we study these concepts in metric spaces with order of a real number «
between 0 and 1.

The order of statistical convergence of a sequence of positive linear
operators was introduced by Gadjiev and Orhan [11]. The statistical convergence
of order ¢ (0<a<1) and strong p-Cesaro summability of order « were
introduced and studied by Colak [12] for number sequences, using the notion « -
density of a subset of the set N of positive integers.

For detailed investigations on the concept concerning statistical
convergence of order « see ([13], [14], [15]).

The sequence space W={X=(Xk)2 Iim%Z]xk —1|=0, for some numberl} of
n—o0 =

strongly Cesaro summable number sequences were introduced and studied by
Maddox [16].
Recently, Colak [12] introduced the strong p-Cesaro summability of order «
where 0<a <1 and p is a positive real number, which is a generalization of the
strong Cesaro summability. Furthermore the relations between the sets of
sequences which are statistical convergent of order « and the sets of sequences
which are strongly p- Cesaro summable of order « were given for various values
of « in[12].
We now recall some definitions which will be needed in the sequel of this paper.
A number sequence x=(x,) is said to be statistically convergent to a
number | if for each ¢ >0, the set {keN :|x, —1|> &} has the natural density

zero, where the natural density of a subset Gc< N is defined by
§(G):Iiml|{kSn :keG} (see [17]) and |{k <n : k e G}| denotes the
n—mn

number of elements of G not exceeding n.

Definition 1.1 ([12]) Let « <(0,1] be any real number. The « -density of a subset
H c N is defined by 5a(H):Iimia|{k£n : ke HJ, where the limit exists

n—e )
(finite or infinite).

Obviously &§,(N)=1 (a=1), = (a<1) and we have &,(H)=0 for every
o (0,1] provided that H < N is a finite subset. Although &,(H)=1-&,(H )for
a =1, the equality 5,(H®)=1-5,(H) is not true for 0<a <1 in general. Note
that for every subset H ¢ N, §,(H)=0 if & >1.

Also the o — density &,(H) reduces to the natural density S(H) of a subset
HcNincase a=1.
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Lemma 1.2. ([12]) Let Ec N . Then §,(E)<5,(E) if 0<a<p<1.

Now we give different versions of the well-known definitions of convergence and
boundedness of a sequence in a metric space.

Definition 1.3. A sequence (x, ) in a metric space (X,d) is said to be convergent
if there exists a point x, e X such that for every &>0 there exists a real number
N, such that [{keN : x, B, (x,)]<N,, where B,(x,)={xe X : d(x,x,)<¢&} is the
open ball of radius ¢ and center x,.

Definition 1.4. The sequence (x,) in a metric space (X,d) is bounded if there
exist a point xeX and a positive real number M such that
fkeN : x, By, (x)f=0.

2. d-statistical convergence of order « and d- statistical boundedness
of order « in a metric space

The statistical convergence of order o (0<a <1) was studied by Colak [12] for
number sequences, using the « — density of subsets of N. Statistical convergence
in metric spaces was studied by Kiglkarslan et al. [18]. In this section we study
statistical convergence of order « and statistical boundedness of order « in
metric spaces.

Definition 2.1 Let (X,d) be a metric space, x=(x,) be any sequence in this space
and let 0<a <1 be given. The sequence is said to be d- statistically
convergent of order « if there is a point x, € X such that

lim ia|{k <n:x B, (x)]=0

n—w N
that is &,((keN : x, eB,(x,)})=0 for every £>0. If the sequence (x,) is
statistically convergent of order «, to x, e X we write S§ —limx, =x, .

The statistical convergence of order « reduces to the statistical convergence for
a =1 in a metric spaces [12]. The set of all sequences which are d - statistically

convergent of order « in the metric space (X,d) will be denoted by S$ and we
will write S, for the set of all d - statistically convergent sequences in case
a=1.
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Lemma 2.2. Let a<(0,1] be given. If a sequence (x,) is d— statistically
convergent of order «, thenits S§ — limit is unique.
The proof is easy so we omit it.

Remark 2.3. The d - statistical convergence of order « is well defined only for
0<a <1. In order to show this let (X,d) be a metric space and let x=(x,) be a

sequence such that xx = a (k=2n), = b (k=2n), where a,be X are two fixed points
and a=h. Then it is easy to see that the sequence x=(x,) is d — statistically
convergent of order « , bothto a andto b i.e. S§ —limx, =a and S§ —limx, =b
for any « > 0. But this contradicts Lemma 2.2.

Remark 2.4. One may see that every convergent sequence is d — statistically
convergent of order « , thatis ¢, c S¢ for each 0 <« <1 in a metric space (X,d)

. Easily it can be seen that the converse of this fact is not true. For example, the
sequence x=(x,) defined by

_ n3

x =12 K=" n=123,
b, k=n

with a,be X and a=b, is d - statistically convergent of order « for o >1

(Sg —limx, =b), but it is not convergent.

Theorem 2.5. Let (X,d) be a metric space and 0<a < g<1 . Then S c S/ and
the inclusion is strict for some « and g ifthereis keN suchthat a <+ < g .

Proof. Let (X,d) be a metric space, x=(x,)e S and 0<a < g <1. Then we may
write

1 1
n—ﬂ|{ksn D X eBg(xo)}|sn—a|{ksn L % 2 B, (%)

for every £>0 and this gives that S¢ < S/ . In order to show that the inclusion is

strict (see also Theorem 2 in [13]) we may consider the following example:
Example 2.6. Take X =1, with the metric d(a,b)= sup |a-bx, where a=(a,),

b=(b )el,, set of bounded sequences. Consider the sequence (xk) where

X =(x ), el is defined by
k {%, foreachi=1,2,3,...if k =n?
X =
0,

n=1,2,3,....
foreachi=1,2,3,...if k #n?
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Now we may write
1

siﬂ\/ﬁ.
n n

where 6=(0,0,..) Then taking the limit as n—o we obtain (x*)es/ for

{ksn : d(xk ,6’):sup‘xik —0‘25}

1< B<1,but (x*)esg for since
\/ﬁa_ls%{kSn . d(xk,e)zs.up‘xik —0‘28}.
n n i

If we take =1 in Theorem 2.5 we have the following result.

Corollary 2.7. If a sequence in a metric space is d- statistically convergent of
order « <(0,1] to a point x, € X , then it is d-statistically convergent to x,, that is

S¢ =S4 and the inclusion is strict if 0< « <1.

Theorem 2.8. Let d and d’ be two metrics on Xand O0<a <1 be given. If
d ~d’ thatis d(a,b)>d’'(a,b) for every a,be X then S§ cSg .
The proof is easy so we omit it.

Definition 2.9. Let (X,d) be a metric space and 0<a <1 be given. A sequence
x =(x,) in the metric space (X,d) is called d — statistically bounded of order « if
there exist a point x e X and a real number M >0 such that

|imia|{ksn td(x,x)=Mj{=0.

n—o
The set of sequences which are d- statistically bounded of order « in metric space
(X,d) will be denoted by BS.
In case a=1 d - statistical boundedness of order « reduces to statistical
boundedness. The set of statistically bounded sequences will be denoted by BS,
19].
[Thgorem 2.10. Any bounded sequence in a metric space (X,d) is d - statistically
bounded of order « for each « (0,1]

Proof Assume that x =(x, ) is a bounded sequence in a metric space (X,d) and let

a (0,1] be given. Since the sequence (x,) is bounded then there exist a real

number M >0 and a point x e X such that d(x,,x)<M for every keN. Then
Iimia|{ksn td(x,x)=M}|=0

n—w N
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for any a<(0,1] since {k<n: d(x,x)>M}=¢ for each neN. Therefore the
sequence (x,) is d - statistically bounded of order « for each « < (0,1]. This
completes the proof.

Remark 2.11. The converse of Theorem 2.10 is not true. For this, let us consider
the metric space X =R with the usual metric. The sequence (x, ) defined by

k k =m?
X, = X m=1,2,3,...
“ {(—1)k, k = m?

is not bounded. But since the inequality
\/ﬁ+1
e
is satisfied for a sufficiently large M >0 and the right side of the last inequality
tends to 0 as n—w for ae(},1], we obtain that the sequence (x) is d -

statistically bounded of order «.

nia|{ksn k=M<

Theorem 2.12. Let (X,d) be a metric space and let 0<a < <1 be given.
If a sequence x=(x,) in X is d- statistically convergent of order « , theniitis d -
statistically bounded of order g thatis S < BS/.
If a sequence x=(x, ) in X is d - statistically bounded of order « then it is d -
statistically bounded of order g thatis BS{ < BS/.
Proof (i) Let 0<a<pg<1 be given. Assume that x=(x, ) is d— statistically
convergent of order « to x,. Then for every ¢>0 and a large M >0 we may
write

k<n:x eBy(x)ck<n: x &B,(x)
From this inclusion we obtain the inclusion S§ < BSY .
Let (x,)eBSS . For a sufficiently large number M >0 we may write

1 1
n—ﬂ|{k£n : X, 2By, (xo)}|sn—a|{k5n L X 2 By (%)}

Since x=(x,)eBS§, the right hand side of the above inequality tends to 0 as

n— oo and thus the left hand side tends to 0 and therefore BS{ < BS/ and this
completes the proof.

Corollary 2.13. In a metric space
(i) Every d- statistically convergent sequence of order « is d-

statistically bounded of order , that is :
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(i) Every d- statistically convergent sequence of order o« is d-
statistically bounded, that is S < BS, ,

(iii) Every d- statistically bounded sequence of order « is d-
statistically bounded, that is BS§ < BS, for each a < (0,1}

(iv) Every d- statistically convergent sequence is d— statistically
bounded, that is S, = BS, .

Corollary 2.13 (iv) is Theorem 1 (ii) of Kiigiikarslan and Deger [19] which we
obtain taking « = =1 in Theorem 2.12 (i) .

3 - Strong p - Cesaro summability of order « in a metric space

In this section we study d - strong p - Cesaro summability of order « and give the
relations between the sets of sequences which are d - strongly p- Cesaro
summable of order « for various values of & in (0,+w) in metric spaces.

Definition 3.1 Let (X,d) be a metric space and let « >0, p>0 be real numbers.
A sequence x=(x,) in X is said to be d —strongly p - Cesaro summability of
order «, if there is a point x, € X such that

- 1 n p
lim > [dls 5, ) =0
The set of all sequences which are d — strongly p — Cesaro summable of order «

in the metric space (X,d) will be denoted by w%, and we write w,, instead of

wpy for =1 . d - strong p- Cesaro summability of order o reduces to d -
strong p — Cesaro summability for « =1 (see [20]).

Theorem 3.2. Let (X,d) be a metric space, 0<a < and p>0 be a real number.
Then, wi, cw?, and the inclusion may be strict if o < .

The proof of inclusion is straightforward. We may consider the following example
in order to show that the inclusion is strict.
Example 3.3. Take X =R with d(x,y)=|x—y| and use the sequence x =(x,)

defined by

X, = 0, k= ? |||:1,2,3,... .
k 2
1, k=m

We may write the inequality

1 o An 1
n—ﬂ§|xk—0| Sn_ﬂ:nﬂ*%.




236 Emine Kayan, Rifat Colak, Yavuz Altin

Since L-—0as n— o, then w, —limx =0 ,i.e. xew), for L< , butsince
B

-1
n 2

\/ﬁ_ls%zn]xk —O|p
N3

na
and " o0 as n - , then xews, for 0<a <1 . This completes the proof.
If we take g =1 in Theorem 3.2 we may easily obtain the following result.

Corollary 3.4. Let (X,d) be a metric space and 0< p<o . Then wi, cw,, for
every a>0 .

4. Some Inclusion Relations between S§ and wg; in a metric space

In this section we give some relations between the sets of sequences which
are d - statistically convergent of order « and the sets of sequences which are
d — strongly p- Cesaro summable of order « for various values of « in (0,1] in

metric spaces.

Theorem 4.1 Let (X,d) be a metric space, « and g be two fixed real numbers
with 0<a<p<1 and 0< p<ow . If a sequence in X is d - strongly p- Cesaro
summable of order « to x, , thenitis d — statistically convergent of order g to
X, -

Proof. Let (X,d) be a metric space. For any sequence x=(x,) in X and £>0 we
may write

1 < 1 1
n—ag;[d(xk,xo)]p 2n—a|{ksn : % B, (x,)f &P zn—ﬂ|{ksn L % 2B, (x, )",

Hence taking the limit as n — oo in this inequality, it follows that if x=(x,) is d —
strongly p- Cesaro summable of order «, to x, , then it is d — statistically
convergent of order g, to x, and this completes the proof.

Taking the special cases g=a and g=a=1 in Theorem 4.1 we obtain (i) and
(i) of the following Corollary 4.2, respectively.

Corollary 4.2. Let (X,d) be a metric space and 0< p <o .

(i) If a sequence in metric space (X,d) is d — strongly p- Cesaro summable of
order « to x, , then itis d — statistically convergent of order « to x, for every
ae(0]] .
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(i) ([20]) If a sequence is d — strongly p- Cesaro summable to x, , then it is
d — statistically convergent to x, .

Remark 4.3. The converse of Corollary 4.2 (i) and (ii) does not hold in general,
so the converse of Theorem 4.1 does not hold.

Example 4.4. Consider the metric space X =R with metric d(x,y)= |x y| and the
sequence (x, ) defined as
k? N
X, = (1+%) . k=n n=12, ....
0, k #n®

For every >0, since
iaHkSn : d(xk,o)ZgHS%i‘/ﬁ,
n n

then (x,)e S§ for £ <a <1 .However, in case p=1 we may write

g[d(xk,o)]p=§|xk|=i( —j +Zo Z( 1)k2. (4.1)

If we apply the well-known Bernoulll Inequallty (@+a)">1+na forall neN ,
where a>-1, aeR ) then continuing from the statement (4.1) we may write

Zn:[d(xk’o)]pzzn:[szlj: knl 1+k)= Zk>1+23+33 +([§/ﬁ])3:{[_]£[_w ?"Z/HJrlT

k=1 k=1 k
k=m?® k=

where [r] is the integer part of the real number r. Hence we get

3 l8(c. 0 =niakz";|xk|p=niag|xk|znia[ﬂ+2[ff+[ﬂz >1[le“_

km

na
This gives that (x)ew?, for a<2% and hence for 0<a<1. Consequently,
(% )e s —ws, for L<a<l.

Remark 4.5 We see that in a metric space, a bounded and statistically convergent
sequence of order « needs not be strongly p- Cesaro summable of order « , in

general, for 0<a <1 . To show this we give the following example.

Example 4.6. Take the metric space X =R with d(x,y)=|x—y|. The sequence
x = (x, ) defined by
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1 3
%, =17k k=m
1, k=md

is an example for this case. It is clear that xe<l, and it can be shown that
xeS* —wpy for $<a <1 if p=1 (see [12]).

Corollary 4.7. Let (X,d) be a metric space, 0<a <1 and let p be a positive real
number. Then, wy, <S; .and the inclusion may be strict for 0<a <1.
Proof follows from Corollary 4.2 and Corollary 2.7.

REFERENCES

[1] A. Zygmund,Trigonometric Series, Cambridge University Press, Cambridge, UK, 1979.

[2] H. Steinhaus, Sur la convergence ordinaire et la convergence asymptotique, Collog. Math.
2,1951, pp. 73-74

[3] H. Fast, Sur la convergence statistique, Collog. Math. 1951, 2, 241-244

[4] I. J. Schoenberg, The integrability of certain functions and related summability methods,
Amer. Math. Monthly, 1959, 66, 361-375

[5] R. C. Buck, Generalized asymptotic density, Amer. J. Math., (1953), 75, 335-346.

[6] J. Fridy, On statistical convergence, Analysis, 1985, 5, 301-313

[7] J. S. Connor, The Statistical and Strong p-Cesaro Convergence of Sequences, Analysis,
1988, 8, 47-63

[8] M. Mursaleen, A — statistical convergence, Math. Slovaca, 2000, 50, No. 1, 111 -115

[9] T. Salat, On statistically convergent sequences of real numbers, Math. Slovaca, 1980, 30 , 139-
150

[10] V. K. Bhardwaj and I. Bala, On Weak Statistical Convergence, Int. J. Math. and Math. Sci.,
2007, Article 1D 38530

[11] A. D. Gadjiev and C. Orhan, Some approximation theorems via statistical convergence,
Rocky Mountain J. Math., 2002, 32(1), 129-138

[12] R. Colak, Statistical convergence of order «, Modern Methods in Analysis and Its
Applications, Anamaya Pub., New Delhi, India, 2010, 121-129

[13] S. Bhunia, P. Das and S. Pal, Restricting statistical convergence, Acta Math. Hungar, 2012,
134, (1-2), 153-161

[14] P. Das, S. Ghosal and S. Som, Statistical convergence of order « in probability, Arab J.
Math. Sci., (2014), http://dx.doi.org/10.1016/j.ajmsc.2014.06.002

[15] H. Sengiil and M. Et, On lacunary statistical convergence of order o, Acta Math. Sci., 2014,
34(2), 473-482

[16] I. J. Maddox, Spaces of strongly summable sequences. Q. J. Math., 1967, 8(2), 345-355

[17] 1. Niven and H. S. Zuckerman, An Introduction to The Theory of Numbers, Fourth Ed., New
York, Jhon Wiley & Sons 1980

[18] M. Kiigiikarslan, U. Deger and O. Dovgoshey, On Statistical Convergence of Metric-Valued
Sequences, Ukr Math J ,2014, 66: 796. doi:10.1007/s11253-014-0974-z

[19] M. Kiigiikarslan and U. Deger, On Statistical Boundedness of Metric Valued Sequences, Eur.
J. Pure Appl. Math, 2012, 5, 174-186

[20] B. Bilalov and T. Nazarova, On Statistical Convergence in Metric Spaces, Journal of Math
Research, 2015, 7(1), 37-43



