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REAL IMAGE DEHAZING BASED ON MODEL
OPTIMIZATION AND LUMINANCE ENHANCEMENT

Lingyu LI, Zhiyong TAOY ", Sen LIN?

Addressing the issues of blurred details, color distortion, and reduced
brightness in hazy images, we propose a dehazing method grounded in model
optimization and brightness enhancement. Firstly, the traditional atmospheric
scattering model is optimized based on the dark channel prior theory. Second, a
luminance augmentation branch is proposed to improve the image brightness.
Finally, the images processed by both the model optimization and luminance
enhancement branches are fused and subsequently color-corrected to enhance the
visual quality of the images. Experimental results on the RESIDE dataset and real-
world images show that our method outperforms classical and the latest dehazing
methods.
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1. Introduction

Images captured in hazy weather suffer from detail loss and contrast
reduction, limiting their application in advanced vision areas like target
recognition[1], tracking, satellite remote sensing monitoring[2], and automatic
driving[3]. Image dehazing techniques mitigate the haze effect, enhancing image
clarity and naturalness, and facilitating observation and analysis. Consequently,
designing an effective image dehaze method is of great research significance.

Currently, methods for image dehazing are divided into three main
categories: image enhancement methods, image restoration methods, and deep
learning methods. Dehaze methods based on image enhancement mainly focus on
enhancing the contrast and color saturation of the image without considering the
principle of haze formation and the essential cause of image degradation.
Histogram Equalisation is a crucial technique used for image enhancement to
improve the contrast of an image. However, the method may enhance noise and
introduce unnatural effects. Therefore, Liu et al. [4] provided a simple but
effective method for contrast enhancement-Colour-Preserving AHE(CP-AHE).
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This novel approach can effectively maintain the color of the dehazed image. The
image restoration-based dehazing method mainly starts from the cause of image
degradation itself, constructs a physical model for fog image imaging, estimates
the parameters in the model, and obtains a clear haze-free image by inversely
solving the formula. He et al. [5] proposed the Dark Channel Prior (DCP) theory.
Subsequently, He et al. [6] proposed a method to optimize the transmittance using
guided filtering. In addition, Ju et al. [7] designed an Enhanced ASM (EASM),
which effectively solves the problem of the dark image after dehazing processing.
Ling et al. [8] proposed Saturation Line Prior (SLP) by observing many haze-
free images and a new SLP-based dehazing framework is proposed. In recent
years, deep learning-based dehazing methods have made significant progress. Cai
et al. [9] proposed an end-to-end dehazing system, Dehaze-Net, the most
representative deep learning dehazing network in the early days. Dong et al. [10]
proposed a multi-scale enhancement dehazing network (MSBDN) with dense
feature fusion based on U-Net architecture, which gradually recovers haze-
free images by developing a simple and effective enhancement decoder [11].
Inspired by meta-learning, Jia et al. [12] proposed a novel meta-attention dehazing
network (MADN) to recover clear images directly from haze images without
using a physical scattering model.

Considering that the performance of deep learning-based dehazing
methods is limited by the diversity of training datasets, the design of network
structures lacks theoretical support, and the issues of poor dehazing effects, detail
loss, and image distortion in image enhancement and restoration-based dehazing
methods remain to be addressed, we propose an image dehazing method based on
model optimization and luminance enhancement.

Our contributions are:

(1) Optimizing the atmospheric scattering model and combining the
quadtree search and gradient-domain guided filtering algorithms to mitigate image
distortion from inaccurate parameter estimation.

(2) Aiming at the overall darkness of the image processed by the dehazing
method based on the atmospheric scattering model, an adaptive luminance
enhancement algorithm is proposed to make the image brighter and more
prominent in detail after dehazing.

2. Dark channel priori theory

In the field of image dehazing, the atmospheric scattering model [13] plays

a key role by modelling the process of haze image formation, i.e:
I(X) =J(X)t(x)+AL-t(x)) Q)
where I(x) is the hazy image, J(x) is the haze-free image, x denotes the pixel
position in the image. A is the atmospheric light value and t(x) is the
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transmission map. J(x)t(x) is the direct attenuation term and A(1-t(x)) is the

atmospheric light imaging term.
For any image, the dark channel is defined:

2% = min| min_3°(y)| @
where J¢(y)is the color channel of any image, Q(x) is a square local region centred
at pixel point x. J®"(x)denotes the dark channel of this image, except for the sky
region, J“*(x) - 0.

Assume that the atmospheric light value A is known and denoted by A°,
assume that the transmission map t(x) is a constant and denoted by f(X) .
Therefore, the transmission map equation is:

f(x)=1-w min(min %j (3)

yeQ(x) c
It has been shown that retaining some haze in the telephoto image can make the

viewing effect better and more realistic. Therefore, an adjustment parameter
@(0 < w<1)is introduced which can make the telephoto image retain some haze

and is usually set to @=0.95[14].
Furthermore, the final dehazing formula is obtained:
= WA (4)
max(t(x),t,)
Since when t(x) the value is taken close to zero, it results in an unnatural
dehazed image, the minimum value of transmittance is t, to be set as the
threshold, so it is set to 0.1[15].

3. Our algorithm

The flow of our proposed image dehazing method is shown in Fig. 1.

Firstly, the luminance augmentation branch is executed, which performs
CP-CLAHE processing and adaptive luminance augmentation processing on the
input images respectively and fuses the two pre-processed images obtained with
multiple weights. At the same time, the model optimization branch is executed,
which uses the quadtree search algorithm and the gradient-domain guided filtering
algorithm to optimize the atmospheric light value and transmittance in the
atmospheric scattering model, respectively, and solves the dehazing image
inversely. Finally, the images obtained from the two branches are fused and color-
corrected to get a clear image.
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Fig. 1 Flowchart of the proposed method
3.1 Model optimization branch

The dark channel, a priori dehazing model is a classical method within the
realm of image dehazing. However, the model is easily affected by image noise,
which leads to errors in the estimated atmospheric light value and transmittance,
which in turn affects the dehazing effect. Therefore, we propose an optimized
version of the model to solve the above problems.

The dark channel a priori dehaze model usually picks the pixel points in
the first 0.1% brightness and selects the point with the highest pixel value as the
atmospheric light value. However, suppose bright lights appear in the haze image.
In that case, the method will mistake the lights for haze regions, leading to the
wrong selection of atmospheric light values and distorting the recovered image.
Therefore, a hierarchical search strategy based on quadtree subdivision optimizes
the selection of atmospheric light values.

First, the input image is divided equally into four subregions. Then, a
resultant value is obtained by subtracting the standard deviation of the pixel
values within the region from the average pixel value of each subregion. The
subregion yielding the largest resultant value is chosen and further divided into
four smaller subregions. After continuous iteration, when the size of the selected
region is smaller than a pre-set threshold, the iteration is stopped, and the region is
regarded as the selected range for the atmospheric light estimate. Finally, within
this range, the color vector closest to the pure white light vector (255,255,255) is
selected as the atmospheric light value A.

The dark channel dehazing model uses guided filtering to optimize the
transmittance, but this method leads to halo artifacts in the processed image.
Therefore, we first down sample the image in chunks using bilinear interpolation
and then optimize the transmittance by introducing a gradient-domain guided
filter [16]. Finally, we use up sampling to restore the image's original size. Unlike
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the traditional guided filtering method, this can better preserve the edge structure
and eliminate the edge-induced halo phenomenon.
The optimized atmospheric light values and transmittances were
substituted within the final recovery equation:
I(X) = I(x)—A

max(t(x).t,) ©)

3.2 Luminance augmentation branch

Although the model optimization branch can effectively remove the haze
in the image, the image after dehazing will have problems with color distortion,
dark brightness, and unclear details. To address the above problems, we adopt the
method of image enhancement.

Inspired by the literature [4], we consider the cascading of RGB channels
when performing CLAHE processing, and this operation allows the processed
Image to retain its original colors and enhance the image detail information.

Firstly, the color channels of the haze image | are reconstructed according
to the method of literature [4], i.e:

ler =RT(I) (6)
where RT(-) denotes the transformation.

Since the classical AHE algorithm leads to noise in the image while
enhancing the details, in order to overcome this problem, we replace the AHE
process with CLAHE, which avoids the introduction of excessive noise as
compared to AHE. As a result, the CLAHE algorithm is applied to the image 1, :

e rr =CLAHE(l,) (7

where CLAHE(:) parameters take the default settings.
Finally, the enhanced resulti_ . is inversely reconstructed, i.e., converted

back to RGB color space to obtain the processed image:
Ic = RT_l(IC,RT) (8)

To demonstrate that CP-CLAHE outperforms CP-AHE and is better suited
for our method framework, we conducted focused ablation experiments on the
benchmark dataset SOTS (Outdoor). For a comprehensive understanding of these
experiments, please refer to Part IV of this paper.

While the CP-CLAHE algorithm enhances image contrast and refines
details, it falls short in effectively addressing the issue of dark brightness. To
tackle this challenge, we propose an adaptive luminance augmentation algorithm.

Direct processing of RGB images usually requires separate operations on
R, G, and B channels, possibly leading to image color distortion. In contrast, the
image brightness can be adjusted independently in HSV color space without
affecting the colors, and the processed result is more in line with the human eye's
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visual effect. Firstly, the image is converted from the original color space to the
HSV color space. Secondly, it is assumed that the highest grey value of HSV in
the image corresponds to the brightest point in the image, and the lowest grey
value of HSV corresponds to the least bright point in the image. Following this
assumption, the HSV image can be normalized and stretched using the following
equation:

X =X
IHSV(X) = Xin T (X - Xlow) P (9)
high — Xiow

where I, is the processed HSV image, X, and x,, are the value of the brightest

HSV
pixel and the value of the darkest pixel in the current image, X, and X, are the

maximum and minimum values of the image channel, X, — X, =255.

Instead of simply using the brightest and darkest individual pixels, we set
a set of thresholds as the lightest or darkest pixel values in the image. Next, this
threshold is employed to limit the stretching of the HSV image, and the threshold
can be expressed as:
{x:high =min{x[1,(x) > w,n,} 10)
X =maX{X| IV(X)SWv(l_nv)}

where x,’1igh and x,,, are the new brightest pixel value and darkest pixel value. I, is

low

the V channel of image I, w, is the maximum pixel value of the current channel,
andn, is the quantization value of the set V' channel.

Given that the original H channel values lie within the range of [0, 360],
we employ a straightforward linear transformation to map these values onto the
range of [0, 1], thereby ensuring consistency in the processing of the H (Hue) with
that of the S(Saturation) and V(Value):

, H
360

For the calculation of the quantization factor n, the following formula can

be used:

(11)

= IH’(X)+_IS(X)+ ly (x) (12)
Iy (X)
wherel,,.(x), I (x), I, (x) is the average value of each channel of HSV.

Finally, to facilitate the display and saving of the image, then the HSV
color space is converted back to the original color space.

Inspired by the literature [17] and considering that multi-weight fusion in
the field of underwater image processing can effectively fuse two preprocessed
images, we adopt Laplacian contrast weight, local contrast weight, saliency
weight, saturation weight, and exposure weight to perform multi-weight fusion.
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3.3 Image fusion

The images obtained from the above two branches can be fused to improve
the accuracy and robustness of the dehazing and the structure and details of the
fused images can be effectively preserved. Inspired by the literature [18], we first
decompose each image into global and local components and then calculate the
features of each component by constructing a pixel-level weight map.

In Fig. 2, (a) is the image after the model optimization branch processing,
(b) is the image after the luminance augmentation branch processing, and (c) is
the fused image, from which it can be seen that the fused image retains the clear
and bright details of the input image 2 and also retains the dehazing effect of the
input image 1. The dehazing effect of the fused image is improved while avoiding
the loss of detailed information

@) (b) | ©
Fig. 2 Analysis of results

3.4 Color correction

After the above processing series, the fused image may have a problem
with color deviation. To further improve the image quality, we introduce a color
correction method based on SLVC [19] to solve the above problem. The method
can also enhance the saturation of the dehazed image so that the colors of the
processed image are brighter. The method involves directly processing pixels,
removing biased colors by linearly stretching and transforming the pixels, and
adjusting the contrast and saturation of the image by constructing competing
relationships between data terms and regular terms. The literature [19] provides
more details. SLVC as the last part of our algorithmic model has more robustness.
Fig. 3 shows the final results of processing our algorithm. (a) is the input hazy
image and (b) is the dehazed image. The processed image has higher contrast,
saturation, and sharpness, presenting a more natural visual effect

3 SRR

(@) (b)
Fig. 3 Results of our dehazing method
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4. Experimental results and analysis

To validate the performance of our method, we selected both classical and
novel dehazing methods for subjective and objective comparisons. Including one
image enhancement-based method CEEF (Contrast enhancement and exposure
fusion)(2022)[4], two image restoration-based methods IDE(Image dehazing and
exposure)(2021)[7] and SLP(Saturation line prior)(2023)[8] and three deep
learning based methods Dehaze-Net(An end-to-end system for single image haze
removal)(2016)[9], MSBDN(Multi-scale boosted dehazing network)(2020)[10]
and MADN(Meta-attention dehazing networks) (2022)[12]. We conducted
comparisons using both subjective effects and objective evaluations to
demonstrate the superiority of our method. Furthermore, ablation experiments
were utilized to verify the effectiveness of each component within our method.

4.1 Datasets

Four datasets were used for the experimental data: 32 real scenes provided
in the literature [4], 500 images of SOTS (outdoor) and 500 images of SOTS
(indoor) provided in the public dataset RESIDE, and 1000 images randomly
selected from the RTTS in RESIDE dataset, totalling 2032 images. The image
format is PNG and the image sizes were experimented according to the sizes
provided in the dataset without any changes.

4.2 Evaluation metrics

To objectively analyze the method performance, we choose the
information entropy(IE) [20], the average gradient(AG) [21], the haze
concentration index FADE [22], the peak signal-to-noise ratio(PSNR) [23] and
the structural similarity index measurement system(SSIM) [24] for evaluating
different dehazing methods.

4.3 Subjective evaluation

Figures 4 to 7 show the test results of different dehazing methods on the
literature [4] test set, RTTS, SOTS (Indoor), and SOTS (Outdoor), respectively.

Input IDE CEEF SLP DehazeNet MSBDN MADN Ours
Fig. 4 Subjective comparison chart of literature [4] test set
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Input IDE CEEF SLP DehazeNet ~ MSBDN MADN Ours
Fig. 5 Subjective comparison chart of RTTS
45 ) .‘ ? ¥ N e
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Input IDE  CEEF SLP DehazeNet MSBDN  MADN Ours
Fig. 7 Subjective comparison chart of SOTS(Outdoor)

From Fig. 4, it can be seen that our method can well restore the clarity of
objects such as distant bushes and shelves without color distortion. As seen in Fig.
5, our method handles the detailed parts of the edges of the tree branches and
street lamps very clearly, and the image's overall color is bright. As seen from Fig.
6, our method handles the bouquets with bright colors and the objects on the table
with precise details. From Fig. 7, our method can recover the details of the door
and window parts of the image well, and the colors of the sky region are natural
and bright after processing. In summary, the visual effect of the processed image
of our proposed method is significantly better than other methods.

4.4 Subjective evaluation

The data in Table 1 are the average of all image test results for each test
set. The data in Table 2 are the average of all image test results within the SOTS
(Outdoor) and SOTS (Indoor) datasets. Arrows pointing up signify higher and
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better indicators, with optimal indicators denoted by bold fonts; in Table 1, sub-
optimal indicators are underlined.

In Table 1, our proposed method achieves optimal average gradient scores
across all test sets. Optimal values of information entropy were achieved on the
RTTS, SOTS (Outdoor) and SOTS (Indoor) test sets and optimal FADE scores on
SOTS (Outdoor) and SOTS (Indoor), with suboptimal FADE scores on RTTS and

literature [4].
Table 1
Comparison of different methods

Datasets Metrics IDE CEEF SLP DehazeNet | MSBDN | MADN | Ours
_ IE 1 7.675 | 6.950 | 7.311 7.311 7444 | 7191 | 7.611
Literature ™7 =713 1868 | 14.053 | 11.812 | 7.328 9541 | 6.941 | 19.237
[4] FADE | | 0409 | 0.208 | 0.296 | 0.487 0534 | 0545 | 0.215
IE1 | 7.637 | 7.054 | 7.491 | 7.188 7419 | 7.223 | 7.703
RTTS | AG! | 11.313 | 11.742 | 8.829 | 6.849 6.757 | 5854 | 17.209
FADE | | 0631 | 0277 | 0520 | 0.604 0.826 | 0.906 | 0.300
IE1 | 7.632 | 7.319 | 7506 | 7.401 7520 | 7.282 | 7.784
(oSu?dToi o [AGT [ 11985 12562 | 9.123 | 7304 8464 | 6987 | 18.992
FADE | | 0570 | 0.282 | 0508 | 0.622 0.726 | 0.685 | 0.220
IE1 | 7553 | 7.141 | 7.483 | 7.426 7484 | 7.439 | 7.699
(ﬁ](ggosr) AG! | 5962 | 7.205 | 5875 | 4533 5304 | 4512 | 10.228
FADE | | 0.646 | 0.313 | 0479 | 0677 0499 | 0.659 | 0.283
Table 2
Comparison of PSNR and SSIM
SOTS(Outdoor) SOTS(Indoor)

Methads PSNR 1 SSIM1 | PSNR1 | SSIM

IDE 15.4847 0.8073 117191 | 0.4744

CEEF 16.3699 0.7997 125925 | 0.4718

SLP 19.5250 0.8856 13.0163 | 0.5440

DehazeNet 17.1243 0.5660 12.8600 | 05195

MSBDN 18.4670 0.6071 132052 | 0.5555

MADN 15.7855 0.5668 133376 | 0.5300

ours 15.5015 0.7187 115005 | 0.3921

Table 2 shows that our method is not dominant in terms of PSNR and
SSIM metrics. The reason for this is that our method tends to generate brighter
and clearer dehazed images and to solve the problem of darker images after
dehazing processing and the problem of incomplete dehazing, which is very
different from the ground truth image. Moreover, the PSNR and SSIM metrics
reflect part of the image reconstruction quality but may not fully represent the
subjective perception of the human eye or the performance in real application
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scenarios. In summary, our method performs better in terms of brightness, clarity
and dehazing effect.

4.5 Ablation study

Eight ablation experiments were conducted on the SOTS (Outdoor) test set
to validate each combination's effectiveness in our algorithmic framework.

1) BEOM represents the framework of our method.

2) w/o IM represents interchanging the positions of multi-weight fusion
and image fusion in BEOM.

3) w/o Il represents replacing multi-weight fusion with image fusion in
BEOM.

4) w/o MM represents replacing image fusion with multi-weight fusion in
BEOM.

5) w/o AHE represents replacing CP-CLAHE in BEOM with CP-AHE.

6) w/o DS represents removing SLVC in BEOM.

7) w/o DOM represents removing the model optimization branch in
BEOM.

8) w/o DB represents removing adaptive brightness enhancement in
BEOM.

9) w/o DC represents removing CP-CLAHE in BEOM.

Table 3 gives the objective evaluation results of the test set, with the
optimal metrics in bold font. From this, it can be seen that our algorithmic
framework achieved the highest IE, AG and FADE scores.

Table 3
Results of ablation experiments
Methods IE ¢ AG t FADE |
w/o IM 7.687 15.603 0.287
w/o Il 7.648 18.147 0.244
w/o MM 7.710 15.334 0.294
w/o AHE 7.693 17.513 0.276
w/o DS 7.696 18.618 0.270
w/o DOM 7.773 18.777 0.283
w/o DB 7.617 18.562 0.245
w/o DC 7.686 16.463 0.314
BEOM 7.784 18.992 0.220

4.6 Runtime analysis

To analyze the running time of different methods, we test three different
sizes of haze images, running MATLAB R2020a on Intel i5-8265U CPU and
PyTorch based on NVIDIA RTX3090 on Ubuntu 20.04 system. The results of the
experiments are shown in Table 4, and the results show that our proposed
approach has poor real-time performance. However, there is little difference in
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time between our method and the other compared methods when dealing with
small-sized images. Also, based on the above subjective and objective
performance, our method performs better regarding image quality improvement.

Table 4
Running time of different methods (unit: s)
Image size
Methods 256 256 b0 480 | 1034XT58 Platform
IDE 0.674 2.198 6.056 Matlab(CPU)
CEEF 0.667 1.131 2.551 Matlab(CPU)
SLP 0.831 3.161 7.594 Matlab(CPU)
DehazeNet 0.489 2.005 4.863 Matlab(CPU)&mex
MSBDN 0.127 0.421 1.413 PyTorch(GPU)
MADN 1.314 3.624 8.672 PyTorch(GPU)
Ours 1.614 4.473 10.578 Matlab(CPU)

4.7 Applications

To further evaluate the performance of our method on other low-visibility
tasks, we randomly selected four images from the LOL low-light dataset [25] and
the RSID remote sensing dataset [26] for processing. The results are shown in Fig.
8 and 9.

(a) Input 1mage

(b) Outpu image
Flg 8 Low Light i images enhancement

- £ o

(b) Output image

Fig. 9 Remote sensing images dehazing
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As can be seen from the Fig. 8 and 9, without any parameter fine-tuning,
our method achieves good processing effects on both low-light and remote
sensing images, demonstrating broad application value in real-life scenarios.

5. Conclusions

Aiming at the existing dehazing model, which has the problems of poor
dehazing effect, dark brightness, and color distortion after processing, a dehazing
method based on model optimization and luminance augmentation is proposed.
By comparing with the mainstream and the latest methods, the experimental
results show that our method is effective in dehazing. Although our method is
inferior to other comparative methods in terms of runtime and also suffers from
the issue of unnatural appearance in the processed images, it demonstrates
significant advantages in dehazing performance. The enhanced image clarity and
color richness provide a advantage in practical applications, such as low-light
enhancement and remote sensing. In these scenarios, the quality of the dehazed
images is crucial for accurate object detection, scene understanding, and decision-
making.

In future work, we plan to further optimize our method to enhance its
operational efficiency and improve the naturalness of the processed images
without compromising the dehazing performance.
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