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PERIODICAL SOLUTIONS OF POISSON MULTI-TIME
LINEAR EQUATIONS

lulian DUCA!

In this paper, we study the differential equation
Ax—qt)-x=0 te[0,T}x..x[0,TP]=RP,
Where p =1 is Hill’s equation.

We will consider the periodic solutions of this equation. We will study the
minimum of the action that produces Poisson multi-time linear equation. Using
minimizing sequences, we show that the action has a minimum periodical point x
which is solution for Poisson multi-time linear equation.

Keywords: Poisson multi-time equation, periodical extremals, Euler-Lagrange
equations

1. Introduction

The differential equations x"-q(t)x=0, with periodic boundary
conditions x(0)=x(T), x'(0)=x'(T ), was first examined by G.W. Hill in [22].

This differential equation of this work extends the case of Hill’s equation.
In the paper we will note by WTl'2 the Sobolev spaces of the functions

xe L2 [Ty,R] which have the weak derivative g—)t(e L2[To,R] [5], where

To =[0, THx...x[0, TP] < RP [17,12].

The weak derivatives are defined using the space C{ of all indefinitely
differentiable multiple T -periodic functions from R? into R.

We denote by H% the Hilbert space WT1'2. The geometry on H% is
realized by the scalar product

)= (4005 20 D Ot .,
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and the associated Euclidian norm [||. These are induced by the scalar product

(Riemannian metric)
1 0 1+p
G= (0 5“ﬁj on R M.

Lett = (tl,...,t p) be a generic point in RP.
The opposite faces of the parallelepiped Ty can be described by the equations

S, :t*=0, Sj:t* =T% foreach @ =1,...p.

We denote
2 1
||X||L2 = '[To X (t)dt AondtP

o - (50‘5 ﬁ(t)a_;(t)jdth_.mp,

ot

ot% ot

The Poisson multi-time linear equation with periodic boundary conditions

IS
Ax—q(t)-x=0 (1)
- =X+ o ,a=1..p.
a a 5’[ S; ﬁt S;—

2. Action that produces Poisson multi -time linear equation

We consider the multi-time variable t = (tl,...,t p)e RP . the functions

x:RP 5 R, (tl,...,tp)—> x(tl,...,tp),

and we denote X, = ﬁ, a=12,..,0p.
ot”

The Lagrange functions
L:RPHHP 4R, (t,x,%J - L(t,x,gj
ot ot

give the Euler-Lagrange equations
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Ok L 12, p 7]
ot 0X,  OX
(second order PD E, equation on the n-dimensional space).

We consider the Lagrangian

L:ToxRxRP >R, (t,x,%j—) L(t,xﬁj

ot
L(t, (t) %)} _

ot

%aﬂq(t)xzm

ot

where q:Tp — R.
The function that realizes the minimum of the action

o(x)=[ L(t, (1) %(t)jdtl N L

verifiesa PDE; (1).

3. Continuously differentiable action

The next theorem establishes some conditions in which the action

ox . ?
@ W2 R, gp(x)_jTO[E(t)( +Q(t)X2(t)]dtl/\.../\dtp.

is continuously differentiable.
Theorem 1.

Let
L:ToxRxRP >R, (t,x,y)—> L(t,x,y),

(02026 et

where q:Typ — R, is integrable function.

If there is M eR™, such that q(t)<M, for any teT,, then functional ¢

defined by o(x)= .[T L(t, x(t),%(t)jdt1 A.ndtP
0
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is continuously differentiable on WT1'2, and his gradient derives from the formula

wofed )=, (7ot X020} )]+ 7,1 10 20} 20 n. 02

Proof. It is sufficient to prove that ¢ has the derivative go'(x)e (\/VTl'p) given by
the relation (2) and that the function

. 1, 1p)| .
o (x)eWE? 5 WP x5 g(x)
is continuous.

For x and y fixed in W2, te Ty, 2e[-11], let

F(L0)= L[t, x(t)mz(t)ﬂ(t)m@(t)j

ot ot
and
w(2)= F(A,t)dtt AL AdtP =g(x+ Ay).
0
Because
5 2 +
Vil tx(t) = at =[2q(t)- x(t] < 2M -|x(t)} e L*[To, R
and
OX 6x 2
VLt x(t),—(t e L“{Ty, R
o x()atoj\ X 12fr, )
we have

ViF(A ) <d(t)e Ll(TO, R+).

Thus, Leibniz formula of differentiation under integral is applicable and
0)= jTO D, F(0,t)dt

I, [(VXL(L x(t),%(t)j, z(t)j . [v L[t «(t) gtx(t)j @ )ﬂdtl p oGP

ot

(2q(t)x()()+2§ﬂ O 41)22 (¢ ()]dt nondtP

o ath

:jT

0
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We have
v0)=, (zq(t)x(t)z(mz%(t)z%(t)jdtl N L

and with Cauchy-Schwartz inequality we find

1
2 2
dtl A AdtP | - J
TO

<c-[z].

2

0

1
o0 Z{IT (q(t)x(t)%(t)) (Z(t)%(t)j dt' A A dt sz

The Krasnoselski theorem implies that the application

foef)

from W%’Z to LY x L? is continuous, so @' is continuous from WTl’2 into (\/\/%2)
and the proof is complete.

4. Poisson multi-time linear equation

Theorem 2.

Let be the Lagrangian

L:ToxRxRP >R, (t,x,%Ja L(t,xﬁ) @=12,..p.
at ot
OX OX 2 2
L XKy =[=
(0. 202 (tﬁ + o))

where q:Tp — R.
If q is integrable and bounded real function, then exist x that minimizes
the action

¢(X)=ITO L(t,x(t)%(t)jdtlA...Adtp in Hi

and the Dirichlet problem
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OX

X _X
ot

Ax—q(t)x(t)=0, X|s; = X|s; : has at least one solution.

S. S,

Proof. For u e H% we use the decomposition u=U+1U,
where
1
Tl...Tp

U= jTOu(t)dtlA...Adtp .

The convexity of function

P(t,x(t) = a(t)*(t)

implies
P(t, x(t)) > P(t, )+ (VP(t, X), x(t) - X).
It follows
2
_[ K gt p ptl p
(p(x)_jTo o At +ITO Pt x)t! A...AdtP +
+ [ (VP(t,x), x(t) = x)th A AdtP
0
ox|?
:'[To ~ dt! AL AdtP +IT0 P, X)dtt A... AdtP +

+JT0 (VP(t, %), X(t)dt! A...AdtP

On the other hand, by Schwartz inequality we can write
(VP(y, %) X)) <|VP(y,x)-[X(t) < Cy[x(t], C >0
The function q(t) is integrable. It follows

ax2

o(x)> ITO p

dt Ao dtP +Co —C [ [R()dt! A A dtP
0

Because the function Y(t) has the mean zero, we can use the Wirtinger inequality
[1] and we find
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The function of degree two from the right side of the inequality is bounded below
since the action ¢(x) is bounded below. Let (uy ) be a minimizing sequence for

the action ¢.
We have

o |? o1 A
X dtt AL AdtP +Cy —Cg j K dt AL AdEP
ot To| ot

o(xc )2 ITO

This means that the limit of x| is not o because the sequence ¢(xy) is

bounded below. So, the sequence (x ) is bounded in H% . The Hilbert space H%
is reflexive and ¢ is a continuously, convex function bounded below.

By consequence the action ¢ has a minimum point x e H% that verifies Euler-

Lagrange equations (1) and periodic boundary conditions because x has the weak
derivatives and weak divergence Ax [1].

5. Conclusions

This work generalizes the case of Hill’s equation [22]. We establish the
conditions under which the action that produces the Poisson multi-time linear
equation has a minimum on H%. The function x that realizes the minimum of
action, verifies Euler-Lagrange equation (the differential equation
Ax—q(t)-x = 0) and respects the boundary conditions

OX OX

x|S; :X|S;, Es; | a=12,..,p.

Sq
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