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PERIODICAL SOLUTIONS OF POISSON MULTI-TIME 
LINEAR EQUATIONS 

Iulian DUCA1 

In this paper, we study the differential equation   
( ) 0=⋅−∆ xtqx ,  pp1 R]T[0,×...×]T[0,t ⊂∈ , 

Where 1=p   is Hill’s equation. 
We will consider the periodic solutions of this equation. We will study the 

minimum of the action that produces Poisson multi-time linear equation. Using 
minimizing sequences, we show that the action has a minimum periodical point x  
which is solution for Poisson multi-time linear equation. 

Keywords: Poisson multi-time equation, periodical extremals, Euler-Lagrange 
equations 

1. Introduction 

The differential equations ( ) 0" =− xtqx , with periodic boundary 
conditions ( ) ( )Txx =0 , ( ) ( )Txx '0' = , was first examined by G.W. Hill in [22]. 

This differential equation of this work extends the case of Hill’s equation. 
In the paper we will note by 2,1

TW  the Sobolev spaces of the functions 

[ ]R,T Lx 0
2∈  which have the weak derivative [ ]RTL

t
x ,0

2∈
∂
∂  [5], where  

pp1
0 R]T[0,×...×]T[0,=T ⊂  [17,12]. 

 
The weak derivatives are defined using the space ∞

TC  of all indefinitely 
differentiable multiple  -periodic functions from  into . 

We denote by 1
TH  the Hilbert space 2,1

TW . The geometry on 1
TH  is 

realized by the scalar product 

( ) ( ) ( ) ( ) p
T

dtdtt
t
yt

t
xtytxyx ∧∧









∂

∂

∂

∂
+= ∫ ..., 1

0 βα
αβδ , 
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and the associated Euclidian norm . . These are induced by the scalar product 
(Riemannian metric) 









= αβδ0

01
G  on pR +1 . 

 
Let ( )pttt ,...,1=  be a generic point in pR . 
The opposite faces of the parallelepiped 0T  can be described by the equations  

0: =− α
α tS ,  αα

α TtS =+ :  for each p,...1=α . 
 

We denote  
( )∫ ∧∧=

0
2 ...12

T
p

L dtdttxx , 

( ) ( ) p
TL

dtdtt
t
xt

t
x

t
x

∧∧








∂

∂

∂

∂
=

∂
∂

∫ ...1
02 βα

αβδ , 

 
The Poisson multi-time linear equation with periodic boundary conditions 

is 
     ( ) 0=⋅−∆ xtqx                                                 (1) 

 

+− =
αα SS xx ,  

+− ∂
∂

=
∂
∂

αα SS t
x

t
x , p,...1=α . 

 

2. Action that produces Poisson multi -time linear equation 

We consider the multi-time variable ( ) pp Rttt ∈= ,...,1 , the functions  
 

RRx p →: ,  ( ) ( )pp ttxtt ,...,,..., 11 → , 

and we denote αα
t
xx

∂

∂
= , .,...,2,1 p=α  

 
The Lagrange functions 

RRL pp →++1: , 







∂
∂

→







∂
∂

t
xxtL

t
xxt ,,,,  

give the Euler-Lagrange equations  



Periodical solutions of Poisson multi-time linear equations                         43 

x
L

x
L

t ∂
∂

=
∂
∂

∂

∂

αα ,  p,...,2,1=α  [17] 

   
(second order  equation on the n-dimensional space). 
  
We consider the Lagrangian  
 

RRRTL p →××0: , 







∂
∂

→







∂
∂

t
xxtL

t
xxt ,,,,  

( ) ( ) ( ) ( ) ( )txtqt
t
xt

t
xtxtL 2

2
,, +

∂
∂

=







∂
∂  

where RTq →0: . 
The function that realizes the minimum of the action 

( ) ( ) ( ) p
T

dtdtt
t
xtxtLx ∧∧








∂
∂

= ∫ ...,, 1
0

ϕ  

verifies a  (1). 
 

3. Continuously differentiable action 

The next theorem establishes some conditions in which the action 

RWT →2,1:ϕ ,  ( ) ( ) ( ) ( ) p
T

dtdttxtqt
t
xx ∧∧














+

∂
∂

= ∫ ...12
2

0
ϕ . 

is continuously differentiable. 
 
Theorem 1. 

 
Let  

RRRTL p →××0: ,  ( ) ( )yxtLyxt ,,,, → ,   

( ) ( ) ( ) ( ) ( )txtqt
t
xt

t
xtxtL 2

2
,, +

∂
∂

=







∂
∂

 

where RTq →0: , is integrable function. 

If there is +∈ RM , such that ( ) Mtq ≤ , for any 0Tt ∈ , then functional ϕ  

defined by  ( ) ( ) ( ) p
T

dtdtt
t
xtxtLx ∧∧








∂
∂

= ∫ ...,,
0

1ϕ  
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is continuously differentiable on 2,1
TW , and his gradient derives from the formula 

( )( ) ( ) ( ) ( ) ( ) ( ) ( ) p
T yx dtdtt

t
zt

t
xtxtLtzt

t
xtxtLzx ∧∧
















∂
∂









∂
∂

∇+















∂
∂

∇=∇ ∫ ...,,,,,,, 1
0

ϕ (2) 

 

Proof.  It is sufficient to prove that ϕ  has the derivative ( ) ( )*,1' p
TWx ∈ϕ  given by 

the relation (2) and that the function  

( ) ( )*,1,1' p
T

p
T WWx →∈ϕ , ( )xx 'ϕ→  

is continuous. 
For x  and y  fixed in 2,1

TW , 0Tt ∈ , [ ]1,1−∈λ  , let  
 

( ) ( ) ( ) ( ) ( )







∂
∂

+
∂
∂

+= t
t
zt

t
xtztxtLtF λλλ ,,,  

and  
( ) ( ) ( )yxdtdttF

T
p λϕλλψ +=∧∧= ∫

0
..., 1 . 

Because  

( ) ( ) ( ) ( ) ( ) ( )+∈⋅≤⋅=







∂
∂

∇ RTLtxMtxtqt
t
xtxtLx ,22,, 0

2  

and  

( ) ( ) ( )+∈
∂
∂

=







∂
∂

∇ RTL
t
xt

t
xtxtLy ,,, 0

2  

we have  

( ) ( ) ( )+∈≤∇ RTLtdtF ,, 0
1λλ . 

Thus, Leibniz formula of differentiation under integral is applicable and 
 

( ) ( )dttFD
T

,00'
0
∫= λψ  

( ) ( ) ( ) ( ) ( ) ( ) p
T yx dtdtt

t
zt

t
xtxtLtzt

t
xtxtL ∧∧
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
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



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



∂
∂

∇+















∂
∂

∇= ∫ ...,,,,,, 1
0

 

 

( ) ( ) ( ) ( ) ( ) p
T

dtdtt
t
zt

t
xtztxtq ∧∧
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We have 

( ) ( ) ( ) ( ) ( ) ( ) p
T

dtdtt
t
zt

t
xtztxtq ∧∧








∂
∂

∂
∂

+= ∫ ...2220' 1
0

ψ  

and with Cauchy-Schwartz inequality we find  

( ) ( ) ( ) ( ) ( ) ( )
2
1

1
22

1

1
2

00
...,...,20' 













∧∧








∂
∂

⋅












∧∧








∂
∂

≤ ∫∫ T
p

T
p dtdtt

t
ztzdtdtt

t
xtxtqϕ

zc ⋅≤ . 

The Krasnoselski theorem implies that the application 

















∂
∂

⋅∇→
t
xxLx x ,,  

from 2,1
TW  to 21 LL ×  is continuous, so 'ϕ  is continuous from 2,1

TW  into ( )*2,1
TW   

and the proof is complete. 
 

4. Poisson multi-time linear equation 

Theorem 2. 
 
Let be the Lagrangian 

RRRTL p →××0: , 







∂
∂

→







∂
∂

t
xxtL

t
xxt ,,,, ,  p,...,2,1=α . 

( ) ( ) ( ) ( ) ( )txtqt
t
xt

t
xtxtL 2

2
,, +

∂
∂

=







∂
∂  

 
where RTq →0: . 

If q  is integrable and bounded real function, then exist x  that minimizes 
the action 

( ) ( ) ( ) p
T

dtdtt
t
xtxtLx ∧∧








∂
∂

= ∫ ...,, 1
0

ϕ  in 1
TH  

and the Dirichlet problem  



46                                                                 Iulian Duca 

( ) ( ) 0=−∆ txtqx ,  −+ =
αα SS xx ,  

−+ ∂
∂

=
∂
∂

αα SS t
x

t
x   has at least one solution. 

 
Proof.  For 1

THu∈  we use the decomposition uuu ~+= ,  
where  

( )∫ ∧∧=
0

...
...
1 1

1 T
p

p
dtdttu

TT
u . 

  
The convexity of function  

( )( ) ( ) ( )txtqtxtP 2, =  
implies 

( )( ) ( ) ( ) ( )( )xtxxtPxtPtxtP −∇+≥ ,,,, . 
It follows 

( ) ( ) +∧∧+∧∧
∂
∂

= ∫∫ p
TT

p dtdtxtPdtdt
t
xx ...,... 11

2

00
ϕ  

( ) ( )( ) p
T

dtdtxtxxtP ∧∧−∇+ ∫ ...,, 1
0

 

( ) +∧∧+∧∧
∂
∂

= ∫∫ p
TT

p dtdtxtPdtdt
t
x ...,... 11

2

00
 

( ) ( )( ) p
T

dtdttxxtP ∧∧∇+ ∫ ...~,, 1
0

 

 
On the other hand, by Schwartz inequality we can write 

( ) ( )( ) ( ) ( ) ( )txCtxxyPtxxyP ~~,~,, 1≤⋅∇≤∇ ,  01 >C  

The function ( )tq  is integrable. It follows 

( ) ( ) p
TT

p dtdttxCCdtdt
t
xx ∧∧−+∧∧
∂
∂

≥ ∫∫ ...~... 1
12

1
2

00
ϕ  

Because the function ( )tx~  has the mean zero, we can use the Wirtinger inequality 
[1] and we find 

( )
2
1

1
2

32
1

2
......

00 












∧∧

∂
∂

−+∧∧
∂
∂

≥ ∫∫ p
TT

p dtdt
t
xCCdtdt

t
xxϕ . 
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The function of degree two from the right side of the inequality is bounded below 
since the action ( )xϕ  is bounded below. Let ( )ku  be a minimizing sequence for 
the action ϕ . 
We have 

( )
2
1

1
2

32
1

2
......

00 












∧∧

∂
∂

−+∧∧
∂
∂

≥ ∫∫ p
T

k
T

pk
k dtdt

t
xCCdtdt

t
xxϕ . 

 
This means that the limit of kx  is not ∞  because the sequence ( )kxϕ  is 

bounded below. So, the sequence ( )kx  is bounded in 1
TH . The Hilbert space 1

TH  
is reflexive and ϕ  is a continuously, convex function bounded below.  

By consequence the action ϕ  has a minimum point 1
THx∈  that verifies Euler-

Lagrange equations (1) and periodic boundary conditions because x  has the weak 
derivatives and weak divergence x∆  [1]. 
 

5. Conclusions 

 This work generalizes the case of Hill’s equation [22]. We establish the 
conditions under which the action that produces the Poisson multi-time linear 
equation has a minimum on 1

TH . The function x  that realizes the minimum of 
action, verifies Euler-Lagrange equation (the differential equation 

( ) 0=⋅−∆ xtqx ) and respects the boundary conditions  

−+ =
αα SS xx ,  

−+ ∂
∂

=
∂
∂

αα SS t
x

t
x ,  p,...,2,1=α . 
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