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ON THE APPROXIMATE DUALITY OF G-FRAMES AND FUSION

FRAMES

Morteza Mirzaee Azandaryani1

In this paper we obtain some new results for the approximate duality of

frames and g-frames in Hilbert spaces; especially we consider approximate duals of Riesz
bases and g-Riesz bases. We also introduce a new kind of approximate duals for g-
frames and fusion frames and generalize some of the results obtained for duals and
approximate duals. Moreover, we introduce θ and (θ, ∥θ∥)−approximate g-duals, where

θ is a bounded operator on a separable Hilbert space and we show that in this case
approximate duals share many useful properties with those introduced for frames, g-
frames and fusion frames.
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1. Introduction

Frames for Hilbert spaces were first introduced by Duffin and Schaeffer [11] in 1952
to study some problems in nonharmonic Fourier series, reintroduced in 1986 by Daubechies,
Grossmann and Meyer [10].

Let H be a separable Hilbert space and let I be a finite or countable index set. A
family F = {fi}i∈I ⊆ H is a frame for H, if there exist two positive numbers A and B such
that

A∥f∥2 ≤
∑
i∈I

|⟨f, fi⟩|2 ≤ B∥f∥2,

for each f ∈ H. A and B are the lower and upper frame bounds, respectively. If A = B,
F is called an A−tight frame. If A = B = 1, it is called a Parseval frame. If only the
second inequality is required, F is a B-Bessel sequence. If F is a Bessel sequence, then the
synthesis operator TF : ℓ2(I) −→ H which is defined by TF({ci}i∈I) =

∑
i∈I cifi is bounded.

Its adjoint operator T ∗
F(f) = {⟨f, fi⟩}i∈I is called the analysis operator of F. The operator

SF(f) = TFT
∗
F(f) =

∑
i∈I⟨f, fi⟩fi is bounded and positive. If F is a frame, we call SF

the frame operator of F which is invertible. In this case {S−1
F fi}i∈I is also a frame and if

f̃i = S−1
F fi, then each f ∈ H can be reconstructed as∑

i∈I

⟨f, f̃i⟩fi = f =
∑
i∈I

⟨f, fi⟩f̃i.

F̃ = {f̃i}i∈I is called the canonical dual of F. We say that a Bessel sequence {gi}i∈I is
an alternate dual or a dual for a Bessel sequence {fi}i∈I , if for each f ∈ H, we have
f =

∑
i∈I⟨f, fi⟩gi or equivalently f =

∑
i∈I⟨f, gi⟩fi. For more results about frames in

Hilbert spaces, see [8].
Fusion frames [7] and g-frames [23] are two important generalizations of frames. For

each i ∈ I, let Hi be a Hilbert space. In this paper L(H,Hi) is the set of all bounded
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operators from H into Hi and L(H,H) is denoted by L(H). We call Λ = {Λi ∈ L(H,Hi) :
i ∈ I} a g-frame for H with respect to {Hi : i ∈ I} if there exist two positive constants A
and B such that

A∥f∥2 ≤
∑
i∈I

∥Λif∥2 ≤ B∥f∥2,

for each f ∈ H. If only the second inequality is required, we call it a g-Bessel sequence with
upper bound B.

Note that ⊕i∈IHi =

{
{fi}i∈I |fi ∈ Hi, ∥{fi}i∈I∥2

2
=

∑
i∈I ∥fi∥2 < ∞

}
with pointwise

operations and the inner product defined by ⟨{fi}i∈I , {gi}i∈I⟩ =
∑

i∈I⟨fi, gi⟩ is a Hilbert

space. If Hi = H for each i ∈ I, we denote ⊕i∈IHi by ℓ
2(I,H).

For a g-Bessel sequence Λ = {Λi ∈ L(H,Hi) : i ∈ I} the synthesis operator is TΛ :
⊕i∈IHi −→ H, TΛ({fi}i∈I) =

∑
i∈I Λ

∗
i fi and its adjoint operator which is T ∗

Λ(f) = {Λif}i∈I

is called the analysis operator of Λ. The operator SΛ is defined by SΛ = TΛT
∗
Λ. If Λ is a

g-frame, then SΛ is invertible. The canonical g-dual for Λ is defined by Λ̃ = {Λ̃i}i∈I where

Λ̃i = ΛiS
−1
Λ which is a g-frame and for each f ∈ H, we have

f =
∑
i∈I

Λ∗
i Λ̃if =

∑
i∈I

Λ̃i
∗
Λif.

Also a g-Bessel sequence Γ = {Γi ∈ L(H,Hi) : i ∈ I} is called an alternate g-dual or a g-dual
for a g-Bessel sequence Λ if

f =
∑
i∈I

Γ∗
iΛif =

∑
i∈I

Λ∗
iΓif,

for each f ∈ H.
Let {Wi}i∈I be a family of closed subspaces of a Hilbert space H. Let {ωi}i∈I be a

family of weights, i.e., ωi > 0 for each i ∈ I. Then W = {(Wi, ωi)}i∈I is a fusion frame, if
there exist two positive numbers A and B such that for each f ∈ H,

A∥f∥2 ≤
∑
i∈I

ω2
i ∥πWi(f)∥2 ≤ B∥f∥2,

where πWi is the orthogonal projection onto the subspace Wi. If only the right-hand in-
equality is required, then W is called a Bessel fusion sequence. Parseval and tight g-frames
and fusion frames are defined similar to frames.
Note that W = {(Wi, ωi)}i∈I is a Bessel fusion sequence (resp. a fusion frame) if and only
if ΛW = {ωiπWi}i∈I is a g-Bessel sequence (resp. a g-frame). Hence every Bessel fusion
sequence generates a g-Bessel sequence.
Frames usually provide non-unique representations of vectors and this property is desirable
in applications especially in signal processing. As we see in the definition of duals, if a
dual of a frame is obtained, then every signal can be easily reconstructed. For a finite-
dimensional Hilbert space, the inverse of the frame operator can be obtained using linear
algebra methods. Hence the canonical dual of a frame is simply calculated. But in the
infinite-dimensional case, the canonical dual and also alternate duals are often difficult to be
found. In this situation approximate duals can be useful. If G is an approximate dual of F,
then the composition of the synthesis and analysis operators of G and F is invertible and we
use this invertible operator for the reconstruction of signals instead of the frame operator.
For more applications of approximate duals, see [6, 24, 15, 9].
Approximate duality of frames was recently investigated by Christensen and Laugesen in
[9]. Now we recall the definition:



On the approximate duality of g-frames and fusion frames 85

Definition 1.1. Let F = {fi}i∈I and G = {gi}i∈I be two Bessel sequences for H. Suppose
that SGF = TGTF

∗. We say that F and G are approximately dual frames if ∥IdH −SGF∥ < 1
or ∥IdH − SFG∥ < 1. In this case we call G (resp. F) an approximate dual of F (resp. G).

Recently the present author and A. Khosravi introduced approximate duality for g-
frames in [19] and some applications of approximate duals such as the stability under small
perturbations and facilitating the reconstruction of signals were obtained (see also [21]).
Trivially duals and approximate duals can be defined for a fusion frame as some kind of
g-frame. We obtained some results for approximate duals of fusion frames in Corollaries
2.4, 3.3, 3.9 and Proposition 2.14 in [19] (see also [2, 3]). In this paper we introduce
Q-approximate duality for g-frames and fusion frames and generalize some of the results
obtained for duals and approximate duals of frames and g-frames. We also introduce θ and
(θ, ∥θ∥)−approximate g-duals, where θ is a bounded operator on a separable Hilbert space.

2. Approximate duals for g-frames

In this section we get some new results for approximate duals of frames and g-frames.
First we recall the definition of approximate duality for g-frames from [19]:

Definition 2.1. Let Λ and Γ be two g-Bessel sequences and SΓΛ = TΓTΛ
∗. Then Λ and Γ

are approximately dual g-frames if ∥IdH − SΓΛ∥ < 1 or ∥IdH − SΛΓ∥ < 1. In this case, we
say that Γ (resp. Λ) is an approximate dual g-frame or an approximate g-dual of Λ (resp.
Γ).

The conditions in the above definition are equivalent because (IdH − SΓΛ)
∗ = IdH −

SΛΓ. Since ∥IdH−SΛΓ∥ < 1, we obtain that SΛΓ is invertible with SΛΓ
−1 =

∑∞
n=0 (IdH − SΛΓ)

n
.

Now for each f ∈ H, we have the following reconstruction formulas:

f =

∞∑
n=0

SΛΓ(IdH − SΛΓ)
n
f, f =

∞∑
n=0

(IdH − SΛΓ)
n
SΛΓf.

It is also obtained from Theorem 2.3 in [19] that if Λ and Γ are approximately dual g-frames,
then Λ and Γ are g-frames.
Throughout this section Λ = {Λi ∈ L(H,Hi) : i ∈ I} and Γ = {Γi ∈ L(H,Hi) : i ∈ I} are
g-Bessel sequences with upper bounds B and D, respectively.

Theorem 2.1. Let Fi = {fij}j∈Ji and Gi = {gij}j∈Ji be B′
i and D′

i-Bessel sequences for
Hi, respectively with supi∈I{B′

i} <∞ and supi∈I{D′
i} <∞.

(i) If Λ is a g-dual of Γ with BD < 1 and Fi is an approximate dual of Gi, for each i ∈ I,
then {Λ∗

i (fij)}i∈I,j∈Ji is an approximate dual of {Γ∗
i (gij)}i∈I,j∈Ji .

(ii) Let Fi be a dual of Gi, for each i ∈ I. Then Λ is an approximate g-dual (resp. a
g-dual) of Γ if and only if {Λ∗

i (fij)}i∈I,j∈Ji is an approximate dual (resp. a dual) of
{Γ∗

i (gij)}i∈I,j∈Ji .

Proof. (i) It is easy to see that F = {Λ∗
i (fij)}i∈I,j∈Ji

and G = {Γ∗
i (gij)}i∈I,j∈Ji

are B′B and
D′D-Bessel sequences, respectively where B′ = supi∈I{B′

i} and D′ = supi∈I{D′
i}. Since

∥SGiFi∥ ≤
√
B′

iD
′
i ≤

√
B′D′, we get

∑
i∈I ∥SGiFiΛif∥2 ≤ B′D′B∥f∥2, for each f ∈ H.
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Hence Φ = {SGiFiΛi}i∈I is a g-Bessel sequence. Now we have

∥SGFf − f∥ =

∥∥∥∥∑
i∈I

Γ∗
i

( ∑
j∈Ji

⟨Λif, fij⟩gij
)
− f

∥∥∥∥
=

∥∥∥∥∑
i∈I

Γ∗
i (SGiFi

Λif)− f

∥∥∥∥ = ∥TΓT ∗
Φf − TΓT

∗
Λf∥

≤
√
D

(∑
i∈I

∥SGiFi − IdHi∥2∥Λif∥2
) 1

2

≤
√
BD∥f∥.

This means that ∥SGF − IdH∥ ≤
√
BD < 1, so F is an approximate dual of G.

(ii) Let f ∈ H. Then

SGFf =
∑
i∈I

∑
j∈Ji

⟨f,Λ∗
i fij⟩Γ∗

i (gij) =
∑
i∈I

Γ∗
i

( ∑
j∈Ji

⟨Λif, fij⟩gij
)

=
∑
i∈I

Γ∗
iΛif = SΓΛf.

The above equality implies that F is an approximate dual (resp. a dual) of G if and only if
Λ is an approximate g-dual (resp. a g-dual) of Γ. �

Corollary 2.1. (i) Suppose that {fij}j∈Ji is an Ai−tight frame such that there exist
positive numbers B1 and B2 with B1 ≤ Ai ≤ B2, for each i ∈ I. Then Λ is an approx-
imate g-dual (resp. a g-dual) of Γ if and only if {Λ∗

i (fij)}i∈I,j∈Ji is an approximate
dual (resp. a dual) of { 1

Ai
Γ∗
i (fij)}i∈I,j∈Ji .

(ii) Let {fij}j∈Ji be a Parseval frame, for each i ∈ I. Then Λ is an approximate g-dual
(resp. a g-dual) of Γ if and only if {Λ∗

i (fij)}i∈I,j∈Ji is an approximate dual (resp. a
dual) of {Γ∗

i (fij)}i∈I,j∈Ji .

Proof. (i) It is easy to see that Fi = {fij}j∈Ji is a dual of Gi = { 1
Ai
fij}j∈Ji , for each i ∈ I.

Now the result follows from part (ii) of Theorem 2.1.
(ii) We get the result from part (i) by considering Ai = 1, for each i ∈ I. �

Since an orthonormal basis is a Parseval frame, part (i) of Theorem 2.5 in [19] is a
special case of the above corollary.

Proposition 2.1. Γ is an approximate g-dual of Λ if and only if there exists an operator T
on H with ∥T − IdH∥ < 1 such that {ΓiT

−1}i∈I is a g-dual of Λ.

Proof. Since Γ is an approximate g-dual of Λ, we have ∥SΛΓ − IdH∥ < 1. By Neumann
algorithm T = SΛΓ is invertible and

∑
i∈I Λ

∗
iΓiS

−1
ΛΓf = f , for each f ∈ H. Hence {ΓiT

−1}i∈I

is a g-dual of Λ.
For the converse, suppose that there exists an operator T on H with ∥T − IdH∥ < 1 such
that Φ = {ΓiT

−1}i∈I is a g-dual of Λ. Now we have

∥SΓΛ − IdH∥ = ∥T ∗SΦΛ − IdH∥ = ∥(T − IdH)∗∥ < 1.

This means that Γ is an approximate g-dual of Λ. �

We say that {fi}i∈I is a Riesz basis for H, if it is complete in H and there exist two
constants 0 < A ≤ B <∞, such that

A
∑
i∈F

|ci|2 ≤
∥∥∥∥∑

i∈F

cifi

∥∥∥∥2 ≤ B
∑
i∈F

|ci|2,
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for each sequence of scalars {ci}i∈F , where F is a finite subset of I.
Λ = {Λi ∈ L(H,Hi) : i ∈ I} is called g-complete if {f : Λif = 0, ∀i ∈ I} = {0}. We call Λ a
g-orthonormal basis for H, if

⟨Λ∗
i1fi1 ,Λ

∗
i2fi2⟩ = δi1,i2⟨fi1 , fi2⟩, i1, i2 ∈ I, fi1 ∈ Hi1 , fi2 ∈ Hi2 ,

and
∑

i∈I ∥Λif∥2 = ∥f∥2, for each f ∈ H. {Λi}i∈I is a g-Riesz basis for H, if it is g-complete
and there exist two constants 0 < A ≤ B < ∞, such that for each finite subset F ⊆ I and
fi ∈ Hi, i ∈ F ,

A
∑
i∈F

∥fi∥2 ≤
∥∥∥∥∑

i∈F

Λ∗
i fi

∥∥∥∥2 ≤ B
∑
i∈F

∥fi∥2.

Recall that if P is an invertible operator on H and Λi = ΓiP , for each i ∈ I, then we say
that Λ and Γ are P -equivalent. Also if {fi}i∈I , {gi}i∈I ⊆ H and fi = Pgi, for each i ∈ I,
then {fi}i∈I and {gi}i∈I are P -equivalent (see [5]). Note that if {fi}i∈I is a Riesz basis, then

Theorem 3.2.2 in [8] implies that {f̃i}i∈I is the unique dual of {fi}i∈I and it is also a Riesz
basis. A similar result can be obtained for g-Riesz bases using Theorem 3.1 in [23]. But
a Riesz basis can have many approximate duals. For example if {ei}i∈I is an orthonormal
basis for H and 0 < a < 2, then {aei}i∈I is an approximate dual for {ei}i∈I . In the following
proposition and corollary we show that every approximate g-dual (resp. approximate dual)
of a g-Riesz basis (resp. Riesz basis) is also a g-Riesz basis (resp. Riesz basis).

Proposition 2.2. Let Λ be a g-Riesz basis. Then

(i) Γ is an approximate g-dual of Λ if and only if there exists an operator T on H with

∥T − IdH∥ < 1 such that Γi = Λ̃iT , for each i ∈ I.
(ii) If Γ is an approximate g-dual of Λ, then Γ and Λ are P - equivalent for some invertible

operator P on H and Γ is a g-Riesz basis.

Proof. (i) Since Λ is a g-Riesz basis, by Theorem 3.1 in [23] and Theorem 5.5.4 in [8], Λ̃
is the unique g-dual of Λ. Hence by Proposition 2.1, Γ is an approximate g-dual of Λ if

and only if there exists an operator T on H such that ∥T − IdH∥ < 1 with ΓiT
−1 = Λ̃i

consequently Γi = Λ̃iT , for each i ∈ I.

(ii) It follows from part (i) that there exists an invertible operator T on H with Γi = Λ̃iT =
ΛiS

−1
Λ T . Since P = S−1

Λ T is invertible, Γ and Λ are P -equivalent. Because Λ is a g-Riesz
basis, by Corollary 3.4 in [23], there exists a g-orthonormal basis {Qi}i∈I and an invertible
operator U on H such that Λi = QiU , so Γi = QiUP and since UP is invertible, again by
Corollary 3.4 in [23], we obtain that Γ is a g-Riesz basis. �

Now using Propositions 2.1, 2.2 and the equivalent conditions for a frame to be a
Riesz basis stated in Definition 3.3.1 and Theorem 3.3.7 in [8], we get the following result
for frames:

Corollary 2.2. (i) {gi}i∈I is an approximate dual of {fi}i∈I if and only if there exists
an operator T on H with ∥T − IdH∥ < 1 such that {T−1gi}i∈I is a dual of {fi}i∈I .

(ii) Let {fi}i∈I be a Riesz basis. Then {gi}i∈I is an approximate dual of {fi}i∈I if and

only if there exists an operator T on H with ∥T − IdH∥ < 1 such that gi = T f̃i. In
this case {fi}i∈I and {gi}i∈I are P -equivalent, for some invertible operator P on H
and {gi}i∈I is also a Riesz basis.

3. Q−approximate duality for g-frames and fusion frames

In this section, we introduce a new kind of approximate duality for g-frames and
fusion frames and we study their properties. In this section W and V are {(Wi, ωi)}i∈I and
{(Vi, υi)}i∈I , respectively. Also ΛW = {ωiπWi}i∈I and ΛV = {υiπVi}i∈I .
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First we recall parts (i) and (ii) of the following definition from [16] and [14], respectively.
Part (iii) uses the fact that every Bessel fusion sequence generates a g-Bessel sequence.

Definition 3.1. Let W and V be Bessel fusion sequences for H.

(i) If there exists an operator Q ∈ L(ℓ2(I,H)) such that TΛW
QT ∗

ΛV
= IdH , then W is

called a Q-dual of V.
(ii) Let V be a fusion frame. Then we say that W is an alternate dual or a dual of V if∑

i∈I υiωiπWiS
−1
ΛV
πVif = f , for each f ∈ H.

(iii) We say that W is a g-dual of V if ΛW is a g-dual of ΛV.

Now we introduce Q-duals and Q-approximate duals for g-Bessel sequences:

Definition 3.2. Let Λ and Γ be g-Bessel sequences for H.

(i) If there exists an operator Q ∈ L(⊕i∈IHi) such that TΛQT
∗
Γ = IdH , then Λ is called

a Q-dual of Γ.
(ii) If there exists an operator Q ∈ L(⊕i∈IHi) such that ∥TΛQT ∗

Γ − IdH∥ < 1, then Λ is
called a Q-approximate dual of Γ.

Note that if Λ is an approximate g-dual (resp. g-dual) of Γ, then Λ is a Q-approximate
dual (resp. Q-dual) of Γ with Q = Id(⊕i∈IHi).

Theorem 3.1. Let Λ and Γ be g-Bessel sequences for H. If Λ is a Q-approximate dual of
Γ, then

(i) ∥TΓQ∗T ∗
Λ − IdH∥ < 1.

(ii) T ∗
Γ is injective and TΛQ is surjective.

(iii) T ∗
Λ is injective and TΓQ

∗ is surjective.
(iv) Λ and Γ are g-frames.

Proof. (i) We have

∥TΓQ∗T ∗
Λ − IdH∥ = ∥(TΛQT ∗

Γ − IdH)∗∥ = ∥TΛQT ∗
Γ − IdH∥ < 1.

(ii) Since ∥TΛQT ∗
Γ − IdH∥ < 1, by Newmann algorithm TΛQT

∗
Γ is invertible. Hence T ∗

Γ is
injective and TΛQ is surjective.
(iii) We can obtain the result similar to (ii) by using part (i).
(iv) Let SΛQΓ = TΛQT

∗
Γ and D be an upper bound for Γ. Then S∗

ΛQΓ = SΓQ∗Λ and since

∥SΛQΓ − IdH∥ < 1, SΛQΓ and SΓQ∗Λ are invertible. Now for each f ∈ H, we have

∥f∥ = ∥S−1
ΓQ∗ΛSΓQ∗Λf∥ ≤ ∥S−1

ΓQ∗Λ∥∥SΓQ∗Λf∥

= ∥S−1
ΓQ∗Λ∥

(
sup

∥g∥=1

|⟨SΓQ∗Λf, g⟩|
)

= ∥S−1
ΓQ∗Λ∥

(
sup

∥g∥=1

|⟨Q∗({Λif}i∈I), T
∗
Γg⟩|

)
≤ ∥S−1

ΓQ∗Λ∥∥Q
∗∥∥{Λif}i∈I∥∥T ∗

Γ∥

≤
√
D∥S−1

ΓQ∗Λ∥∥Q
∗∥
(∑

i∈I

∥Λif∥2
) 1

2

.

Therefore 1
D∥S−1

ΓQ∗Λ
∥2∥Q∗∥2

is a lower bound for Λ. Similarly we can see that Γ is a g-

frame. �
Now we introduce Q-approximate duality for Bessel fusion sequences:

Definition 3.3. Let W and V be Bessel fusion sequences for H. If there exists an operator
Q ∈ L(ℓ2(I,H)) such that ∥TΛW

QT ∗
ΛV

− IdH∥ < 1, then W is called a Q-approximate dual
of V.
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As a consequence of Theorem 3.1 we get the following result which is a generalization
of Lemma 3.2 in [16] to the approximate duality of fusion frames.

Theorem 3.2. Let W and V be Bessel fusion sequences for H. If W is a Q-approximate
dual of V, then

(i) ∥TΛV
Q∗T ∗

ΛW
− IdH∥ < 1.

(ii) T ∗
ΛV

is injective and TΛW
Q is surjective.

(iii) T ∗
ΛW

is injective and TΛV
Q∗ is surjective.

(iv) W and V are fusion frames.

If W and V are Bessel fusion sequence and fusion frame, respectively, then by Lemma
3.9 in [7], the series

∑
i∈I υiωiπWiS

−1
ΛV
πVif converges for each f ∈ H. Hence the operator

SVW
defined on H by SVW

f =
∑

i∈I υiωiπWiS
−1
ΛV
πVif is bounded. Now we have two kinds

of approximate duals for fusion frames which are special cases of Q-approximate duals (see
also [1, 2, 3]):

Definition 3.4. (i) Let W and V be Bessel fusion sequences and SWV = TΛW
T ∗
ΛV

. Then
we say that W is an approximate g-dual of V if ΛW is an approximate g-dual of ΛV,
equivalently ∥SWV − IdH∥ < 1.

(ii) Let W and V be Bessel fusion sequence and fusion frame, respectively. Then we say
that W is an approximate dual of V if ∥SVW

− IdH∥ < 1.

If W is an approximate g-dual of V, then W is a Q-approximate dual of V with
Q = Idℓ2(I,H). Also if W is an approximate dual of V, then W is a Q-approximate dual of V

with Q({fi}i∈I) = {S−1
ΛV
fi}i∈I . Hence using Theorem 3.2, we get the following result which

is a generalization of Theorem 2.3 in [19] and Proposition 2.8 in [14] to the approximate
duality of fusion frames.

Proposition 3.1. (i) If W is an approximate g-dual of V, then W and V are fusion
frames.

(ii) If W is an approximate dual of V, then W is a fusion frame.

Note that if W is a g-dual (resp. a Q-dual, an alternate dual) of V, then W is
an approximate g-dual (resp. a Q-approximate dual, an approximate dual) of V because
SWV = IdH (resp. TΛW

QT ∗
ΛV

= IdH , SVW
= IdH). If W is an approximate g-dual

(resp. a Q-approximate dual) of V, then V is also an approximate g-dual (resp. a Q∗-
approximate dual) of W since ∥SVW−IdH∥ = ∥(SWV−IdH)∗∥ = ∥(SWV−IdH)∥ < 1 (resp.
∥TΛV

Q∗T ∗
ΛW

− IdH∥ < 1).

Example 3.1. (i) Let H be a Hilbert space, W = {(H, 12 )} and V = {(H, 2)}. Then

SVW
= 1

4 .IdH , so ∥SVW
− IdH∥ = 3

4 < 1. Thus W is an approximate dual of V. We
also have SWV

= 4.IdH . Hence ∥SWV
− IdH∥ = 3 > 1. This shows that V is not an

approximate dual of W.
(ii) Let V be an A−tight fusion frame with A > 2. Then SVV

= IdH and SVV = A.IdH .
Therefore V is an approximate dual of itself but it is not an approximate g-dual of
itself.

(iii) Let W = {(H, 2)} and V = {(H, 12 )}. Then SVW = IdH and SVW
= 4.IdH . Hence W

is an approximate g-dual of V but it is not an approximate dual of V.

In the following two propositions and corollary Fi = {fij}j∈Ji , Fi
′ = {f ′ij}j∈Ji and

Gi = {gij}j∈Ji , Gi
′ = {g′ij}j∈Ji are Bessel sequences for Wi and Vi, respectively such that

the sequence of their upper bounds are bounded above.

Proposition 3.2. Assume that Fi
′ and Gi

′ are duals of Fi and Gi, respectively such that F′
i

and G′
i are biorthogonal for each i ∈ I. Then W is an approximate g-dual (resp. a g-dual)

of V if and only if {ωifij}i∈I,j∈Ji is an approximate dual (resp. a dual) of {υigij}i∈I,j∈Ji .
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Proof. Let B be an upper bound for W and C = supi∈I{Ci}, where Ci is an upper bound
for Fi. Now for each f ∈ H, we have∑

i∈I

∑
j∈Ji

|⟨f, ωifij⟩|2 =
∑
i∈I

ω2
i

∑
j∈Ji

|⟨πWif, fij⟩|2 ≤ C
∑
i∈I

ω2
i ∥πWif∥2 ≤ CB∥f∥2,

so {ωifij}i∈I,j∈Ji is a Bessel sequence. Similarly we can see that {υigij}i∈I,j∈Ji is a Bessel
sequence for H. Let f ∈ H. Then

SVWf =
∑
i∈I

υiωiπVi

( ∑
j∈Ji

⟨f, fij⟩f ′ij
)

=
∑
i∈I

∑
j∈Ji

υiωi⟨f, fij⟩πVif
′
ij =

∑
i∈I

∑
j∈Ji

∑
k∈Ji

υiωi⟨f, fij⟩⟨f ′ij , g′ik⟩gik

=
∑
i∈I

∑
j∈Ji

⟨f, ωifij⟩υigij = SGVFW
f,

where FW = {ωifij}i∈I,j∈Ji and GV = {υigij}i∈I,j∈Ji . This yields that W is an approximate
g-dual (resp. a g-dual) of V if and only if FW is an approximate dual (resp. a dual) of
GV. �

Corollary 3.1. Suppose that {fij}j∈Ji is a Riesz basis for Wi with upper bound Bi and
supi∈I{Bi} < ∞. Then W is an approximate g-dual (resp. a g-dual) of itself if and only if

{ωifij}i∈I,j∈Ji is an approximate dual (resp. a dual) of {ωif̃ij}i∈I,j∈Ji .

Proof. Let Fi = {fij}j∈Ji = Gi
′ and Gi = {f̃ij}j∈Ji = Fi

′. Now we can get the result from
the above proposition and Theorem 5.5.4 in [8]. �

The following proposition is a generalization of Theorem 3.12 in [16] to the approxi-
mate duality of fusion frames.

Proposition 3.3. Suppose that Q ∈ L(ℓ2(I,H)) which is defined by
Q({hi}i∈I) = {

∑
j∈Ji

⟨hi, fij⟩gij}i∈I . Then the following conditions are equivalent:

(i) {υigij}i∈I,j∈Ji is an approximate dual of {ωifij}i∈I,j∈Ji .
(ii) V = {(Vi, υi)}i∈I is a Q-approximate dual of W = {(Wi, ωi)}i∈I .

Proof. Similar to the proof of Theorem 3.12 in [16], we can obtain that Q is well-defined and
bounded, also TΛV

QT ∗
ΛW

(f) =
∑

i∈I

∑
j∈Ji

⟨f, ωifij⟩υigij = SGFf , where F = {ωifij}i∈I,j∈Ji

and G = {υigij}i∈I,j∈Ji . Hence ∥TΛV
QT ∗

ΛW
− IdH∥ < 1 if and only if ∥SGF − IdH∥ < 1. �

4. Approximate duals for operators

Recently g-frames for operators and local g-atoms have been introduced in [4] as
generalizations of frames for operators and local atoms for subspaces, for more results see
[12, 13, 20].
In this section, we introduce θ−approximate g-duals and (θ, ∥θ∥)−approximate g-duals,
where θ is a bounded operator on a separable Hilbert space. First we recall the following
definition from [4].

Definition 4.1. Let θ ∈ L(H). Then {Λi ∈ L(H,Hi) : i ∈ I} is called a θ−g-frame in H
if the following holds:

(i) The series
∑

i∈I Λ
∗
i gi converges for all {gi}i∈I ∈ ⊕i∈IHi.

(ii) There exists B > 0 such that for each f ∈ H there exists {gi}i∈I ∈ ⊕i∈IHi such that
θf =

∑
i∈I Λ

∗
i gi and

∑
i∈I ∥gi∥2 ≤ B∥f∥2.
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It was proved in Theorem 2.5 in [4] that Λ = {Λi ∈ L(H,Hi) : i ∈ I} is a θ−g-
frame if and only if {Λi}i∈I is a g-Bessel sequence and there exists a g-Bessel sequence
Γ = {Γi ∈ L(H,Hi) : i ∈ I} such that θf =

∑
i∈I Λ

∗
iΓif = SΛΓf , for each f ∈ H. In this

case Γ is called a θ−g-dual of Λ. Because in this case SΛΓ = θ, we have SΓΛ = θ∗. Thus if
Γ is a θ−g-dual of Λ, then Λ is a θ∗−g-dual of Γ.

Definition 4.2. Let Λ and Γ be g-Bessel sequences and θ ∈ L(H). Then

(i) Γ is called a θ−approximate g-dual of Λ if ∥θ − SΛΓ∥ < 1.
(ii) Let ∥θ∥ < 1. Then Γ is called a (θ, ∥θ∥)−approximate g-dual of Λ if ∥θ−SΛΓ∥ ≤ ∥θ∥.

Since ∥θ∗−SΓΛ∥ = ∥(θ−SΛΓ)
∗∥ = ∥θ−SΛΓ∥ and ∥θ∥ = ∥θ∗∥, if Γ is a θ−approximate

g-dual (resp. (θ, ∥θ∥)−approximate g-dual) of Λ, then Λ is a θ∗−approximate g-dual (resp.
(θ∗, ∥θ∗∥)−approximate g-dual) of Γ.

Proposition 4.1. Let θ be a self-adjoint operator on H. Then

(i) If there exist two g-Bessel sequences Λ and Γ such that Γ is a θ−approximate g-dual
(resp. (θ, ∥θ∥)−approximate g-dual) of Λ and {Γi

A } is a g-dual of Λ, for some A ≥ 1
(resp. A ≥ ∥θ∥), then θ is a positive operator.

(ii) If Λ is an A−tight g-frame, for some A ≥ 1 (resp. A ≥ ∥θ∥) such that Λ is a
θ−approximate g-dual (resp. (θ, ∥θ∥)−approximate g-dual) of itself, then θ is a positive
operator.

(iii) If there exists a Parseval g-frame which is a θ−approximate g-dual or (θ, ∥θ∥)-approximate
g-dual of itself, then θ is a positive operator.

Proof. (i) Since {Γi

A }i∈I is a g-dual of Λ, SΛΓ = A.IdH . Therefore if Γ is a θ−approximate
g-dual of Λ, then ∥θ − A.IdH∥ = ∥θ − SΛΓ∥ < 1 ≤ A and if Γ is a (θ, ∥θ∥)−approximate
g-dual of Λ with ∥θ∥ ≤ A, then ∥θ −A.IdH∥ = ∥θ− SΛΓ∥ ≤ ∥θ∥ ≤ A. Now Lemma 2.2.2 in
[22] implies that θ is a positive operator.
(ii) Since Λ is an A−tight g-frame, {Λi

A }i∈I is a g-dual of Λ. Now the result follows from
part (i).
(iii) We get the result by considering A = 1 in part (ii). �

Proposition 4.2. Let θ be a positive operator on H. Then

(i) If ∥θ∥ < 1, then every ∥θ∥−tight g-frame is a (θ, ∥θ∥)−approximate g-dual of itself.
(ii) Every A−tight g-frame with ∥θ∥ ≤ A < 1 is a θ−approximate g-dual of itself.

Proof. (i) Let Λ be a ∥θ∥−tight g-frame. Since θ is positive, Lemma 2.2.2 in [22] implies
that ∥θ − SΛΛ∥ = ∥θ − ∥θ∥.IdH∥ ≤ ∥θ∥, so Λ is a (θ, ∥θ∥)−approximate g-dual of itself.
(ii) Let Λ be an A−tight g-frame with ∥θ∥ ≤ A < 1. Since ∥θ∥ ≤ A, by Lemma 2.2.2 in [22],
∥θ − SΛΛ∥ = ∥θ −A.IdH∥ ≤ A < 1 and we get the result. �

Let Φj = {Λij ∈ L(Hj ,Hij) : i ∈ I} be a g-Bessel sequence for Hj , with upper
bound Bj such that B = sup{Bj : j ∈ J} < ∞. Then {Φj}j∈J is called a B-bounded
family of g-Bessel sequences or shortly B-BFGBS. In this case ⊕j∈JΦj = {⊕j∈JΛij ∈
L(⊕j∈JHj ,⊕j∈JHij) : i ∈ I} is a g-Bessel sequence with upper bound B (see Theorem 2.1
in [18]).

The following result is analogous to Proposition 3.2 in [18] and Proposition 2.8 in
[19]. In the following proposition Ψj = {Γij ∈ L(Hj ,Hij) : i ∈ I}.

Proposition 4.3. Let {Φj}j∈J and {Ψj}j∈J be BFGBS and θj ∈ L(Hj). Then

(i) Ψj is a θj−g-dual of Φj, for each j ∈ J if and only if ⊕j∈JΨj is a ⊕j∈Jθj−g-dual of
⊕j∈JΦj.
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(ii) Let J be a finite set. If Ψj is a θj−approximate g-dual (resp. (θj , ∥θj∥)−approximate
g-dual) of Φj, for each j ∈ J , then ⊕j∈JΨj is a ⊕j∈Jθj−approximate g-dual (resp.(
(⊕j∈Jθj), ∥ ⊕j∈J θj∥

)
−approximate g-dual) of ⊕j∈JΦj. The converse holds for

θj−approximate g-duals.

Proof. (i) Let B and D be upper bounds for Φj ’s and Ψj ’s, respectively. Since Ψj is a θj−g-

dual of Φj , we have θj = SΦjΨj
, so ∥θj∥ = ∥SΦjΨj

∥ ≤
√
BD. Hence ⊕j∈Jθj is a bounded

operator on ⊕j∈JHj . Let {fj}j∈J ,{gj}j∈J ∈ ⊕j∈JHj . Similar to the proof of Proposition
3.2 in [18], we can see that

∑
j∈J

∑
i∈I⟨Γijfj ,Λijgj⟩ =

∑
i∈I

∑
j∈J⟨Γijfj ,Λijgj⟩ and now it

is easy to see that

⟨(⊕j∈Jθj)({fj}j∈J), {gj}j∈J ⟩ = ⟨S(⊕j∈JΦj)(⊕j∈JΨj)({fj}j∈J ), {gj}j∈J⟩.

Hence ⊕j∈Jθj = S(⊕j∈JΦj)(⊕j∈JΨj), so ⊕j∈JΨj is a (⊕j∈Jθj)−g-dual of ⊕j∈JΦj . The con-
verse is clear.
(ii) The result follows from the equalities

∥(⊕j∈Jθj)− S(⊕j∈JΦj)(⊕j∈JΨj)∥ = max{∥θj − SΦjΨj∥ : j ∈ J},

and ∥ ⊕j∈J θj∥ = max{∥θj∥ : j ∈ J}. �

The converse of part (ii) is not necessarily true for (θj , ∥θj∥)−approximate g-duals.
For example if θ1 = −1

8 .IdH , θ2 = 1
2 .IdH , Φ1 = Ψ1 = { 1√

8
.IdH} and Φ2 = Ψ2 = {0},

then Ψ1 ⊕ Ψ2 is a
(
(θ1 ⊕ θ2), ∥θ1 ⊕ θ2∥

)
−approximate g-dual of Φ1 ⊕ Φ2 but Ψ1 is not a

(θ1, ∥θ1∥)−approximate g-dual of Φ1.
Let H and H ′ be Hilbert spaces. Then the tensor product H ⊗ H ′ is a Hilbert

space, the inner product for simple tensors is defined by ⟨x ⊗ x′, y ⊗ y′⟩ = ⟨x, y⟩⟨x′, y′⟩,
where x, y ∈ H and x′, y′ ∈ H ′. If U and U ′ are bounded operators on H and H ′, respec-
tively, then U ⊗ U ′ is a bounded operator on H ⊗H ′ which is defined on simple tensors by
U⊗U ′(x⊗x′) = (Ux)⊗(U ′x′) and we have (U⊗U ′)∗ = U∗⊗U ′∗ and ∥U⊗U ′∥ = ∥U∥∥U ′∥.
For more results, see [22].
The following result is analogous to Proposition 2.10 in [19].
In the following proposition Λ′ and Γ′ denote {Λ′

j ∈ L(H ′,H ′
j) : j ∈ J} and {Γ′

j ∈
L(H ′,H ′

j) : j ∈ J}, respectively. Also Γ⊗ Γ′ = {Γi ⊗ Γ′
j}i∈I,j∈J , Λ⊗Λ′ = {Λi ⊗Λ′

j}i∈I,j∈J

and θ′ ∈ L(H ′).

Proposition 4.4. Let Γ and Γ′ be (θ, ∥θ∥)−approximate g-dual (resp. θ−approximate g-

dual) and θ′−g-dual of Λ and Λ′, respectively with ∥θ′∥ ≤ 1. Then Γ⊗Γ′ is a
(
(θ⊗ θ′), ∥θ⊗

θ′∥
)
−approximate g-dual (resp. (θ ⊗ θ′)−approximate g-dual) of Λ⊗ Λ′.

Proof. Similar to the proof of Proposition 2.10 in [19], we can see that Γ ⊗ Γ′ and Λ ⊗ Λ′

are g-Bessel sequences and S(Λ⊗Λ′)(Γ⊗Γ′) = SΛΓ ⊗ SΛ′Γ′ = SΛΓ ⊗ θ′. Now the result can be
obtained using the equalities ∥(θ⊗ θ′)− S(Λ⊗Λ′)(Γ⊗Γ′)∥ = ∥(θ− SΛΓ)⊗ θ′∥ = ∥θ− SΛΓ∥∥θ′∥
and ∥θ ⊗ θ′∥ = ∥θ∥∥θ′∥. �

Note that it is obtained from the proof of the above proposition that if Γ and Γ′ are
θ and θ′−g-duals of Λ and Λ′, respectively, then Γ⊗ Γ′ is a (θ ⊗ θ′)−g-dual of Λ⊗ Λ′.
We recall the following definition from [4].

Definition 4.3. Let Λ = {Λi ∈ L(H,Hi) : i ∈ I} be a g-Bessel sequence and H0 be a closed
subspace of H. Then Λ is called a family of local g-atoms for H0 with respect to {Hi}i∈I ,
if there exists a g-Bessel sequence Γ = {Γi ∈ L(H0,Hi) : i ∈ I} such that f =

∑
i∈I Λ

∗
iΓif ,

for each f ∈ H0.
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Now we introduce a family of approximately local g-atoms:

Definition 4.4. Let Λ = {Λi ∈ L(H,Hi) : i ∈ I} be a g-Bessel sequence and H0 be a closed
subspace of H. Then Λ is called a family of approximately local g-atoms for H0 with respect
to {Hi}i∈I , if there exists a g-Bessel sequence Γ = {Γi ∈ L(H0,Hi) : i ∈ I} and K < 1 such
that ∥f −

∑
i∈I Λ

∗
iΓif∥ ≤ K∥f∥, for each f ∈ H0.

It was proved in Theorem 2.14 in [4] that Λ is a family of local g-atoms for H0 with
respect to {Hi}i∈I if and only if Λ has a PH0−g-dual, where PH0 is the orthogonal projection
from H onto H0.
In the following theorem we obtain a similar result for approximately local g-atoms.

Theorem 4.1. Let Λ be a g-Bessel sequence. Then the following conditions are equivalent:

(i) Λ is a family of approximately local g-atoms for H0 with respect to {Hi}i∈I .
(ii) Λ has a PH0−approximate g-dual.

Proof. (i) =⇒ (ii) Suppose that Γ = {Γi ∈ L(H0,Hi) : i ∈ I} is a g-Bessel sequence and
K < 1 such that ∥f −

∑
i∈I Λ

∗
iΓif∥ ≤ K∥f∥, for each f ∈ H0. Let Ψ = {ΓiPH0}i∈I . Then

it is easy to see that Ψ is a g-Bessel sequence and ∥PH0f −SΛΨf∥ ≤ K∥f∥, for each f ∈ H.
Hence ∥PH0 − SΛΨ∥ ≤ K < 1, so Ψ is a PH0−approximate g-dual of Λ.
(ii) =⇒ (i) Suppose that Ψ = {ψi}i∈I is a PH0−approximate g-dual of Λ, so ∥PH0−SΛΨ∥ < 1.
Now for Γi = ψiIdH0 and Γ = {Γi}i∈I , it is easy to see that Γ is a g-Bessel sequence and if
K = ∥PH0 − SΛΨ∥, then∥∥∥∥f −

∑
i∈I

Λ∗
iΓif

∥∥∥∥ = ∥PH0f − SΛΨf∥ ≤ K∥f∥,

for each f ∈ H0. This means that Λ is a family of approximately local g-atoms for H0 with
respect to {Hi}i∈I . �
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