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G-DUAL FRAMES IN HILBERT SPACES

Mohammad Ali Dehghan1, Mohammad Ali Hasankhani Fard2

The duals of frames have an essential role in reconstruction of vectors (or
signals ) in terms of the frame elements. In this paper, g-duals of a frame in a
separable Hilbert space H are introduced and characterized. By applying g-duals
as well, (which also includes usual duals) we can achieve more reconstruction
formulas to obtain signals. Also, we show that the set of approximately duals
of a frame is a proper subset of the set of its g-duals and some examples of g-
dual frames are discussed. Finally, application of g-duals in Gabor frames and
perturbation of g-dual frames are given as well.
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1. Introduction

Frames were first introduced by Duffin and Schaeffer [8] in the study of nonhar-
monic Fourier series in 1952. Frames have very important and interesting properties
which make them very useful in the characterization of function spaces, signal pro-
cessing and many other fields. A frame is a family of elements in a separable Hilbert
space which allows stable not necessarily unique decomposition of arbitrary elements
into expansions of frame elements [6]. Given a separable Hilbert space H with inner
product < ., . >, a sequence {fk}∞k=1 is called a frame for H if there exist constants
0 < C1, C2 <∞ such that for all f ∈ H,

C1∥f∥2 ≤
∞∑
k=1

| < f, fk > |2 ≤ C2∥f∥2, (1)

where C1, C2 are the lower and upper frame bounds, respectively. The second in-
equality of the frame condition (1) is also known as the Bessel condition for {fk}∞k=1.
If C1 = C2, then {fk}∞k=1 is called a tight frame. The bounded linear operator T
defined by

T : ℓ2(N) → H, T{ck}∞k=1 =
∞∑
k=1

ckfk
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is called the pre frame operator of {fk}∞k=1. Also the bounded linear operator S
defined by

S : H → H, Sf =

∞∑
k=1

< f, fk > fk

is called the frame operator of {fk}∞k=1. It is easy to show that S = TT ∗, where T ∗ is
the adjoint operator of T . A Riesz basis forH is a family of the form {Aek}∞k=1, where
{ek}∞k=1 is an orthonormal basis for H and A ∈ B(H) is an invertible operators.
Every Riesz basis for H is a frame for H. For more information concerning frames
refer to [2, 3, 4, 5, 9].

Two frames {fk}∞k=1 and {gk}∞k=1 are dual frames for H if

f =

∞∑
k=1

< f, fk > gk =

∞∑
k=1

< f, gk > fk, ∀f ∈ H.

Dual frames are important to reconstruction of vectors (or signals ) in terms of the
frame elements. Unfortunately, it is usually complicated to calculate a dual frame.
Now we are going to extend this concept. We have more reconstruction formulas of
vectors (or signals ) in terms of the frame elements with use of the g-dual frames.
In section 2 we introduce generalized dual frames and find some properties. In
section 3 we characterize all generalized dual frames for a given frame. In Section
4 a comparison between approximately dual frames and g-dual frames as well as
applications in Gabor frames are given. In Section 5 the perturbation theory of
g-dual frames is discussed.

2. g-dual frames

Definition 2.1. Let {fk}∞k=1 be a frame for H. A frame {gk}∞k=1 is called a gen-
eralized dual frame or g-dual frame of {fk}∞k=1 for H if there exists an invertible
operator A ∈ B(H) such that for all f ∈ H,

f =

∞∑
k=1

< Af, gk > fk. (2)

If V is a closed subspace of H, a frame {gk}∞k=1 is called a g-dual frame of {fk}∞k=1
for V if (2) satisfies for all f ∈ V and for some invertible operator A ∈ B(V ).

When A = I, {gk}∞k=1 is an ordinary dual frame of {fk}∞k=1. If S is the frame
operator of the frame {fk}∞k=1, then for all f ∈ H we have

f =

∞∑
k=1

< f, S−1fk > fk =

∞∑
k=1

< S−1f, fk > fk, (3)

and hence each frame is a g-dual frame for itself. The operator A in (2) is unique,
since for all f ∈ H,

A−1f =

∞∑
k=1

< f, gk > fk,

and hence A−1 = TU∗, where T and U are the pre-frame operators of {fk}∞k=1 and
{gk}∞k=1, respectively. Also, we say the frame {gk}∞k=1 is a g-dual frame of {fk}∞k=1
with corresponding invertible operator (or with invertible operator) A.
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Example 2.1. Let m be a positive integer number, {gik}∞k=1 be a dual frame of frame
{fk}∞k=1 in H for i = 1, 2, ...,m, {ci}mi=1 be a finite sequence of complex numbers

such that
∑m

i=1 ci ̸= 0 and hk =
∑m

i=1 cig
i
k. Then Af = 1∑m

i=1 ci
f defines a bounded

invertible operator on H and

f =
∞∑
k=1

< Af, fk > hk, ∀f ∈ H.

Hence the sequence {hk}∞k=1 is a g-dual frame of {fk}∞k=1.

By (3) the g-duality relation is reflexive whereas ordinary duality relation
is not. In the following lemma and example, we show that g-duality relation is
symmetric while it is not transitive.

Lemma 2.1. Let {fk}∞k=1 and {gk}∞k=1 be Bessel sequences in H.Then the following
are equivalent
(a) There exists an invertible operator A ∈ B(H) such that

f =
∑∞

k=1 < Af, fk > gk, ∀f ∈ H

(b) There exists an invertible operator A ∈ B(H) such that
f =

∑∞
k=1 < A∗f, gk > fk, ∀f ∈ H

(c)There exists an invertible operator A ∈ B(H) such that
< f, g >=

∑∞
k=1 < Af, fk >< gk, g >, ∀f, g ∈ H.

In case one of the equivalent conditions are satisfied, {gk}∞k=1 is a g-dual of {fk}∞k=1
and vice versa that are called g-dual frames.

Proof. Let (a) be satisfied and f ∈ H. Then there exists g ∈ H, such that f = Ag
and g =

∑∞
k=1 < Ag, fk > gk. Therefore f = Ag =

∑∞
k=1 < f, fk > Agk. Since

{Agk}∞k=1 is Bessel sequence, by [6, Lemma 5.6.2] we have

f =

∞∑
k=1

< f, fk > Agk

=
∞∑
k=1

< f,Agk > fk

=

∞∑
k=1

< A∗f, gk > fk,

and hence (b) holds. A similar argument shows that (b) derives (a). The rest of
proof is as the proof of [6, Lemma 5.6.2]. If the conditions are satisfied for {fk}∞k=1
and {gk}∞k=1, then

∥f∥4 = |
∞∑
k=1

< Af, fk >< gk, f > |2

≤
∞∑
k=1

| < Af, fk > |2
∞∑
k=1

| < f, gk > |2

≤ C2∥A∥2∥f∥2
∞∑
k=1

| < f, gk > |2,
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where C2 is the upper frame bound for {fk}∞k=1. Then {gk}∞k=1 is a frame. Since (a)
and (b) are equivalent, {fk}∞k=1 is also a frame. �
Example 2.2. Let {ek}∞k=1 be an orthonormal basis for H. Set
{fk}∞k=1 = {e1, 0, e2, 0, e3, 0, ...},
{gk}∞k=1 = {e1, e1, e2, e2, ...} and
{hk}∞k=1 = {0, e1, 0, e2, 0, e3, ...}.
Then {gk}∞k=1 is a g-dual frame (dual frame) of {fk}∞k=1 and {hk}∞k=1 is a g-dual
frame (dual frame) of {gk}∞k=1.
Now we have < g, fk > hk = 0 for k = 1, 2, ... and for all g ∈ H. Therefore∑∞

k=1 < Af, fk > hk = 0, for all f ∈ H and for all invertible operator A ∈ B(H).
Hence {hk}∞k=1 is not a g-dual frame of {fk}∞k=1.

An orthonormal basis can not be a dual frame of another orthonormal basis.
Now, it is shown that, not only orthonormal bases, but also Riesz bases are g-dual
frames.

Proposition 2.1. Every two Riesz bases are g-dual frames.

Proof. Let {fk}∞k=1 and {gk}∞k=1 be two Riesz bases forH.There exist an orthonormal
basis {ek}∞k=1 and bounded invertible operators A1 and A2 onH such that fk = A1ek
and gk = A2ek. Since A1 and A2 are invertible, there exists a bounded invertible
operator A on H such that A2A

∗
1A = I and hence for all f ∈ H we have

f = A2A
∗
1Af = A2(

∞∑
k=1

< A∗
1Af, ek > ek)

=

∞∑
k=1

< Af,A1ek > A2ek

=

∞∑
k=1

< Af, fk > gk.

�
In section 3, we characterize all g-dual frames of a given frame. Now we are

going to give a simple way for construction of infinitely many g-dual frames of a
given frame ( whit common invertible operator ).

Proposition 2.2. Assume that {gk}∞k=1 is a g-dual frame of {fk}∞k=1 for H with
invertible operator A ∈ B(H) and let α be a complex number. Then the sequence
{hk}∞k=1 defined by hk = αgk + (1 − α)(A−1)∗S−1fk, is a g-dual frame of {fk}∞k=1
for H with invertible operator A, where S is the frame operator of {fk}∞k=1.

Proof. For all f ∈ H we have
∞∑
k=1

< Af, hk > fk =
∞∑
k=1

< Af, αgk + (1− α)(A−1)∗S−1fk > fk

= ᾱ

∞∑
k=1

< Af, gk > fk + (1− ᾱ)

∞∑
k=1

< f, S−1fk > fk

= ᾱf + (1− ᾱ)f = f
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�

In the next proposition we obtain a g-dual frame for H from a g-dual frame
for a subspace of H .

Proposition 2.3. Let {fk}∞k=1 be a frame for H with frame operator S and {gk}∞k=1
be a g-dual frame of {fk}∞k=1 for V := span{gk}∞k=1 with invertible operator B ∈
B(V ). Then the sequence {hk}∞k=1 defined by hk = B∗gk + S−1fk is a g-dual frame
of {fk}∞k=1 for H.

Proof. The operator B can be extended to operator B1 on H defined by B1 :=
BP +Q, where P and Q are the orthogonal projection onto V and V ⊥, respectively.
Therefore B1(V

⊥) ⊂ V ⊥ and B1 = B on V . Also B∗
1 = B∗ on V , since for all f ∈ V

and g ∈ H we have

< B∗
1f, g > =< f,B1g >=< f,BPg +Qg >

=< f,BPg >=< B∗f, Pg >

=< B∗f, Pg +Qg >=< B∗f, g > .

Let A := I − 1
2P , where I denote the identity operator on H. Since ∥I − A∥ < 1,

the operator A is invertible. Let f ∈ H, then there exist unique vectors g ∈ V and
h ∈ V ⊥ such that f = g + h. Therefore

∞∑
k=1

< Af, hk > fk =
∞∑
k=1

<
1

2
g + h,B∗gk + S−1fk > fk

=

∞∑
k=1

<
1

2
g + h,B∗

1gk + S−1fk > fk

=
1

2

∞∑
k=1

< Bg, gk > fk +

∞∑
k=1

<
1

2
g + h, S−1fk > fk

+
∞∑
k=1

< B1h, gk > fk

=
1

2
g +

1

2
g + h+ 0 = f.

�

Corollary 2.1. Let {fk}∞k=1 be a frame for H with frame operator S and {gk}∞k=1 be
a dual frame of {fk}∞k=1 for V := span{gk}∞k=1. Then the sequence {hk}∞k=1 defined
by hk = gk + S−1fk is a g-dual frame of {fk}∞k=1 for H.

Example 2.1 shows that the sum of two dual frame is g-dual. In the following
proposition a necessary condition for g-duality of the sum of two g-dual frames is
given.

Proposition 2.4. Let {gk}∞k=1 and {hk}∞k=1 be two g-dual frames of {fk}∞k=1 with
corresponding invertible operators A and B, respectively. If A−1+B−1 is an invert-
ible operator, then {fk}∞k=1 and {gk + hk}∞k=1 are g-dual frames.
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Proof. Let T ∈ B(H) be the inverse operator of (A−1 + B−1). For all f ∈ H, we
have

∞∑
k=1

< Tf, gk + hk > fk =
∞∑
k=1

< Tf, gk > fk +
∞∑
k=1

< Tf, hk > fk

= A−1Tf +B−1Tf

= (A−1 +B−1)Tf = f.

�

Invertible operators preserve the g-duality property of frames.

Proposition 2.5. Let {fk}∞k=1 and {gk}∞k=1 be two sequences in H and U, V ∈ B(H)
be two invertible operator on H. Then {fk}∞k=1 and {gk}∞k=1 are g-dual frames for
H if and only if {Ufk}∞k=1 and {V gk}∞k=1 are g-dual frames for H.

Proof. Let {fk}∞k=1 and {gk}∞k=1 be g-dual frames for H. Then there exists an
invertible operator A ∈ B(H) such that f =

∑∞
k=1 < Af, fk > gk for all f ∈ H and

hance

f = V V −1f = V (
∞∑
k=1

< AV −1f, fk > gk)

=

∞∑
k=1

< (U−1)∗AV −1f, Ufk > V gk.

The converse is obtained by acting the operators U−1 and V −1. �

3. Characterization of g-dual frames

As we have seen, every frame in H is a g-dual of itself and hence all frames
have at least one g-dual. Now, we characterize all g-dual frames of a given frame.
The results for the case of dual frames and a similar proof of the following lemmas
and theorem are given in [6].

Lemma 3.1. Let {fk}∞k=1 be a frame for H with pre-frame operator T and {δk}∞k=1
be the canonical orthonormal basis for ℓ2(N). The g-dual frames for {fk}∞k=1 are
precisely the families {gk}∞k=1 = {V δk}∞k=1, whereV : ℓ2(N) → H is a bounded left
inverse of T ∗A, for some invertible operator A ∈ B(H).

Lemma 3.2. Let A ∈ B(H) be an invertible operator and {fk}∞k=1 be a frame for
H with pre-frame operator T and frame operator S. The bounded left inverses of
T ∗A, are precisely the operators of the form A−1S−1T + W (I − T ∗S−1T ), where
W : ℓ2(N) → H is a bounded operator and I denotes the identity operator on ℓ2(N).

Theorem 3.1. Let {fk}∞k=1 be a frame for H with frame operator S. The g-dual
frames of {fk}∞k=1 are precisely the families

{gk}∞k=1 = {Afk + hk −
∞∑
j=1

< S−1fk, fj > hj}∞k=1, (4)

where {hk}∞k=1 is a Bessel sequence in H and A ∈ B(H) is an invertible operator.
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In the ordinary case, every Riesz basis has a unique dual frame, whereas a
Riesz basis can have infinitely many g-dual frames that they also are Riesz basis.

Corollary 3.1. If {fk}∞k=1 is a Riesz basis in H, then the g-dual frames of {fk}∞k=1
having the form {gk}∞k=1 = {Afk}∞k=1, where A ∈ B(H) is an invertible operator. In
particular {gk}∞k=1 is a Riesz basis.

Proof. Since {fk}∞k=1 is a Riesz basis, {fk}∞k=1 and {S−1fk}∞k=1 are bi-orthogonal
sequences, where S is the frame operator of {fk}∞k=1. Hence by Theorem 3.1

{gk}∞k=1 = {Afk + hk −
∞∑
j=1

< S−1fk, fj > hj}∞k=1 = {Afk}∞k=1,

where A is an invertible operator in B(H). It remains to show that {gk}∞k=1 is a
Riesz basis. By the definition of a Riesz basis, there exist an orthonormal basis
{ek}∞k=1 and invertible operator U ∈ B(H) such that fk = Uek. We conclude that
{gk}∞k=1 = {Afk}∞k=1 = {AUek}∞k=1, i.e., {gk}∞k=1 is a Riesz basis. �

4. g-dual frames, approximately dual frames and Gabor frames

Approximately dual frames are defined by Christensen in [7]. Two Bessel
sequences {fk}∞k=1 and {gk}∞k=1 with pre-frame operator T and U , respectively, are
approximately dual frames forH if ∥I−TU∗∥ < 1 or ∥I−UT ∗∥ < 1. In what follows,
we study the relation between approximately dual frames and g-dual frames.

Proposition 4.1. If two Bessel sequences {fk}∞k=1 and {gk}∞k=1 are approximately
dual frames for H, then {fk}∞k=1 and {gk}∞k=1 are g-dual frames.

Proof. Since {fk}∞k=1 and {gk}∞k=1 are approximately dual frames, ∥I − TU∗∥ < 1
or ∥I −UT ∗∥ < 1, where T and U are pre-frame operators of {fk}∞k=1 and {gk}∞k=1,
respectively. Hence UT ∗ or TU∗ are invertible. If UT ∗ is invertible, then for all
f ∈ H we have

f = (UT ∗)(UT ∗)−1f =
∞∑
k=1

< (UT ∗)−1f, fk > gk,

and if TU∗ is invertible, then for all f ∈ H we have

f = (TU∗)(TU∗)−1f =

∞∑
k=1

< (TU∗)−1f, gk > fk.

Therefore {fk}∞k=1 and {gk}∞k=1 are g-dual frames. �

The following example illustrates that the set of approximately duals of a
frame is a proper subset of the set of its g-duals.

Example 4.1. Let {fk}∞k=1 and {gk}∞k=1 be dual frames for H. Then {3fk}∞k=1 is a

g-dual frame of {gk}∞k=1 for H with corresponding operator Af = 1
3f . But

∥f −
∞∑
k=1

< f, gk > 3fk∥ = ∥f −
∞∑
k=1

< f, 3fk > gk∥ = 2∥f∥, ∀f ∈ H,

and hence {3fk}∞k=1 and {gk}∞k=1 are not approximately dual frames.
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If {fk}∞k=1 and {gk}∞k=1 are g-dual frames with invertible operator A such that
∥I −A−1∥ < 1, then {fk}∞k=1 and {gk}∞k=1 are approximately dual frames.

Theorem 4.1. Let {fk}∞k=1 and {gk}∞k=1 be two Bessel sequences in H with pre-
frame operators T and U , respectively. If there exist constants λ, µ ∈ [0, 1) such
that

∥f − UT ∗f∥ ≤ λ∥UT ∗f∥+ µ∥f∥, ∀f ∈ H,

then {fk}∞k=1 and {gk}∞k=1 are g-dual frames for H.

Proof. By [6, lemma (15.1.3)] UT ∗ is invertible and hence {fk}∞k=1 and {gk}∞k=1 are
g-dual frames for H. �

In the rest of this section, we consider g-dual Gabor frames with special cor-
responding invertible operator. For a, b ∈ R, c > 0 consider the translation, modu-
lation and dilation operator on L2(R), which are defined as

(Tag)(x) = g(x− a), (Ebg)(x) = e2πibxg(x), (Dcg)(x) =
1√
c
g(
x

c
), ∀x ∈ R,

respectively.
A Gabor frame is a frame for L2(R) of the form {EmbTnag}m,n∈Z where a, b >

0, g is a fixed function in L2(R). The duality condition for a pair of Gabor systems
{EmbTnag}m,n∈Z and {EmbTnah}m,n∈Z is presented by Janssen as follows [1]:

Lemma 4.1. Two Bessel sequences {EmbTnag}m,n∈Z and {EmbTnah}m,n∈Z form
dual frames for L2(R) if and only if∑

k∈Z
g(x− n/b− ka)h(x− ka) = bδn,0, a.e. x ∈ [0, a].

In the following theorem a sufficient and necessary condition for the g-duality
of two Bessel sequences is given.

Theorem 4.2. The Bessel sequence {EmbTnag}m,n∈Z is a g-dual frame of Bessel
sequence {EmbcTna/ch}m,n∈Z for L2(R) with operator Dc if and only if∑

k∈Z
g(xc− n/b− ka)h(x− ka/c) = (b/

√
c)δn,0, a.e. x ∈ [0, a/c].

Proof. The Bessel sequence{EmbTnag}m,n∈Z is a g-dual frame of Bessel sequence
{EmbcTna/ch}m,n∈Z for L2(R) with operator Dc if and only if
{D∗

cEmbTnag}m,n∈Z and {EmbcTna/ch}m,n∈Z form dual frames for L2(R). SinceD∗
c =

D1/c, and

D1/cEmbTna = EmbcD1/cTna = EmbcTna/cD1/c,

by lemma 4.1, {EmbTnag}m,n∈Z is a g-dual frame of {EmbcTna/ch}m,n∈Z for L2(R)
with operator Dc if and only if∑

k∈Z
D1/cg(x− n/bc− ka/c)h(x− ka/c) = bδn,0, a.e. x ∈ [0, a/c].

The proof is completed by the equivalency of∑
k∈Z

D1/cg(x− n/bc− ka/c)h(x− ka/c) = bδn,0, a.e. x ∈ [0, a/c],
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and ∑
k∈Z

g(xc− n/b− ka)h(x− ka/c) = (b/
√
c)δn,0, a.e. x ∈ [0, a/c].

�

For complex number λ ̸= 0, the operator Aλ defined by Aλf = λf , for all f ∈
L2(R) is a bounded invertible operator on L2(R). It is easy to show that, the Bessel
sequence {EmbTnag}m,n∈Z is a g-dual frame of Bessel sequence {EmbTnah}m,n∈Z for
L2(R) with operator Aλ if and only if∑

k∈Z
g(x− n/b− ka)h(x− ka) = (b/λ)δn,0, a.e. x ∈ [0, a]. (5)

A necessary and sufficient condition for two Gaber frames to be g-duals with
invertible operator A ∈ B(L2(R)), in the case that A commutes with E±b and T±a

is given in the following theorem.

Theorem 4.3. Assume that {EmbTnag}m,n∈Z and {EmbTnah}m,n∈Z are Bessel se-
quences in L2(R) and that A is a bounded invertible operator on L2(R) for which it
commutes with E±b and T±a. Then {EmbTnag}m,n∈Z is a g-dual frame of {EmbTnah}m,n∈Z
for L2(R) with A if and only if∑

k∈Z
A∗g(x− n/b− ka)h(x− ka) = bδn,0, a.e. x ∈ [0, a].

Proof. Because A commutes with E±b and T±a, so does A∗ . Therefore A∗ commute
with Emb and Tna for all m,n ∈ Z.
Thus {EmbTnag}m,n∈Z is a g-dual frame of {EmbTnah}m,n∈Z for L2(R) with A if and
only if {EmbTnaA

∗g}m,n∈Z and {EmbTnah}m,n∈Z are dual frames for L2(R). The
proof is completed by applying Lemma 4.1. �
Corollary 4.1. If {EmbTnag}m,n∈Z and {EmbTnah}m,n∈Z are Bessel sequences in
L2(R) and j ∈ Z, then
(a){EmbTnag}m,n∈Z is a g-dual frame of {EmbTnah}m,n∈Z for L2(R) with T j

b
if and

only if ∑
k∈Z

g(x− n/b− ka)h(x− ka) = bδn,−j , a.e. x ∈ [0, a],

(b){EmbTnag}m,n∈Z is a g-dual frame of {EmbTnah}m,n∈Z for L2(R) with E j
a
if and

only if ∑
k∈Z

E−j
a
g(x− n/b− ka)h(x− ka) = bδn,0, a.e. x ∈ [0, a].

Proof. It is easy to show that two invertible operators T j
b
and E j

a
commute with

operators Tna and Emb. Now the results are obtained from Theorem 4.3. �

5. Perturbation of g-dual frames

In this section, the perturbation theory of g-dual frames is discussed. That
is, if {gk}∞k=1 and {hk}∞k=1 are g-dual frames for H and {fk}∞k=1 is a sequence in H

for which it is in some sense ”close” to {hk}∞k=1, does it follows that {fk}∞k=1 and
{gk}∞k=1 are g-dual frames for H? In the following theorem a sufficient condition that
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it makes {fk}∞k=1 and {gk}∞k=1 and also {fk}∞k=1 and {hk}∞k=1 to be g-dual frames for
H, is given.

Theorem 5.1. Let {gk}∞k=1 be a g-dual frame of {hk}∞k=1 for H with invertible
operator A ∈ B(H) and {fk}∞k=1 be a sequence in H. Assume that there exist
constants λ, µ ≥ 0, such that

∥
∑

ck(fk − hk)∥ ≤ λ∥
∑

ckhk∥+ µ(
∑

|ck|2)
1
2 , (6)

for all finite sequences {ck}.
a)If λ + µ

√
C1∥A∥ < 1, then {fk}∞k=1 and {gk}∞k=1 are g-dual frames for H, where

C1 is an upper frame bound for {gk}∞k=1.
b)If λ+µ

√
C2∥S−1∥ < 1, then {fk}∞k=1 and {hk}∞k=1 are g-dual frames for H, where

S and C2 are the frame operator and an upper frame bound of {hk}∞k=1, respectively.

Proof. It is easy to show that
∑∞

k=1 ck(fk − hk) converges and the inequality (6)
holds for all {ck}∞k=1 ∈ ℓ2(N). Hence the operator W : ℓ2(N) −→ H, defined by
W ({ck}∞k=1) =

∑∞
k=1 ck(fk − hk) is well-defined and bounded. Therefore, by [6,

Theorem 3.2.3], the sequence {fk − hk}∞k=1 is Bessel and so is {fk}∞k=1.
Now let λ+ µ

√
C1∥A∥ < 1. For all f ∈ H we have

∥f −
∞∑
k=1

< Af, gk > fk∥ = ∥
∞∑
k=1

< Af, gk > (fk − hk)∥

≤ λ∥
∞∑
k=1

< Af, gk > hk∥+ µ(
∞∑
k=1

| < Af, gk > |2)
1
2

≤ (λ+ µ
√
C1∥A∥)∥f∥ < ∥f∥.

Therefore ∥I − TU∗A∥ < 1 and TU∗ is invertible, where T and U are the pre-frame
operators of {fk}∞k=1 and {gk}∞k=1, respectively. Hence {fk}∞k=1 and {gk}∞k=1 are g-
dual frames for H. i.e., (a) holds.
If λ+ µ

√
C2∥S−1∥ < 1, then a similar argument shows that

∥f −
∞∑
k=1

< S−1f, hk > fk∥ < ∥f∥, ∀f ∈ H,

and hence {fk}∞k=1 and {hk}∞k=1 are g-dual frames for H. i.e., (b) holds. �

Corollary 5.1. Let {gk}∞k=1 and {hk}∞k=1 be g-dual frames for H and {fk}∞k=1 be a
sequence in H. If there exists a constant λ ∈ [0, 1), such that

∥
∑

ck(fk − hk)∥ ≤ λ∥
∑

ckhk∥,

for all finite sequences {ck}, then {fk}∞k=1 and {gk}∞k=1 are g-dual frames for H.
Also are {fk}∞k=1 and {hk}∞k=1.

Corollary 5.2. Let {gk}∞k=1 be a frame for H with frame operator S and upper
frame bound C. Assume that {fk}∞k=1 is a sequence in H and there exist constants
λ, µ ≥ 0, such that

∥
∑

ck(fk − gk)∥ ≤ λ∥
∑

ckgk∥+ µ(
∑

|ck|2)
1
2 ,
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for all finite sequences {ck}. If λ + µ
√
C∥S−1∥ < 1, then {fk}∞k=1 and {gk}∞k=1 are

g-dual frames for H.

In the case that {fk − hk}∞k=1 is a Bessel sequence, the following theorem (as
a consequence of Theorem 5.1) is useful.

Theorem 5.2. Assume that {gk}∞k=1 is a g-dual frame of {hk}∞k=1 for H with in-
vertible operator A ∈ B(H). Let {fk}∞k=1 be a sequence in H and B be an invertible
operator in B(H) such that

∞∑
k=1

| < Bf, fk − hk > |2 ≤ µ∥f∥2, ∀f ∈ H, (7)

for some µ > 0.
a) If µ < C−1

1 (∥A∥∥B−1∥)−2, then {fk}∞k=1 and {gk}∞k=1 are g-dual frames for H,
where C1 is an upper frame bound for {gk}∞k=1.

b) If µ < C−1
2 (∥S−1∥∥B−1∥)−2, then {fk}∞k=1 and {hk}∞k=1 are g-dual frames for

H, where S and C2 are the frame operator and an upper frame bound of {hk}∞k=1,
respectively.

Proof. The inequality (7) shows that the sequence {fk−hk}∞k=1 is a Bessel sequence
with upper frame bound µ∥B−1∥2 and hence

∥
∑

ck(fk − hk)∥ ≤ √
µ∥B−1∥(

∑
|ck|2)

1
2 ,

for all {ck}∞k=1 ∈ ℓ2(N). Therefore the inequality (6) holds by constants 0 and√
µ∥B−1∥. Now the results are obtained from Theorem 5.1. �

In the following we consider perturbation of g-dual Gabor frames. An impor-
tant perturbation question is, if {EmbTnag}m,n∈Z is a g-dual frame of {EmbTnah}m,n∈Z
for L2(R) and ϕ ∈ L2(R) is ”close” to h, does it follows that {EmbTnag}m,n∈Z is a g-
dual frame of {EmbTnaϕ}m,n∈Z. A sufficient condition for ϕ is given in the following
theorem.

Theorem 5.3. Let {EmbTnag}m,n∈Z be a g-dual frame of {EmbTnah}m,n∈Z for L2(R)
with invertible operator A ∈ B(L2(R)) and ϕ be a function in L2(R) such that

R :=
1

b
sup

x∈[0,a]

∑
k∈Z

|
∑
n∈Z

(ϕ− h)(x− na)(ϕ− h)(x− na− k

b
)| <∞. (8)

a) If R < 1
C1∥A∥2 , then {EmbTnaϕ}m,n∈Z and {EmbTnag}m,n∈Z are g-dual frames for

L2(R), where C1 is an upper frame bound for {EmbTnag}m,n∈Z.

b) If R < 1
C2∥S−1∥2 , then {EmbTnaϕ}m,n∈Z and {EmbTnah}m,n∈Z are g-dual frames

for L2(R), where S and C2 are the frame operator and an upper frame bound of
{EmbTnah}m,n∈Z, respectively.

Proof. The inequality (8) shows that the sequence
{EmbTnaϕ− EmbTnah}m,n∈Z is a Bessel sequence with upper frame bound R by [6,
Theorem 8.4.4]. Now the results are obtained from Theorem 5.2. �

In the rest of section we consider perturbation of g-dual wavelet frames. A
wavelet frame is a frame for L2(R) of the form {aj/2ψ(ajx − kb)}j,k∈Z, where a >
1, b > 0 and ψ ∈ L2(R). An important perturbation question is, if {aj/2ψ̃(ajx −
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kb)}j,k∈Z is a g-dual frame of {aj/2ψ(ajx − kb)}j,k∈Z for L2(R) and ϕ ∈ L2(R)
is ”close” to ψ, does it follows that {aj/2ψ̃(ajx − kb)}j,k∈Z is a g-dual frame of

{aj/2ϕ(ajx−kb)}j,k∈Z for L2(R). A sufficient condition for ϕ is given in the following
theorem.

Theorem 5.4. Let {aj/2ψ̃(ajx−kb)}j,k∈Z be a g-dual frame of {aj/2ψ(ajx−kb)}j,k∈Z
for L2(R) with invertible operator A ∈ B(L2(R)) and ϕ be a function in L2(R) such
that

R :=
1

b
sup

|γ|∈[1,a]

∑
j,k∈Z

|(ϕ̂− ψ̂)(ajγ)(ϕ̂− ψ̂)(ajγ + k/b)| <∞. (9)

a) If R < 1
C1∥A∥2 , then {aj/2ϕ(ajx− kb)}j,k∈Z and {aj/2ψ̃(ajx− kb)}j,k∈Z are g-dual

frames for L2(R), where C1 is an upper frame bound for {aj/2ψ̃(ajx− kb)}j,k∈Z.
b) If R < 1

C2∥S−1∥2 , then {aj/2ϕ(ajx − kb)}j,k∈Z and {aj/2ψ(ajx − kb)}j,k∈Z are g-

dual frames for L2(R), where S and C2 are the frame operator and an upper frame

bound of {aj/2ψ(ajx− kb)}j,k∈Z, respectively.

Proof. The inequality (9) shows that the sequence {aj/2ϕ(ajx − kb) − aj/2ψ(ajx −
kb)}j,k∈Z is a Bessel sequence with upper frame bound R by [6, Theorem 11.2.3].
Now the results are obtained from Theorem 5.2. �
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