U.P.B. Sci. Bull., Series A, Vol. 75, Iss. 1, 2013 ISSN 1223-7027

G-DUAL FRAMES IN HILBERT SPACES

Mohammad Ali Dehghan', Mohammad Ali Hasankhani Fard?

The duals of frames have an essential role in reconstruction of vectors (or
signals ) in terms of the frame elements. In this paper, g-duals of a frame in a
separable Hilbert space H are introduced and characterized. By applying g-duals
as well, (which also includes usual duals) we can achieve more reconstruction
formulas to obtain signals. Also, we show that the set of approzimately duals
of a frame is a proper subset of the set of its g-duals and some examples of g-
dual frames are discussed. Finally, application of g-duals in Gabor frames and
perturbation of g-dual frames are given as well.
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1. Introduction

Frames were first introduced by Duffin and Schaeffer [8] in the study of nonhar-
monic Fourier series in 1952. Frames have very important and interesting properties
which make them very useful in the characterization of function spaces, signal pro-
cessing and many other fields. A frame is a family of elements in a separable Hilbert
space which allows stable not necessarily unique decomposition of arbitrary elements
into expansions of frame elements [6]. Given a separable Hilbert space H with inner
product < .,. >, a sequence {f}32, is called a frame for H if there exist constants
0 < C4,Cy < oo such that for all f € H,

CUIFIP <Y 1< fofi > P < CallfI1%, (1)

k=1

where C1,Cs are the lower and upper frame bounds, respectively. The second in-
equality of the frame condition (1) is also known as the Bessel condition for {f;}7° .
If Ci1 = Cs, then {f}72, is called a tight frame. The bounded linear operator T
defined by

(e}

T:l(N) = H, T{cx}2, =) crfe
k=1
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is called the pre frame operator of {f;}72,. Also the bounded linear operator S
defined by

[e.9]
S HI Sf=) <fifi>f

k=1
is called the frame operator of { f;}7° . It is easy to show that S = TT™*, where T* is
the adjoint operator of T'. A Riesz basis for J{ is a family of the form {Ae;}?° ;, where
{er}72, is an orthonormal basis for H and A € B(H) is an invertible operators.
Every Riesz basis for H is a frame for H{. For more information concerning frames
refer to [2, 3, 4, 5, 9].

Two frames {f;}3;2, and {gx};>, are dual frames for H if

F=>_<fhe>g=> <fgp>fe VfeH
k=1 k=1

Dual frames are important to reconstruction of vectors (or signals ) in terms of the
frame elements. Unfortunately, it is usually complicated to calculate a dual frame.
Now we are going to extend this concept. We have more reconstruction formulas of
vectors (or signals ) in terms of the frame elements with use of the g-dual frames.
In section 2 we introduce generalized dual frames and find some properties. In
section 3 we characterize all generalized dual frames for a given frame. In Section
4 a comparison between approximately dual frames and g-dual frames as well as
applications in Gabor frames are given. In Section 5 the perturbation theory of
g-dual frames is discussed.

2. g-dual frames

Definition 2.1. Let {f;}72, be a frame for H. A frame {gr};>, is called a gen-
eralized dual frame or g-dual frame of {fi}3>, for H if there exists an invertible
operator A € B(H) such that for all f € 3,

F=Y_ <Af.g> fr (2)
k=1

If V is a closed subspace of H, a frame {gi}32 is called a g-dual frame of { fr,}72,
for V if (2) satisfies for all f € V' and for some invertible operator A € B(V).

When A = I, {g}?2, is an ordinary dual frame of {fi}?2,. If S is the frame
operator of the frame {f;}7, then for all f € H we have

F=> <S> fe=> <SS f> (3)
k=1 k=1

and hence each frame is a g-dual frame for itself. The operator A in (2) is unique,
since for all f € H,

AT =D < o > f
k=1

and hence A~! = TU*, where T and U are the pre-frame operators of { fr}e, and
{9k }72,, respectively. Also, we say the frame {g;}?2, is a g-dual frame of {f;}72,
with corresponding invertible operator (or with invertible operator) A.
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Example 2.1. Let m be a positive integer number, {g}c}?’zl be a dual frame of frame
{fe}i2y in H fori = 1,2,...,m, {c;}2) be a finite sequence of complex numbers
such that > i, ¢; # 0 and hy, = Y it cigh. Then Af = ST f defines a bounded
invertible operator on H and

F=>"<Af fr>hi,Vf€H

k=1
Hence the sequence {hy}?2, is a g-dual frame of {fi}72 .

By (3) the g-duality relation is reflexive whereas ordinary duality relation
is not. In the following lemma and example, we show that g-duality relation is
symmetric while it is not transitive.

Lemma 2.1. Let {f;}72, and {gr}3>, be Bessel sequences in J.Then the following
are equivalent
(a) There exists an invertible operator A € B(H) such that

=20 <Af, fu > g, VfeXH
(b) There exists an invertible operator A € B(H) such that

f=>re1 <Af,gt > fr,VfeXH
(c)There exists an invertible operator A € B(H) such that

< fag >= Zzozl < Afafk >< gk, g >)vf7g € H.

In case one of the equivalent conditions are satisfied, {gi}72, is a g-dual of { fr}72,
and vice versa that are called g-dual frames.

Proof. Let (a) be satisfied and f € H. Then there exists g € H, such that f = Ag
and g = Y oo, < Ag, fr > gk. Therefore f = Ag = > 72, < f, fr > Ag. Since
{Agr}72, is Bessel sequence, by [6, Lemma 5.6.2] we have

F=Y <[ fx>Ag

k=1

=> <[ Agk > fu
k=1

= Z < A*f7gk > fk:
k=1
and hence (b) holds. A similar argument shows that (b) derives (a). The rest of
proof is as the proof of [6, Lemma 5.6.2]. If the conditions are satisfied for { fx}32,
and {gr}72,, then

3

1A =1 < Af f><gi f> ]

|
k=1

Z|<Affk>|2\<fgk>|2
k=1

g

< 02||A||2Hf\|22| < foo >

k=1
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where Cy is the upper frame bound for {f;}32,. Then {gx}32, is a frame. Since (a)
and (b) are equivalent, {f;}7° is also a frame. O

Example 2.2. Let {e}2, be an orthonormal basis for H. Set

{fk}zozl = {617076270763707 }7

{9x}72, = {e1,e1,e2,e2,...} and

{hk}zozl = {0,61,0,62,0,63, }

Then {gr}32, is a g-dual frame (dual frame) of {fi}72, and {hi}?2, is a g-dual
frame (dual frame) of {gi}72 ;-

Now we have < g, fr > hy = 0 for k = 1,2,... and for all g € H. Therefore
Yoroy < Af, fe > h = 0, for all f € H and for all invertible operator A € B(H).
Hence {hi}32, is not a g-dual frame of { fi}32 .

An orthonormal basis can not be a dual frame of another orthonormal basis.
Now, it is shown that, not only orthonormal bases, but also Riesz bases are g-dual
frames.

Proposition 2.1. Fvery two Riesz bases are g-dual frames.

Proof. Let {f;}72, and {gx}72, be two Riesz bases for H.There exist an orthonormal
basis {e}2; and bounded invertible operators A; and A; on H such that f, = Aiey
and g = Aser. Since A; and Ay are invertible, there exists a bounded invertible
operator A on } such that A2 A7A = I and hence for all f € J{ we have

f=AMAAf = A () < AjAf e > )
k=1

< Af, Arer > Agey
k=1

e
Il

1
U

In section 3, we characterize all g-dual frames of a given frame. Now we are
going to give a simple way for construction of infinitely many g-dual frames of a
given frame ( whit common invertible operator ).

Proposition 2.2. Assume that {gr}72, is a g-dual frame of {fi}32, for H with
invertible operator A € B(H) and let a be a complex number. Then the sequence
{hi}52, defined by hi, = agy + (1 — @) (A™)*S™1 fi, is a g-dual frame of {fx}3,
for 3 with invertible operator A, where S is the frame operator of { fi}72 .

Proof. For all f € H we have

S < Af,h > fo=Y_ < Af.ag+(1—a)( A7) ST > fir
k=1 k=1

ay <Afig>fr+(1—-a)d <[5 fu>fi

k=1

k=1
af+(1-a)f =f
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O

In the next proposition we obtain a g-dual frame for H from a g-dual frame
for a subspace of H .

Proposition 2.3. Let { i}, be a frame for I with frame operator S and {gr}3>,
be a g-dual frame of {fr}32, for V := Span{gy}3>, with invertible operator B €
B(V). Then the sequence {hy}32, defined by hy, = B*g, + S~ fi, is a g-dual frame
of {fr}izy for 3.

Proof. The operator B can be extended to operator B; on H defined by B; :=
BP +Q, where P and Q are the orthogonal projection onto V and V1, respectively.
Therefore By (V1) C V* and By = Bon V. Also Bf = B* on V, since for all f € V
and g € H we have

<Bif,9>=</[,Big>=<[,BPg+Qg>
=< f,BPg >=< B*f, Pg >
=< B'f,Pg+Qg>=<DB"f,g>.
Let A := 1 — 1P, where I denote the identity operator on H. Since || — Al < 1,

the operator A is invertible. Let f € H, then there exist unique vectors g € V and
h € V+ such that f = g + h. Therefore

9] o 1
D <Afh>fr=) <sg+h B+ ST i > i

k=1 k=1
=1
=D <59+h Bl + S fi > fi
k=1
1 & =1
_ = - -1
=52 <Bg.gx>frt) <50+h S fi> fi
k=1 k=1
o0
+Y < Bih,gi > fi
k=1

1 1
= — — h 0: .
2g+29+ + f

O

Corollary 2.1. Let { fi}32; be a frame for 3 with frame operator S and {gy.}7°, be
a dual frame of {fr}32, for V :=3pan{gr};2,. Then the sequence {hy}72, defined
by by, = gk + S~ fi is a g-dual frame of {f}5, for K.

Example 2.1 shows that the sum of two dual frame is g-dual. In the following
proposition a necessary condition for g-duality of the sum of two g-dual frames is
given.

Proposition 2.4. Let {g;}72, and {h}32, be two g-dual frames of {fr}3;2, with
corresponding invertible operators A and B, respectively. If A=t + B~ is an invert-
ible operator, then {fi}32, and {gi + hi}3>, are g-dual frames.
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Proof. Let T € B(H) be the inverse operator of (A~ + B~!). For all f € K, we
have

N <Tfgr+he>fr=> <Tfgr>fi+> <Tfhp> fi
k=1 k=1 k=1

= A_‘le+B_1Tf
A+ B Hrr=1.

Invertible operators preserve the g-duality property of frames.

Proposition 2.5. Let { fr};2, and {gr};>, be two sequences in H and U,V € B(H)
be two invertible operator on H. Then {fi}32, and {gr}32, are g-dual frames for
H if and only if {U fr}32, and {Vgip}i, are g-dual frames for H.

Proof. Let {fr}32, and {gx}?2, be g-dual frames for . Then there exists an
invertible operator A € B(H) such that f =72, < Af, f > g for all f € H and
hance

F=VVT =V <AV fi > gr)
k=1

=)< (U Y AV, Ufi > V.
=1

The converse is obtained by acting the operators U~! and V1. O

3. Characterization of g-dual frames

As we have seen, every frame in H is a g-dual of itself and hence all frames
have at least one g-dual. Now, we characterize all g-dual frames of a given frame.
The results for the case of dual frames and a similar proof of the following lemmas
and theorem are given in [6].

Lemma 3.1. Let {fi}32, be a frame for H with pre-frame operator T and {0},
be the canonical orthonormal basis for ¢2(N). The g-dual frames for {fi}3>, are
precisely the families {gi}72, = {V R}, whereV : {a(N) — H is a bounded left
inverse of T*A, for some invertible operator A € B(H).

Lemma 3.2. Let A € B(H) be an invertible operator and {fr}3>, be a frame for
H with pre-frame operator T' and frame operator S. The bounded left inverses of
T*A, are precisely the operators of the form A*S™IT + W (I — T*S~'T), where
W : lo(N) — H is a bounded operator and I denotes the identity operator on lo(N).

Theorem 3.1. Let {fi}32, be a frame for H with frame operator S. The g-dual
frames of { fi}72, are precisely the families

{or}zy ={Afe+ e =Y < S fur f5 > by}, (4)
j=1

where {hi}32, is a Bessel sequence in H and A € B(H) is an invertible operator.
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In the ordinary case, every Riesz basis has a unique dual frame, whereas a
Riesz basis can have infinitely many g-dual frames that they also are Riesz basis.

Corollary 3.1. If {fi}32, is a Riesz basis in I, then the g-dual frames of { fr.}72,
having the form {gi}7>, = {Afr}ie,, where A € B(H) is an invertible operator. In
particular {gp}72, is a Riesz basis.

Proof. Since {fx}?2, is a Riesz basis, {fx}52, and {S™!fx}22, are bi-orthogonal
sequences, where S is the frame operator of {f;}32,. Hence by Theorem 3.1

{oe}esy = {Afk + i =Y < SV f5 > by}t = {Af
j=1

where A is an invertible operator in B(J). It remains to show that {g;}7°, is a
Riesz basis. By the definition of a Riesz basis, there exist an orthonormal basis
{ex}72, and invertible operator U € B(JH) such that f; = Ue;. We conclude that
{op}2 = {Af}2, = {AUer}2, ie, {gr}32, is a Riesz basis. O

4. g-dual frames, approximately dual frames and Gabor frames

Approximately dual frames are defined by Christensen in [7]. Two Bessel
sequences { f}72, and {g}3>, with pre-frame operator 7" and U, respectively, are
approximately dual frames for H if || -TU*|| < Ll or [[[-UT*|| < 1. In what follows,
we study the relation between approximately dual frames and g-dual frames.

Proposition 4.1. If two Bessel sequences {fi}72, and {gp}7>, are approzimately
dual frames for 3, then {fiy}72, and {gr}3>, are g-dual frames.

Proof. Since {fr}32, and {g;}72, are approximately dual frames, ||I — TU*|| < 1
or ||[I —UT*|| <1, where T and U are pre-frame operators of { f;}32, and {gx}72,,
respectively. Hence UT* or TU* are invertible. If UT™ is invertible, then for all
f € H we have

f=UTHUT =Y <OT) ', fr > gns
k=1

and if TU* is invertible, then for all f € H we have

f=@UNTU) =) <(TU) " fogk > fie
k=1

Therefore {f}72, and {gx}7°, are g-dual frames. O

The following example illustrates that the set of approximately duals of a
frame is a proper subset of the set of its g-duals.

Example 4.1. Let {fi.}72, and {gr}3, be dual frames for 3. Then {3fi}32, is a
g-dual frame of {gr}32, for H with corresponding operator Af = %f But

1F =" < foge>3full = 1f =D < £.3f > aell = 2IIfll, Vf €K,
k=1 k=1

and hence {3fi}52, and {gp}32, are not approzimately dual frames.
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If {fx}72, and {gr};2, are g-dual frames with invertible operator A such that
|1 — A7 < 1, then {f,}32, and {gx}32, are approximately dual frames.

Theorem 4.1. Let {fi}72, and {gr}32, be two Bessel sequences in H with pre-
frame operators T and U, respectively. If there exist constants \,u € [0,1) such
that

If = UT*fI| < XUT*f[| + pll FIl, VS €3,

then {fr}32, and {gx}72, are g-dual frames for K.

Proof. By [6, lemma (15.1.3)] UT™ is invertible and hence {f;}7°, and {gx}72, are
g-dual frames for H. O

In the rest of this section, we consider g-dual Gabor frames with special cor-
responding invertible operator. For a,b € R, ¢ > 0 consider the translation, modu-
lation and dilation operator on Lo(R), which are defined as

(Tag)(z) = gz —a), (Epg)(z) = > g(x), (Deg)(z)=

respectively.

A Gabor frame is a frame for Ly(R) of the form {E,,3T049}m nez where a,b >
0, g is a fixed function in Lo(R). The duality condition for a pair of Gabor systems
{EmbThnag}tmnez and {EppThoh}m nez is presented by Janssen as follows [1]:

1 T
—qg(—), V R
ﬁg(c), r €R,

Lemma 4.1. Two Bessel sequences {EnpTnagtmmnez and {EppyThoh}mnez form
dual frames for La(R) if and only if

Zg(af —n/b—ka)h(z — ka) = bd, 0, a.e. x€0,al.
kEZ

In the following theorem a sufficient and necessary condition for the g-duality
of two Bessel sequences is given.

Theorem 4.2. The Bessel sequence {EppTnag}tmnez is a g-dual frame of Bessel
sequence { EmpeTha/chymmez for La(R) with operator D, if and only if

Zg(xc —n/b—ka)h(z — ka/c) = (b/\/¢)dno, a.e. € [0,a/c].

kEZ

Proof. The Bessel sequence{EypThag}tmnez is a g-dual frame of Bessel sequence
{EmbeThajchymmez for La(R) with operator D, if and only if
{D:EnipThag}mnez and { EppeTngjch}mnez form dual frames for Lz (R). Since D} =
Dy, and

Dl/cEmana = mbch/cTna = mbCTna/ch/c7
by lemma 4.1, {EypThagtmnez is a g-dual frame of {EppcThq/chtmmez for La(R)
with operator D, if and only if

ZDl/cg(x —n/bec — ka/c)h(x — ka/c) = bdp o, a.e. x€[0,a/c|.
kEZ

The proof is completed by the equivalency of

ZDl/Cg(a: —n/bc — ka/c)h(xz — ka/c) = bdp o, a.e. z€[0,a/c,
kezZ
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and

Zg(wc —n/b—ka)h(z — ka/c) = (b/\/¢)onp, a.e. z€[0,a/c].
keZ
O

For complex number A # 0, the operator Ay defined by A)f = Af, for all f €
Ls(R) is a bounded invertible operator on La(R). It is easy to show that, the Bessel
sequence {EppThag}mnez is a g-dual frame of Bessel sequence {EpThah }m nez for
Ly(R) with operator Ay if and only if

Zg(x —n/b—ka)h(z — ka) = (b/N)dno, a.e. z€]0,al. (5)
keZ

A necessary and sufficient condition for two Gaber frames to be g-duals with
invertible operator A € B(L2(R)), in the case that A commutes with Ei, and Ty,
is given in the following theorem.

Theorem 4.3. Assume that {EppThag}mmnez and {EpnpThah}mnez are Bessel se-
quences in Lo(R) and that A is a bounded invertible operator on Lo(R) for which it
commutes with Evy and Ty. Then {EppThag}mnez is a g-dual frame of { EppTnahtmnez
for La(R) with A if and only if

ZA*g(x —n/b— ka)h(z — ka) = bd, 0, a.e. x€]0,al.
kEZ

Proof. Because A commutes with F4y and T4, so does A* . Therefore A* commute
with E,,; and T, for all m,n € Z.

Thus {EypThnag tmnez is a g-dual frame of { E,pThah}mnez for Lao(R) with A if and
only if {EnpThaA*g}mnez and {EppThoh}tmnez are dual frames for Ly(R). The
proof is completed by applying Lemma 4.1. O

Corollary 4.1. If {EpThag}tmmnez and {EppThoh}tmnez are Bessel sequences in

Ly(R) and j € Z, then

(e EvpTrnagtmmnez s a g-dual frame of { EynpTnahtmnez for La(R) with T; if and
b

only if

Zg(x —n/b—ka)h(z — ka) = bd, —j, a.e. z€][0,a],
keZ
(O ErmvThnag}tmnez s a g-dual frame of { EppThah}mnez for La(R) with E% if and

only if

ZE;jg(x —n/b—ka)h(z — ka) = bd, 0, a.e. x€]0,a]
kez °
Proof. 1t is easy to show that two invertible operators T, and E; commute with

b a
operators T,, and E,,;. Now the results are obtained from Theorem 4.3. ]

5. Perturbation of g-dual frames

In this section, the perturbation theory of g-dual frames is discussed. That
is, if {gx}72, and {hy}72, are g-dual frames for 3 and {f}32, is a sequence in I
for which it is in some sense ”close” to {h;}72, does it follows that {f;}?°, and
{91} are g-dual frames for H? In the following theorem a sufficient condition that
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it makes {fi}72, and {gx}72, and also {f;}72, and {hj};2, to be g-dual frames for
H, is given.

Theorem 5.1. Let {gr}732, be a g-dual frame of {hi}32, for H with invertible
operator A € B(H) and {fr}2, be a sequence in H. Assume that there exist
constants A\, u > 0, such that

1" enlfi = hi) | < AN ewhll + (> lexl?)2, (6)

for all finite sequences {cy}.

a)If XN+ p/Chl|A||l < 1, then {fi}72, and {gr}32, are g-dual frames for H, where
C\ is an upper frame bound for {gi}32 ;.

D)If A+ u/Co||STY| < 1, then { fi}32, and {hy}32, are g-dual frames for 3, where
S and Cy are the frame operator and an upper frame bound of {hj}72 ,, respectively.

Proof. 1t is easy to show that Y 7, cx(fr — hi) converges and the inequality (6)
holds for all {c,}32, € ¢2(N). Hence the operator W : f3(N) — I, defined by
W {er}2,) = >opey ck(fi — hg) is well-defined and bounded. Therefore, by [6,
Theorem 3.2.3], the sequence {fr — hi}3, is Bessel and so is {fi}72 .

Now let A + uy/C1||A]| < 1. For all f € H we have

1F =Y <Afig> fill = 1D < Af.gk > (fu — ha)|

k=1 k=1

oo oo .
k=1 k=1

< A+ Vv ADIAN < I
Therefore || I —TU*A| < 1 and TU* is invertible, where T" and U are the pre-frame
operators of {fr}32; and {gx}32,, respectively. Hence {fi}72, and {gx}32, are g-

dual frames for H. i.e., (a) holds.
If A+ uy/Col|S71|| < 1, then a similar argument shows that

IF =< S b > full <Ifl, VfeX

k=1
and hence {f;}32, and {h;}72, are g-dual frames for . i.e., (b) holds. O

Corollary 5.1. Let {gr}72, and {ht}72, be g-dual frames for 7 and {fi}72, be a
sequence in H. If there exists a constant X € [0,1), such that

1Y " erlfr = hi)ll < A exhull,

for all finite sequences {c}, then {fi}?2, and {gr}3>, are g-dual frames for K.
Also are {fi}72, and {hi}72,-

Corollary 5.2. Let {g;}3>, be a frame for H with frame operator S and upper
frame bound C. Assume that {fi}32, is a sequence in H and there exist constants
A, p >0, such that

1" el = gl < A ewgill + (> lewl®) 2,
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for all finite sequences {ck}. If X+ puvV/C||S7Y| < 1, then {1}, and {gr}32, are
g-dual frames for H.

In the case that {fi — hi};2, is a Bessel sequence, the following theorem (as
a consequence of Theorem 5.1) is useful.

Theorem 5.2. Assume that {g;}7°, is a g-dual frame of {h}3, for H with in-
vertible operator A € B(H). Let {fi}32, be a sequence in H and B be an invertible
operator in B(H) such that

YOI <Bf, fo — e > > < pllfII*, VfeX, (7)
k=1
for some > 0.
a) If p < CTH(JANIB™Y) ™2, then {fx}32, and {gx}3, are g-dual frames for X,
where Cy is an upper frame bound for {gr}72 -
b) If u < Cy(ISTHIIBY) 72, then {fx}3, and {ht}32, are g-dual frames for
H, where S and Cy are the frame operator and an upper frame bound of {hy}2,,
respectively.

Proof. The inequality (7) shows that the sequence {f —hi}72, is a Bessel sequence
with upper frame bound w||B~!||? and hence

1" el = m)ll < vl BT lenl®)?,

for all {cx}32, € f2(N). Therefore the inequality (6) holds by constants 0 and
Vi B7Y|. Now the results are obtained from Theorem 5.1. O

In the following we consider perturbation of g-dual Gabor frames. An impor-
tant perturbation question is, if { EypThnag }mnez is a g-dual frame of { Eypy Thoh}m nez
for Ly(R) and ¢ € Ly(R) is "close” to h, does it follows that {E,,pT709}mnez is a g-
dual frame of {E,,p 100} mnez. A sufficient condition for ¢ is given in the following
theorem.

Theorem 5.3. Let {EppThag}tmnez be a g-dual frame of { EppThah}mnez for La(R)
with invertible operator A € B(Ly(R)) and ¢ be a function in Lo(R) such that

L sup SO0 - W —na)(o - W) —ma— ) <00 (9
2€[0.0] pez, nez

a) IfR < W, then { EvpTrna®tmmnez and {EppThag}tmnez are g-dual frames for

Ly(R), where Cy is an upper frame bound for { EpmpyTnag}mmnez.-

b) If R < m, then {EppTha®}mmnez and {EppThahtmnez are g-dual frames

for La(R), where S and Co are the frame operator and an upper frame bound of

{EmpTrah}mnez, respectively.

R =

Proof. The inequality (8) shows that the sequence
{EmpTrad — EmpTnah}mnez is a Bessel sequence with upper frame bound R by 6,
Theorem 8.4.4]. Now the results are obtained from Theorem 5.2. O

In the rest of section we consider perturbation of g-dual wavelet frames. A
wavelet frame is a frame for La(R) of the form {a?/?¢)(a’x — kb)}; rez, Where a >
1,b > 0 and ¢ € Lo(R). An important perturbation question is, if {a//?¢(a/z —



140 Mohammad Ali Dehghan, Mohammad Ali Hasankhani Fard

kb)}jkez is a g-dual frame of {a?/?y¥(a’z — kb)},rez for La(R) and ¢ € La(R)
is 7close” to v, does it follows that {aj/2z;(aja: — kb)}jkez is a g-dual frame of
{a?Pp(alz—kb)} jkez for Lo(R). A sufficient condition for ¢ is given in the following
theorem.

Theorem 5.4. Let {a?/?¢(a?z—kb)}; rez be a g-dual frame of {a?/*¢(a/z—kb)}; rez
for La(R) with invertible operator A € B(L2(R)) and ¢ be a function in La(R) such
that

Rim g swp S (0= D)) - d)al + k)] < o ©
hlellal ey

a) If R < W, then {a?/?¢(a/x — kb)} jkez and {a?/*(a’x — kb)}, ez are g-dual
frames for Lo(R), where C1 is an upper frame bound for {aj/zi(ajx —kb)}jkez-

b) If R < m, then {a?/?¢(a’z — kb)}; ez and {a?/*P(alz — kb)}; rez are g-
dual frames for La(R), where S and Co are the frame operator and an upper frame
bound of {a?/?y(a’x — kb)}; kez, respectively.

Proof. The inequality (9) shows that the sequence {a//2¢(a’z — kb) — a?/*¢(a’z —
kb)};kez is a Bessel sequence with upper frame bound R by [6, Theorem 11.2.3].
Now the results are obtained from Theorem 5.2. O
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