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FIXED POINT THEOREMS IN C∗-ALGEBRA-VALUED S-METRIC

SPACES WITH SOME APPLICATIONS

C. Kalaivani1, G. Kalpana2

In this paper, we introduce the new type of metric space, namely, C∗-
algebra-valued S-metric space and give some fixed point theorems for self maps with
contractive conditions. As applications, existence and uniqueness results for a type of
integral equation and operator equation are given.
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1. Introduction

Metric spaces are very important in mathematics and applied sciences. Gähler [4]
and Dhage [3] introduced the concepts of 2-metric spaces and D-metric spaces, respectively,
Mustafa and Sims [10] introduced a new structure of generalized metric spaces which are
called G-metric spaces as a generalization of metric spaces. Further, Sedghi, Shobe and
Zhou [11] introduced the notion of a D∗ -metric space as an improved version of a Dhage D-
metric space. Later, he examined the shortcomings of both G-metric and D∗-metric spaces
and gave the concept of a new generalized metric space called a S-metric space [12] and
investigated some of their properties. Also discussed a fixed point theorem for self mapping
on a complete S-metric space.

Now, we present some necessary concepts and results in C∗-algebra [2, 9]. Suppose
that A is an unital algebra. An involution on A is a conjugate-linear map a 7→ a∗ on A

such that a∗∗ = a and (ab)∗ = b∗a∗ for all a, b ∈ A. The pair (A, ∗) is called a ∗-algebra.
A Banach ∗-algebra is a ∗-algebra A together with a complete sub-multiplicative norm such
that ∥a∗∥ = ∥a∥(∀a ∈ A). A C∗-algebra is a Banach ∗-algebra such that ∥a∗a∥ = ∥a∥2
[9]. It is clear that under the norm topology, L(H), the set of all bounded linear operators
on a Hilbert space H, is a C∗-algebra. In [7], Ma established the notion of C∗- algebra-
valued metric spaces and proved some fixed point theorems for self maps with contractive
or expansive mappings. The main idea consists in using the set of all positive elements of a
unital C∗- algebra instead of the set of real numbers. Further in [6, 8], introduced a concept
of C∗- algebra-valued b-metric spaces which generalizes the concept of C∗-algebra valued
metric spaces.

In this paper, we introduce the new type of metric space, namely, C∗- algebra valued
S-metric space and give some fixed point theorems for self maps with contractive conditions.
Some applications of our obtained results are given.
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2. Preliminaries

Throughout this paper, A will denote an unital C∗-algebra. Set Ah = {a ∈ A : a =
a∗}. We call an element a ∈ A a positive element, denote it by 0A ≼ a, if a = a∗ and
σ(a) ⊆ [0,∞), where 0A is zero element in A and σ(a) is the spectrum of a. There is a
natural partial ordering on Ah given by a ≼ b if and only if 0A ≼ b − a. From now on,
A+ and A

′
will denote the set {a ∈ A : 0A ≼ a} and the set {a ∈ A : ab = ba,∀b ∈ A},

respectively.

Lemma 2.1. [9] Suppose that A is a unital C∗-algebra with a unit 1A.

(1) For any x ∈ A+, we have x ≼ 1A ⇔ ∥x∥ ≤ 1.
(2) If a ∈ A+ with ∥a∥ < 1

2 , then 1A − a is invertible and ∥a(1A − a)−1∥ < 1.
(3) Suppose that a, b ∈ A with a, b ≽ 0A and ab = ba, then ab ≽ 0A
(4) Let a ∈ A

′
, if b, c ∈ A with b ≽ c ≽ 0A, and 1A − a ∈ A

′

+ is an invertible operator,
then (1A − a)−1b ≽ (1A − a)−1c.

Definition 2.1. [7] Let X be a nonempty set. Suppose that the mapping d : X ×X → A

Satisfies:
(1) 0A ≼ d(x, y) for all x, y ∈ X and d(x, y) = 0A iff x = y;
(2) d(x, y) = d(y, x) for all x, y ∈ X;
(3) d(x, y) ≼ d(x, z) + d(y, z) for all x, y, z ∈ X.

Then d is called a C∗- algebra-valued metric on X and (X,A, d) is said to be a C∗-
algebra-valued metric space.
Now, We introduce the notion of C∗-algebra-valued S-metric space.

Definition 2.2. Let X be a nonempty set. Suppose the mapping S : X × X × X → A

Satisfies:
(S1) 0A ≼ S(x, y, z) for all x, y, z ∈ X;
(S2) S(x, y, z) = 0A if and only if x = y = z;
(S3) S(x, y, z) ≼ S(x, x, a) + S(y, y, a) + S(z, z, a) for all x, y, z, a ∈ X.

Then S is said to be C∗- algebra-valued S-metric on X and (X,A, S) is said to be a
C∗-algebra-valued S -metric space.

Definition 2.3. Suppose that (X,A, S) be a C∗-algebra-valued S-metric space. Let {xn}∞n=1

be a sequence in X. If S(xn, xn, x)
∥.∥A→ 0A [i.e. ∥S(xn, xn, x)∥ → 0] (n → ∞) , then it is

said that {xn} converges to x, and we denote it by limn→∞{xn} = x.

If for any p ∈ N, S(xn+p, xn+p, xn)
∥.∥A→ 0A (n → ∞), then {xn} is called a Cauchy

sequence in X.
If every Cauchy sequence is convergent in X, then (X,A, S) is called a complete

C∗-algebra-valued S-metric space.

Example 2.1.

Let X = R and A = M2(C), the set of bounded linear operators on a Hilbert space
C2. Define S : X ×X ×X → A by

S(x, y, z) =

[
|x− z|+ |y − z| 0

0 k|x− z|+ |y − z|

]
,

where k > 0 is a constant. Then (X,A, S) is a complete C∗-algebra-valued S-metric space.

Lemma 2.2. [13]

(1) If {bn}∞n=1 ⊆ A and limn→∞ bn = 0A, then for any a ∈ A, limn→∞ a∗bna = 0A.
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(2) If a, b ∈ Ah and c ∈ A
′

+, then a ≼ b deduces ca ≼ cb, where A
′

+ = A+ ∩A
′
.

Lemma 2.3. Let (X,A, S) be a complete C∗-algebra-valued S-metric space. Then, S(x, x, y) =
S(y, y, x).

Proof. By (S3), we get,

S(x, x, y) ≼ S(x, x, x) + S(x, x, x) + S(y, y, x) = S(y, y, x) (1)

S(y, y, x) ≼ S(y, y, y) + S(y, y, y) + S(x, x, y) = S(x, x, y). (2)

From (1) and (2), S(x, x, y) = S(y, y, x). �
Lemma 2.4. Let {xn} be a sequence in X. If {xn} converge to x and y, respectively, then
x = y.

Proof. Let limn→∞ xn = x and limn→∞ xn = y. By (S3) and by lemma 2.3, we have

S(x, x, y) ≼ S(x, x, xn) + S(x, x, xn) + S(y, y, xn)

= S(xn, xn, x) + S(xn, xn, x) + S(xn, xn, y)

= 2S(xn, xn, x) + S(xn, xn, y) −→ 0A (n → ∞).

Therefore, ∥S(x, x, y)∥ = 0 ⇔ x = y. �

3. Main result

Theorem 3.1. Let (X,A, S) be a complete C∗-algebra-valued S-metric space. Suppose that

the mapping f : X → X satisfies S(fx, fx, fy) ≼ a∗S(x, x, y)a, where a ∈ A
′

+ with ∥a∥ < 1,
for all x, y ∈ X. Then there exist a unique fixed point in X.

Proof. Without loss of generality, one can suppose that a ̸= 0A. Let x0 ∈ X. Construct a
sequences {xn} ⊆ X such that xn+1 = fxn. By using (3),

S(xn+1, xn+1, xn) = S(fxn, fxn, fxn−1) ≼ a∗S(xn, xn, xn−1)a

≼ (a∗)2S(xn−1, xn−1, xn−2)a
2

· · ·
≼ (a∗)nS(x1, x1, x0)a

n,

where we use the property, if b, c ∈ Ah, then b ≼ c implies a∗ba ≼ a∗ca [9].
For any n+ 1 > m and by Lemma 2.3,

S(xn+1, xn+1, xm) ≼ S(xn+1, xn+1, xn) + S(xn+1, xn+1, xn) + S(xm, xm, xn)

= 2S(xn+1, xn+1, xn) + S(xn, xn, xm)

≼ 2S(xn+1, xn+1, xn) + [S(xn, xn, xn−1)

+S(xn, xn, xn−1) + S(xm, xm, xn−1)]

≼ 2S(xn+1, xn+1, xn) + 2S(xn, xn, xn−1) +

. . .+ 2S(xm+1, xm+1, xm)

≼ 2
n∑

k=m

(a∗)kS(x1, x1, x0)a
k

Let S(x1, x1, x0) = c for some c ∈ A
′

+.

S(xn+1, xn+1, xm) ≼ 2
n∑

k=m

(a∗)kc
1
2 c

1
2 ak = 2

n∑
k=m

(c
1
2 ak)∗(c

1
2 ak)

≼ 2

n∑
k=m

|c 1
2 ak|2 ≼ 2

n∑
k=m

∥c 1
2 ak∥21A
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≼ 2∥c 1
2 ∥21A

n∑
k=m

∥a∥2k ≼ 2∥c 1
2 ∥21A

∥a∥2m

1− ∥a∥2
−→ 0A (m → ∞).

From Definition 2.3, we get that {xn} is a Cauchy sequence with respect to A. The com-
pletion of X implies that there exist x ∈ X such that limn→∞ xn = limn→∞ fxn−1 = x.

Using the condition (S3) and by Lemma 2.3,

S(x, x, fx) ≼ S(x, x, fxn) + S(x, x, fxn) + S(fx, fx, fxn)

= 2S(x, x, fxn) + S(fxn, fxn, fx)

≼ 2S(x, x, fxn) + a∗S(xn, xn, x)a −→ 0A (n → ∞).

Hence, fx = x. i.e. x is a fixed point of f .
Uniqueness: Suppose that y( ̸=)x, is another fixed point of f. Then,

0A ≼ S(x, x, y) = S(fx, fx, fy) ≼ a∗S(x, x, y)a

which together with ∥a∥ < 1 yields that

0 ≤ ∥S(x, x, y)∥ ≤ ∥a∗S(fx, fx, fy)a∥ ≤ ∥a∗∥∥S(x, x, y)∥|a∥
≤ ∥a∥2∥S(x, x, y)∥ < ∥S(x, x, y)∥.

Thus, ∥S(x, x, y)∥ = 0 and S(x, x, y) = 0A, which gives x = y. �

Corollary 3.1. Let (X,A, S) be a complete C∗-algebra-valued S-metric space. Suppose that
the mapping f : X → X satisfies

∥S(fx, fx, fy)∥ ≤ ∥a∥ ∥S(x, x, y)∥ (3)

where a ∈ A
′

+ with ∥a∥ < 1, for all x, y ∈ X. Then there exist a unique fixed point in X.

Theorem 3.2. Let (X,A, S) be a complete C∗-algebra-valued S-metric space. Suppose the
mapping, f : X → X satisfies

S(fx, fx, fy) ≼ a(S(fx, fx, x) + S(fy, fy, y)) (4)

where a ∈ A
′

+ and ∥a∥ < 1
2 , ∀x, y ∈ X. Then there exists a unique fixed point in X.

Proof. Without loss of generality, one can suppose that a ̸= 0A. Let x0 ∈ X. Construct a
sequences {xn} ⊆ X such that xn+1 = fxn. For any n ∈ N and by using (4),

S(xn+1, xn+1, xn) = S(fxn, fxn, fxn−1)

≼ a[S(fxn, fxn, xn) + S(fxn−1, fxn−1, xn−1)]

= a[S(xn+1, xn+1, xn) + S(xn, xn, xn−1)]

(1A − a)S(xn+1, xn+1, xn) ≼ aS(xn, xn, xn−1)

S(xn+1, xn+1, xn) ≼ (1A − a)−1aS(xn, xn, xn−1)

= bS(xn, xn, xn−1) ≼ b2S(xn−1, xn−1, xn−2)

· · ·
≼ S(x1, x1, x0).

where b = (1A − a)−1a and by using Lemma 2.1, we have a ∈ A
′

+ with ∥a∥ < 1
2 , one have

(1A − a)−1 ∈ A
′

+ and a(1A − a)−1 ∈ A
′

+ with
∥∥a(1A − a)−1

∥∥ < 1.
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Let S(x1, x1, x0) = c, c ∈ A
′

+. For any n+ 1 > m,

S(xn+1, xn+1, xm) ≼ S(xn+1, xn+1, xn) + S(xn+1, xn+1, xn) + S(xm, xm, xn)

= 2S(xn+1, xn+1, xn) + S(xn, xn, xm)

≼ 2S(xn+1, xn+1, xn) + [S(xn, xn, xn−1)

+S(xn, xn, xn−1) + S(xm, xm, xn−1)]

≼ 2S(xn+1, xn+1, xn) + 2S(xn, xn, xn−1)

+ . . .+ 2S(xm+1, xm+1, xm)

≼ 2[bn + bn−1 + ...+ bm]S(x1, x1, x0)

≼ 2
n∑

k=m

bkc = 2
n∑

k=m

b
k
2 b

k
2 c

1
2 c

1
2 = 2

n∑
k=m

c
1
2 b

k
2 b

k
2 c

1
2

= 2

n∑
k=m

(b
k
2 c

1
2 )∗(b

k
2 c

1
2 ) = 2

n∑
k=m

|b k
2 c

1
2 |2

≼ 2∥
n∑

k=m

|b k
2 c

1
2 |2∥1A ≼ 2∥c 1

2 ∥21A
n∑

k=m

∥bk∥2 ≼ 2∥c 1
2 ∥21A

n∑
k=m

∥b∥2k

≼ 2∥c 1
2 ∥2 ∥b∥2m

1− ∥b∥2
1A −→ 0A (m → ∞.)

From Definition 2.3, we get that {xn} is a Cauchy sequence with respect to A. The com-
pletion of X implies that there exist x ∈ X such that limn→∞ xn = limn→∞ fxn+1 = x.

Using (S3) and by Lemma 2.3,

S(fx, fx, x) ≼ S(fx, fx, fxn) + S(fx, fx, fxn) + S(x, x, fxn)

= 2(S(fx, fx, fxn) + S(fxn, fxn, x)

≼ 2[a(S(fx, fx, x) + S(fxn, fxn, xn)] + S(fxn, fxn, x)

(1A − 2a)S(fx, fx, x) ≼ 2aS(fxn, fxn, xn) + S(fxn, fxn, x)

S(fx, fx, x) ≼ 2a(1A − 2a)−1S(fxn, fxn, xn)

+(1A − 2a)−1S(fxn, fxn, x)

∥S(fx, fx, x)∥ ≤ ∥2a(1A − 2a)−1∥∥S(fxn, fxn, xn)∥
+∥(1A − 2a)−1∥∥S(fxn, fxn, x)∥ −→ 0 (n → ∞).

Therefore fx = x. i.e. x is a fixed point of f .
Uniqueness:
Suppose that y(̸=)x, is another fixed point of f. Then,

0A ≼ S(x, x, y) = S(fx, fx, fy) ≼ a[S(fx, fx, x) + s(fy, fy, y)] = 0A.

Hence, S(x, x, y) = 0A ⇔ x = y. Therefore the fixed point is unique. �

Theorem 3.3. Let (X,A, S) be a complete C∗-algebra-valued S metric space. Suppose that
the mapping f : X → X satisfies

S(fx, fx, fy) ≼ a(S(fx, fx, y) + S(fy, fy, x)) (5)

where a ∈ A
′

+ and ∥a∥ < 1
2 , ∀x, y ∈ X. Then there exists a unique fixed point in X.



98 C. Kalaivani, G. Kalpana

Proof. Without loss of generality, one can suppose that a ̸= 0A. Let x0 ∈ X. Construct a
sequences {xn} ⊆ X such that xn+1 = fxn . By using (6), for any n ∈ N ,

S(xn+1, xn+1, xn) = S(fxn, fxn, fxn−1)

≼ a[S(fxn, fxn, xn−1) + S(fxn−1, fxn−1, xn)]

≼ a[S(fxn, fxn, fxn−2) + S(fxn−1, fxn−1, fxn−2)]

≼ a[S(fxn, fxn, fxn−1) + S(fxn, fxn, fxn−1)

+S(fxn−2, fxn−2, fxn−1]

≼ a[2S(fxn, xn, fxn−1) + S(fxn−1, fxn−1, fxn−2]

≼ a[2S(xn+1, xn+1, xn) + S(xn, xn, xn−1]

(1A − 2a)S(xn+1, xn+1, xn) ≼ a[S(xn, xn, xn−1)

By using Lemma 2.1, we have a ∈ A
′

+ with ∥a∥ < 1
2 , one have (1A − a)−1 ∈ A

′

+ and

a(1A − a)−1 ∈ A
′

+ with
∥∥a(1A − a)−1

∥∥ < 1. Therefore,

S(xn+1, xn+1, xn) ≼ (1A − 2a)−1aS(xn, xn, xn−1) = bS(xn, xn, xn−1),

where b = (1A − a)−1a. For n+ 1 > m,

S(xn+1, xn+1, xm) ≼ S(xn+1, xn+1, xn) + S(xn+1, xn+1, xn) + S(xm, xm, xn)

= 2S(xn+1, xn+1, xn) + S(xn, xn, xm)

≼ 2S(xn+1, xn+1, xn) + [S(xn, xn, xn−1)

+S(xn, xn, xn−1) + S(xm, xm, xn−1)]

≼ 2S(xn+1, xn+1, xn) + 2S(xn, xn, xn−1)

+ . . .+ 2S(xm+1, xm+1, xm)

≼ 2[bn + bn−1 + ...+ bm]S(x1, x1, x0)

≼ 2
n∑

k=m

bkc = 2
n∑

k=m

b
k
2 b

k
2 c

1
2 c

1
2

= 2

n∑
k=m

c
1
2 b

k
2 b

k
2 c

1
2 = 2

n∑
k=m

(b
k
2 c

1
2 )∗(b

k
2 c

1
2 ) = 2

n∑
k=m

|b k
2 c

1
2 |2

≼ 2∥
n∑

k=m

|b k
2 c

1
2 |2∥1A ≼ 2∥c 1

2 ∥21A
n∑

k=m

∥bk∥2

≼ 2∥c 1
2 ∥21A

n∑
k=m

∥b∥2k ≼ 2∥c 1
2 ∥2 ∥b∥2m

1− ∥b∥2
1A −→ 0A (m → ∞).

From Definition 2.3, we get that {xn} is a Cauchy sequence with respect to A. The comple-
tion of X implies that there exist x ∈ X such that limn→∞ xn = limn→∞ fxn−1 = x. Using
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(S3) and by Lemma 2.3,

S(fx, fx, x) ≼ S(fx, fx, fxn) + S(fx, fx, fxn) + S(x, x, fxn)

= 2(S(fx, fx, fxn) + S(fxn, fxn, x)

≼ 2[a(S(fx, fx, xn) + S(fxn, fxn, x)]

+S(xn+1, xn+1, x)

= 2a(S(fx, fx, xn) + 2aS(fxn, fxn, x)

+S(xn+1, xn+1, x)

≼ 2a[S(fx, fx, x) + S(fx, fx, x) + S(xn, xn, x)]

+2aS(xn+1, xn+1, x) + S(xn+1, xn+1, x)

= 4aS(fx, fx, x) + 2aS(xn, xn, x)

+2aS(xn+1, xn+1, x) + S(xn+1, xn+1, x)

(1A − 4a)S(fx, fx, x) ≼ 2aS(xn, xn, x) + 2aS(xn+1, xn+1, x)

+S(xn+1, xn+1, x)

∥S(fx, fx, x)∥ ≤ ∥2a(1A − 4a)−1∥[∥S(xn, xn, x)∥+ ∥S(xn+1, xn+1, x)∥]
+∥(1A − 4a)−1∥∥S(xn+1, xn+1, x)∥ −→ 0A (n → ∞).

Therefore fx = x. i.e) x is a fixed point of f .
Uniqueness: Suppose that y(̸=)x, is another fixed point of f.

0A ≼ S(x, x, y) = S(fx, fx, fy) ≼ a[S(fx, fx, y) + s(fy, fy, x)] ≼ a[S(x, x, y) + s(y, y, x)]

(1A − a)S(x, x, y) ≼ aS(y, y, x)

S(x, x, y) ≼ a(1A − a)−1S(y, y, x) ≼ a(1A − a)−1S(x, x, y).

Since ∥a(1A − a)−1∥ < 1,

0 ≤ ∥S(x, x, y)∥ = ∥S(fx, fx, fy)∥ ≤ ∥a(1A − a)−1S(x, x, y)∥
≤ ∥a(1A − a)−1∥∥S(x, x, y)∥ < ∥S(x, x, y)∥

This means that, S(x, x, y) = 0A ⇔ x = y. Therefore the fixed point is unique. �

Example 3.1.

Let X = L∞(E) and H = L2(E) , where E is Lebesque measurable set. By L(H) we
denote the set of bounded linear operators on Hilbert space H. Clearly L(H) is a C∗-algebra
with usual operator norm.

Define S : X × X × X → L(H) by S(f, g, p) = π|f−p|+|g−p| (∀f, g, p ∈ X), where
πh : H → H is multiplication operator, πh(ϕ) = h · ϕ, for ϕ ∈ H. Then S is a C∗-algebra-
valued S-metric and (X,L(H), S) is a complete C∗-algebra-valued S-metric space.

Let {fn}∞n=1 in X be a Cauchy sequence with respect to L(H). i.e) for any p ∈ N ,
∥S(fn+p, fn+p, fn)∥ → 0 (n → ∞). Now,

∥S(fn+p, fn+p, fn)∥ =
∥∥π|fn+p−fn|+|fn+p−fn|

∥∥
=

∥∥π2|fn+p−fn|
∥∥ = ∥2(fn+p − fn)∥∞ → 0 (n → ∞).

Then {fn}∞n=1 is Cauchy sequence in the space X. Since X is complete C∗-algebra-valued
S-metric space, there exists f ∈ X such that ∥fn − f∥∞ → 0 (n → ∞). Therefore,

∥S(fn, fn, f)∥ =
∥∥π|fn−f |+|fn−f |

∥∥ = ∥2(fn − f)∥∞
= ∥(fn − f)∥∞ + ∥(fn − f)∥∞ → 0 (n → ∞).

Hence the sequence {fn}∞n=1 converges to the function f in X with respect to L(H). Thus,
(X,L(H), S) is complete with respect to L(H).
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4. Applications

As applications of contractive mapping theorem on complete C∗-algebra valued S-
metric space, existence and uniqueness results for a type of integral equation and operator
equation are given.

Example 4.1. Consider the integral equation

x(t) =

∫
E

K(t, s, x(s))ds+ g(t), t ∈ E,

where E is the Lebesgue measurable set. Assume that the following hypotheses hold

(1) K : E × E × R → R integrable and g ∈ L∞(E);
(2) there exists a continuous function ϕ : E × E → R and k ∈ (0, 1) such that

|K(t, s, u)−K(t, s, v)| ≤ k |ϕ(t, s)(u− v)| ,

for t, s ∈ E and u, v ∈ R;
(3) supt∈E

∫
E
|ϕ(t, s)| ds ≤ 1.

Then the integral equation has a unique solution x∗ in L∞(E).

Proof. Let X = L∞(E) and H = L2(E) , where E is Lebesque measurable set. Set S
as Example 3.1, then S is a C∗-algebra valued S-metric and (X,L(H), S) is a complete
C∗-algebra valued S-metric space with respect to L(H).

Let T : L∞(E) → L∞(E) be

Tx(t) =

∫
E

K(t, s, x(s))ds+ g(t), t ∈ E.

Set A = kI, then A ∈ L(H)+ and ∥A∥ = k < 1. For any h ∈ H,

∥S(Tx, Tx, Ty)∥ = sup∥h∥=1

⟨
π(|Tx−Ty|+|Tx−Ty|)h, h

⟩
= sup∥h∥=1

⟨
π2|Tx−Ty|h, h

⟩
= sup∥h∥=1 ⟨2 |Tx− Ty|h, h⟩

= sup∥h∥=1

∫
E

(2 |Tx− Ty|h)(t) · h(t)dt

≤ 2sup∥h∥=1

∫
E

[∫
E

|K(t, s, x(s)−K(t, s, y(s))|
]
|h(t)|2 dt

≤ 2sup∥h∥=1

∫
E

[∫
E

k |ϕ(t, s)(x(s)− y(s))| ds
]
|h(t)|2 dt

≤ 2ksup∥h∥=1

∫
E

[∫
E

|ϕ(t, s)| ds
]
|h(t)|2 dt · ∥x− y∥∞

≤ ksupt∈E

∫
E

|ϕ(t, s)| ds · sup∥h∥=1

∫
E

|h(t)|2 dt2 ∥x− y∥∞

≤ 2k ∥x− y∥∞
= k ∥2(x− y)∥∞
= k

∥∥π(|x−y|+|x−y|)
∥∥

= ∥A∥ ∥S(x, x, y)∥ .

Since ∥A∥ < 1 and by Corollary 3.1, the integral equation has a unique solution in L∞(E).
�
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Example 4.2. Suppose that H is a Hilbert space, L(H) is the set of linear bounded operators

on H. Let A1, A2, A3, ...An, ... ∈ L(H), which satisfy
∑∞

n=1 ∥An∥2 < 1 and X ∈ L(H) and
Q ∈ L(H)+. Then the operator equation

X −
∞∑

n=1

A∗
nXAn = Q

has a unique solution in L(H).

Proof. Put α =
∑∞

n=1 ∥An∥2 . If α = 0, then the equation has a unique solution in L(H).
Assume that α > 0. Choose a positive operator T ∈ L(H). For every X,Y ∈ L(H), set

S(X,Y, Z) = (∥X − Z∥+ ∥Y − Z∥)T.

It is easy to verify that S(X,Y, Z) is a complete C∗-algebra valued S-metric. Consider the
map F : L(H) → L(H) defined by

F (X) =

∞∑
n=1

A∗
nXAn +Q.

Then,

S(F (X), F (X), F (Y )) = 2 ∥F (X)− F (Y )∥T

= 2

∥∥∥∥∥
∞∑

n=1

A∗
n(X − Y )An

∥∥∥∥∥T
≼ 2

∞∑
n=1

∥An∥2 ∥(X − Y )∥T

= αS(X,X, Y )

= (α
1
2 I)∗S(X,X, Y )(α

1
2 I).

Using Theorem 3.1, there exists a unique fixed point X in L(H). Furthermore, since∑∞
n=1 A

∗
nXAn +Q is a positive operator, the solution is a Hermitian operator. �

As a special case of Example 4.2, one can consider the following matrix equation,
which can also be found in [14]:

X −
m∑

n=1

A∗
nXAn = Q

where Q is a positive definite matrix and A1, A2, · · ·Am are arbitrary n × n matrices with∑m
n=1 ∥An∥ < 1. Using Example 4.2, there exists a unique Hermitian matrix solution.

Remark 4.1. The step function is an example of an integrable function but not a continuous
function. In Example 4.1, some special cases of a step function, which satisfies condition
(2), have been mentioned.

5. Conclusions

In this paper, we extend S-metric space [12] in the setting of C∗- algebra-valued
S-metric space and prove some fixed point theorems for self mappings with contactive con-
ditions. Fixed point theorems for operators in metric space are widely investigated and
have found various applications in differential and integral equations [1, 5]. The important
applications of our results are existence and uniqueness of a solution of integral equation
and operator equation, which will be obtained in this paper.
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6. Future Work

The continuation of this research is considering C∗-algebra-valued Sb-metrics. We
introduce the notion of C∗-algebra-valued Sb-metric space, as a generalization of C∗-algebra-
valued S-metric space. metric space.

Definition 6.1. Let X be a nonempty set and b ∈ A
′
such that b ≼ 1A. Suppose the

mapping S : X ×X ×X → A satisfies:
(1) 0A ≼ S(x, y, z) for all x, y, z ∈ X;
(2) S(x, y, z) = 0A if and only if x = y = z;
(3) S(x, y, z) ≼ b[S(x, x, a) + S(y, y, a) + S(z, z, a)] for all x, y, z, a ∈ X.

Then S is said to be C∗- algebra-valued Sb-metric on X and (X,A, S) is said to be a
C∗-algebra-valued Sb-metric space.
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