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IMPACT OF SEMI-SYMMETRIC NON-METRIC CONNECTION ON A 
LORENTZIAN MANIFOLD

Uday Chand DE1, Abdallah Abdelhameed SYIED2, Krishnendu DE3

An analysis of a Lorentzian manifold with a non-metric connection of semi-

symmetric type is conducted in this work. We illustrate that if a space-time allows a

semi-symmetric non-metric connection, then the integral curves of the associated vec-

tor are geodesic. Also it is demonstrated that if a twisted space-time admits a semi-

symmetric non-metric connection whose Ricci tensor vanishes, then the space-time rep-

resents a perfect fluid space-time. Further, we acquire that if a space-time admits a

semi-symmetric non-metric connection whose Ricci tensor vanishes and the torsion

tensor is pseudo symmetric, then the space-time is a perfect fluid space-time. In con-

clusion, to demonstrate the existence of a semi-symmetric type non-metric connection

on a Lorentzian manifold, we build a non-trivial example. Lastly, we discuss certain

applications of such space-time admitting Ricci solitons and generalized Ricci solitons.
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1. Introduction

Lorentzian Geometry has appeared as a geometric theory in which general relativity

(GR) can be mathematically established. It has been a fascinating topic of research with

a significant role in differential geometry and GR for decades. This field involves various

mathematical techniques like geometric analysis, functional analysis, Lie algebras and Lie

groups. Therefore, any study concentred on it greatly interests many mathematicians.

The novel idea of a semi-symmetric metric connection (SSMC) on a smooth manifold

was initiated by Friedmann and Schouten in [22]. A linear connection ∇̄ on a Lorentzian

manifold M of dimension n is referred to as a semi-symmetric connection when it possesses

non-zero torsion and fulfills

T̄h
ij = δhi ωj − δhj ωi, (1)

where ωi being a 1−form named the associated vector of the connection.

If ∇̄kgij = 0, it is established that the connection satisfying the semi-symmetric

condition is identified as a SSMC; otherwise, it is classified as non-metric. Yano and Hayden

made advancements in this idea and achieved many intriguing outcomes in the realm of

Riemannian manifolds [17, 29]. Subsequently, the characteristics of the curvature tensor of

a SSMC in a Sasakian manifold were also examined by [20, 21]. Z. Nakao [26] conducted
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research on the Gauss curvature equation and the Codazzi-Mainardi equation, focusing on

a SSMC on both a Riemannian manifold and a submanifold. We may bring up Zengin

et al.’s work in this regard [30, 31]. Gozutok and Esin [18] introduced the concept of

investigating the tangent bundle of a hypersurface using SSMC. Demirbag, in [12], examined

the characteristics of a weakly Ricci-symmetric manifold that possesses a SSMC. This idea

further studied in [4, 15, 32].

After a considerable period of time, the examination of a SSMC ∇̄ that satisfies

∇̄kgij ̸= 0 was initiated by Prvanovic [28] and referred to as a pseudo-metric semi-symmetric

connection. Shortly thereafter, Andorie continued this line of study [3]. In 1992, Agashe and

Chafle in [1] introduced the concept of a semi-symmetric non-metric connection (SSNMC).

This concept was subsequently advanced by multiple authors [2, 14, 16, 27].

SSNMC is defined as

Th
ij = δhi ωj − δhj ωi, (2)

gij,k = −ωjgik − ωigjk, (3)

where ωi is the associated vector of the SSNMC.

LetKh
ijk and Rh

ijk indicate the curvature tensor of SSNMC and the Livi-Civita connec-

tion respectively. Also, R̄ij and Rij stand for the Ricci tensor of SSNMC and the Livi-Civita

connection respectively. Then [1]

Kh
ijk = Rh

ijk + αikδ
h
j − αijδ

h
k ,

αij = ∇iωj − ωiωj = ∇̄iωj , (4)

R̄ij = Rij − (n− 1)αij , (5)

R̄ = R− (n− 1)α,

where trace(αij) = α, R̄ and R denote the scalar curvature of SSNMC and the manifold M ,

respectively.

Without the cosmological term, Einstein’s field Equation is expressed as [25]:

Rij −
R

2
gij = κTij , (6)

where κ represents the gravitational constant and Tij is the energy-momentum tensor(EMT).

Space-time is a Lorentzian manifold equipped with a globally time-like vector, pro-

viding the framework for the recent physical world’s model. The EMT for a perfect fluid

space-time (PFS) has the subsequent structure [25]:

Tij = (p+ σ)ωiωj + pgij , (7)

with p and σ being the isotropic pressure and the energy-density, respectively.

The Ricci tensor of PFS has the following shape [10]:

Rij = agij + bωiωj , (8)

in which a and b are scalars.

Using the earlier equations, we determine

a = −κ

2
(p− σ) and b = κ(p+ σ). (9)

If the relations p = 0, p = σ, 3p = σ and p + σ = 0 hold, then the PF space-time

is called as the dust matter, stiff matter, radiation era and dark matter era (DME) of

the Universe [8], respectively. It also covers the phantom era in which p
σ < −1. The

quintessence is a speculative kind of dark energy, or more precisely, a scalar field, that

physicists have suggested as a potential explanation for the universe’s observed accelerating
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speed of expansion. Additionally, when −1 < p
σ < 0, the quintessence phase is included in

dark energy.

Existence of a unit time-like and torse-forming vector, among other restrictions,

characterize Robertson-Walker (RW) space-times as well as generalized Robertson-Walker

(GRW) space-time [23]. They demonstrate that the presence of a single, distinct vector may

still define Twisted manifolds without any additional restrictions. Due to their inclusion of

a scale function which is both space and time dependent, twisted manifolds generalize RW

and GRW space-times.

Twisted space-times are defined for this purpose. Compared to warped space-times,

which allows periodic changes to the world, twisted space-times are far more general. Chen

[9] first proposed the concept of twisted space-time and described as a Lorentzian manifold

Mn with the metric (in local form)

ds2 = gjkdz
jdzk = −(dt)2 + ϕ2(z, t)g∗jkdz

jdzk, (10)

where g∗ denotes the metric tensor of an (n-1) dimensional Riemannian manifold.The twisted

space-time becomes the GRW space-time if ϕ is solely a function of t.

The general outline of the research is as follows:

We produce the concepts of SSNMC in Introduction Section. In Section 2 we demon-

strate tha main results of our paper. Last Section establishes the existence of a SSNMC on

a Lorentzian manifold.

2. SSNMC on a Lorentzian manifold

This part presents important findings regarding a Lorentzian manifold that possesses

a SSNMC.

Theorem 2.1. If a space-time allows a SSNMC whose Ricci tensor vanishes, then the

integral curves of the associated vector ωi are geodesic.

Proof. Suppose M4 admits a SSNMC whose Ricci tensor vanishes. Then from equation (5)

we get

Rij = 3αij . (11)

Since Rij is symmetric, therefore the previous equations implies that

αij = αji.

Consequently,

∇iωj = ∇jωi,

that is, the associated vector ωi is irrotational.

Multiplying with ωi, it arises

ωi (∇jωi) = ωi (∇iωj) = 0,

which indicates that the integral curves of the vector ωi are geodesic. □

Theorem 2.2. If a PFS admits a SSNMC whose Ricci tensor vanishes, then the state

equation is given by

3p+ σ =
6

κ
.

Proof. In virtue of Eqs. (6) and (7), one may get

Rij −
R

2
gij = κ [(p+ σ)ωiωj + pgij ] . (12)
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Multiplying with ωj , one finds

ωjRij =

[
R

2
− κσ

]
ωi. (13)

Assume that M4 admits a SSNMC whose Ricci tensor vanishes. Thus, Eq. (4) implies

Rij = 3 [∇iωj − ωiωj ] .

Contracting with ωj , we acquire that

ωjRij = 3ωi. (14)

Thus Eqs. (13) and (14) together give

κσ =
R

2
− 3. (15)

Multiplying Eq. (12) by gij , we infer

R = κσ − 3κp. (16)

Using Eq. (15) in Eq. (16), one sees that

κp = −R

6
− 1. (17)

The combination of Eqs. (15) and (17) leads to

3p+ σ =
6

κ
.

□

Theorem 2.3. If a PFS admits a SSNMC whose Ricci tensor vanishes and the associated

vector ωi is parallel, then the space-time is vacuum. Consequently, the semi-symmetry and

Weyl semi-symmetry are equivalent.

Proof. Let the associated vector ωi be parallel with respect to SSNMC. Then

∇̄iωj = 0. (18)

Consequently, we find

∇iωj = ωiωj . (19)

Hence, we have

Rij = 0.

This indicates that the space-time is vacuum.

Minkowski space-time, which illustrates empty space without a cosmological constant,

is a prominent example of a vacuum space-time. In order to describe an empty cosmos with

no curvature, E. A. Milne created the Milne model.

In a vacuum space-time Rh
ijk = Ch

ijk in some region of the space-time. This implies

that semi-symmetry and Weyl semi-symmetry are equivalent is such a space-time. □

In [23] it is established that M represents a twisted space-time iff it allows a time-like

and unit torse-forming vector, that is, ∇juk = φ{gjk+ujuk} and ujuj = −1. In this article,

we prove:

Theorem 2.4. If a twisted space-time admits a SSNMC whose Ricci tensor vanishes, then

the space-time becomes a PFS.
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Proof. Consider ωj is a torse-forming vector with respect to SSNMC, that is,

∇̄kωj = φ (gjk + ωkωj) , (20)

where φ is a scalar.

In view of Eq. (4), we deduce

∇kωj = φgjk + (φ+ 1)ωkωj . (21)

Hence using (11) we infer

Rij = 3αij ,

= 3 [∇iωj − ωiωj ] ,

= 3φ [gij + ωiωj ] . (22)

This equation represents PFS. □

Comparing Eqs. (8) and (22), we obtain

p

σ
= −1

3
.

Hence, we state:

Corollary 2.1. A twisted space-time admittting a SSNMC whose Ricci tensor vanishes,

represents quintessence phase.

Theorem 2.5. If a space-time admits a SSNMC whose Ricci tensor vanishes and the torsion

tensor is pseudo symmetric, then the space-time is a perfect fluid space-time.

Proof. Assume that the torsion tensor T of SSNMC ∇̄ is pseudo symmetric in the sense of

Chaki [7]. Then

∇̄kT
h
ij = 2bkT

h
ij + biT

h
kj + bjT

h
ik + bhTkij , (23)

where Tkij = glkT
l
ij .

From (2) it follows that

Th
hj = 3ωj . (24)

In view of Eq. (2), one finds

Tlij = gilωj − gjlωi. (25)

Eq. (23) leads to

∇̄kT
h
hj = 2bkT

h
hj + bhT

h
kj + bjT

h
hk + bhTkhj . (26)

Now, we get

bhTkhj = bh (ghkωj − gjkωh) ,

= bkωj − fgjk, (27)

where f = bhωh.

Utilizing Eqs. (24) and (27) in Eq. (26), it can be conclude that

3∇̄kωj = 8bkωj − 2fgjk + 3bjωk.

Using Eq. (4), we deduce

3∇kωj = 8bkωj − 2fgjk + 3bjωk + 3ωjωk. (28)

Let us assume that the Ricci tensor vanishes with respect to SSNMC. Consequently,

∇kωj = ∇jωk.

Therefore, Eq. (28) implies that

bkωj = bjωk.
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Multiplying with ωj , we obtain

bk = −fωk.

Thus Eq. (28) becomes

∇kωj =

(
1− 11f

3

)
ωkωj −

2f

3
gkj .

Since R̄ij = 0, thus

Rij = ∇iωj − ωiωj

=
−11f

3
ωiωj −

2f

3
gij , (29)

this means that the space-time is PFS. □

Comparing Eqs. (8) and (29), we obtain

p = −7f

6κ
and σ = −5f

2κ
. (30)

Therefore, we state:

Corollary 2.2. In a space-time admitting a SSNMC whose Ricci tensor vanishes and the

torsion tensor is pseudo symmetric, then p and σ are given by (30).

Remark 2.1. From Eq. (30), we can say that for this space-time the state equation is

demonstrated by p
σ = 7

15 = constant.

Remark 2.2. Since p and σ are not constants, the current result is consistent with the

current state of the Cosmos.

3. Example of semisymmetric non-metric connection

Let

M =
{
yi, i = 1, 2, 3, 4 and y4 ̸= 0

}
denote a semi-Riemannian manifold of dimension 4,

(
y1, y2, y3, y4

)
is the standard coordi-

nates of a point in R4.

Let v1 = e
−y4

2
∂

∂y1 , v2 = e
−y4

2
∂

∂y2 , v3 = e
−y4

2
∂

∂y3 , v4 = e
−y4

2
∂

∂y4 be the linearly

independent vectors on M and they form a basis. Also, let v4 be the unite time-like vector

in M .

The Lorentzian metric is

g =


1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 −1

 .

Thus, M endowed with g may be described as a 4-dimensional Lorentzian manifold. Then

the Lie brackets are given by

[vi, vj ] =


1
2vi if j = 4 and i = 1, 2, 3

− 1
2vj if i = 4 and j = 1, 2, 3

0 otherwise

. (31)

Using the foregoing Lie bracket and Koozul’s formula for Livi-Civita connection∇, we obtain

∇vivj =


1
2v4 for i, j = 1, 2, 3
1
2vi if j = 4 and i = 1, 2, 3

0 otherwise

. (32)
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The non-vanishing components of the curvature tensor are given by

R (v1, v2) v1 =
−1

4
v2, R (v1, v3) v1 =

−1

4
v3, R (v1, v4) v1 =

−1

4
v4,

R (v1, v2) v2 =
1

4
v1, R (v2, v3) v2 =

−1

4
v3, R (v2, v4) v2 =

−1

4
v4,

R (v1, v3) v3 =
1

4
v1, R (v2, v3) v3 =

1

4
v2, R (v3, v4) v3 =

−1

4
v4,

R (v1, v4) v4 =
−1

4
v1, R (v3, v4) v4 =

−1

4
v3, R (v2, v4) v4 =

−1

4
v2.

The rest of the component of curvature tensor may be deduced from the symmetric property

of the curvature tensor. From the previous expression of the curvature tensors we acquire

the non-vanishing component of the Ricci tensor

R (v1, v1) = R (v2, v2) = R (v3, v3) = −R (v4, v4) =
3

4
,

and the scalar curvature

R = 3.

Then from the equation

∇̄xy = ∇xy + ω (y)x, (33)

where ω is a one-form, it follows from Eq. (32) and Eq. (33) that

∇̄vivj = ∇vivj + vjvi.

From the above we conclude that

∇̄vivj ̸= 0.

Hence, the linear connection is non-metric on M4.

4. Applications to Ricci Solitons and Generalized Ricci Solitons

In this section we investigate Ricci solitons and generalized Ricci solitons using the

connection ∇̄.

The concept of Ricci flow was defined by Hamilton [19] as a way to derive a canonical

metric on a differentiable manifold. If the manifold fulfills the evolution equation ∂
∂tgjk(t) =

−2Rjk, then this is called a Ricci flow equation. Also, Triplet (g, ω, λ) is the Ricci soliton,

where g is a semi-Riemannian metric, ω is a smooth vector (also known as the potential

vector), and λ is a constant that corresponds to

£ωgjk + 2Rjk − 2λgjk = 0, (34)

in which the Lie derivative of g along a vector ω is written as £ωg. The soliton mentioned

above is an Einstein metric if ω is zero or Killing. Depending on whether λ is positive,

zero, or negative, the Ricci soliton is referred to as shrinking, steady, or expanding. In

contemporary physics, metrics that fulfil (34) are quite useful. In the context of string

theory, theoretical physicists have been examining the Ricci soliton condition. A number of

intriguing results about Ricci solitons have been examined in [6, 11, 13].

We know that

£ωgjk = ∇jωk +∇kωj . (35)

Using Eq. (4), we acquire

£ωgjk = ∇̄jωk + ∇̄kωj + 2ωjωk. (36)

Eqs. (34) and (36) jointly reveal

∇̄jωk + ∇̄kωj + 2Rjk − 2λgjk + 2ωjωk = 0. (37)
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Multiplying Eq. (37) with ωjωk and using the relation ωj(∇̄jωk) = ωk, we infer

Rjkω
jωk = −λ. (38)

Suppose the space-time admits a SSNMC whose Ricci tensor vanishes. Then using

(5), we provide

3αjkω
jωk = −λ. (39)

Then using Eq. (4) and the relation ωj(∇jωk) = 0, we acquire

λ = 3. (40)

Theorem 4.1. If a space-time with a SSNMC whose Ricci tensor vanishes allows a Ricci

soliton, then this Ricci soliton is shrinking.

Now we examine a generalized Ricci soliton (GRS), which is defined as a semi-

Riemannian manifold that admits a vector field u that is differentiable and fulfilling

£ωgjk + 2α1ωjωk + 2β1Rjk − 2λgjk = 0, (41)

where α1, β1 ∈ R.
GRS equations are the equations described in (41). In particular, Killing’s equation

is represented in (41), if α1 = β1 = λ = 0. If α1 = β1 = 0 and λ ̸= 0, then the homothetic

equation is shown. In this case, the Ricci solitons are represented when α1 = 0, β1 = −1

and λ ̸= 0. Moreover, the Einstein-Weyl scenario is represented if α1 = 1, β1 = − 1
n−2 and

λ = 0. Finally, α1 = 1, β1 = 1
2 and λ ̸= 0 relate to the vacuum near-horizon geometry

equation.

Using Eq. (36) in Eq. (41), we obtain

∇̄jωk + ∇̄kωj + 2ωjωk + 2α1ωjωk + 2β1Rjk − 2λgjk = 0, (42)

Multiplying Eq. (42) with ωjωk and using the relation ωj(∇̄jωk) = ωk, we provide

λ = α1 − 3β1. (43)

Theorem 4.2. If a space-time with a SSNMC whose Ricci tensor vanishes allows a GRS,

then this GRS is expanding for α1 < 3β1; steady if α1 = 3β1; shrinking for α1 > 3β1.

Assume that a GRS is admitted in a twisted space-time with an SSRMC. After that,

we can take

∇̄kωj = φ (gjk + ωkωj) . (44)

Now using Eq. (44) in Eq. (41), we infer

Rjk =
1

β1
{(λ− φ)gjk − (α1 + φ+ 1)ωjωk}, (45)

this means that the space-time is a PFS.

Theorem 4.3. If a twisted space-time with a SSNMC whose Ricci tensor vanishes allows a

GRS, then it becomes a PFS.
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