U.P.B. Sci. Bull., Series C, Vol. 79, Iss. 4, 2017 ISSN 2286-3540

DATA RESTORATION: A MANDATORY OPTION FOR
CRITICAL COMPUTATIONAL ENVIRONMENTS

CASE STUDY: ZIPRO VS. JAR COMPARISON

Vlad-Alexandru GROSU !

So far, there are no software-archiving suites available to offer
options/services like data restoration or data recovery. This option becomes
critical in situations in which licenses are involved (like non-free computational
environments) as well as in computation environments where data loss is critical.
For such situations, any loss leads to large amount of money spent for recovery.
Moreover, there are situations for which this attempt is eventually impossible. This
paper intends to circumvent such situations by presenting a practical solution for
these kinds of problems. It also takes into consideration some vulnerabilities that
.Jjar format has, from data restoration perspective.

Keywords: data restoration, Zipro, Jar, computational environments
1. Introduction

This paper addresses itself mainly to open-source environments where data
manipulation and processing are intensive, namely embedded systems. It is
especially intended for the development systems that resemble the smartphones
(e.g. Beagleboard, Pandaboard or even Raspberry PI). Of course, this attempt can
be generalized for the smartphones themselves.

1.1. Anew data file type

A new compression/decompression tool was developed - called zipro -
having in mind some special computational environments: the embedded systems.
The file's extension that zipro deals with is.zha [1]. Thisisacompletely new

data file type in the IT field.

1.2. Contributions
As a novelty in the IT field, the new developed tool does offer true
restoration capabilities. Its capabilities are based on the following pieces of
information:
- the original . zha archive (about to be restored),
- the meta-data, that gets generated starting from the input file,

L Lecturer, Dep. of Electronic Technology and Reliability, University POLITEHNICA of
Bucharest, Romania, e-mail: crisvlad74@yahoo.com

4 Vlad-Alexandru Grosu

- the concept of symmetrical copy (backup copy).

This way it offers security proofs, useful against data corruption or data
interception that could happen in various types of attacks [2], mainly related to the
embedded systems. For instance, within the Android smartphone universe, if
several copies of the same file appear within an .apk [3], then an attacker can
turn this computational context into a dangerous one. See the design details in
section 3.

My approach here is aware of such situations, and in fact doesn't allow
several copies of the same information to appear within a .zna file. For such
computational conditions, dedicated software tools were developed, so that they
better address the specific requirements of the embedded systems. The trend is for
such media to be classified as real-time systems. Some authors [4] say they
behave like real-time systems and therefore belong to this class. While some other
authors do not accept this classification entirely, unless some changes are made

[5].

Whatever the approach, there are well-defined restrictions that must apply
for such systems:

1. Fast Task Context Switches,

2. Efficient Native Message Queues,

3. Minimal Operating System Overhead.

And these are not far from what a RTOS should do. Some short but
necessary details are presented in the following sections. These justify the
philosophy behind the zipro (.zha) archive format, in comparison with the Java
Archive.

2. Background

2.1. Smartphones architecture - very short approach

In order to compare the existing facilities in Java Archive, it was necessary
to review - in short - the inner software components that qualified themselves as
the fundamental pieces in a SoC-like hardware and software environment: the
smartphone. A closer look to such systems reveals that they rely on a predefined
stack of layers, starting with the lowest level (the kernel level) and ending with
the highest one (the OS's main framework that finally supports the entire user
interface).

In such environments, all the hardware manufacturers chose to conform to
Google's open environment, based on multi-layered architecture. Later on, this
architecture became Android.

Data restoration: a mandatory option for critical computational environments; case study (...) 5

The Smartphone Platform War Is Over
Worldwide smartphone operating system market share (based on unit sales)
B Android @B ios [Windows BlackBerry [l Symbian Others
100%
I —
= =
.
o .
o .
84.8%
40% —
B .
0
2009 2010 2011 2012 2013 2014 2015 2016
@statistaCharts Source: Gartner Statista 5

Fig.1. The main actors on the mobile phone market (up to 2016, according to [6])

Finally, it materialized itself into a mature operating system that currently
covers around 80% of the smartphones' market [6] in 2015 but its growth is not
cooling off in 2016, still growing within a margin of 4-5% (see figure 1).

This OS proved to be well suited for the mobile phones in the smartphone
class, but this was not the situation at the very beginning. It passed through major
software redesign phases until it reached the actual shape. The actors chosen to
play the major roles in such a system are [7] (see figure 2):

- C language, because of the Linux kernel and various libraries required by
the system. The C standard library was rewritten as Bionic C [8]. This was
done mainly for three reasons:

e License: get rid of BSD's GNU Public License (GPL) and move to

Lesser GPL (LGPL),

e Size (memory footprint): the rewritten version is smaller and it needed

to be like this,

e Speed: Bionic is designed for CPUs at relatively low clock

frequencies.

- Java Virtual Machine (the older Dalvik virtual machine, completely
replaced by ART layer which was introduced as a runtime environment
starting with Android 5.0-Lollipop) and Core Java libraries - optimized for
low processing power and low memory environments,

6 Vlad-Alexandru Grosu

- The application framework - collection of managers that finally offers the
basic functions of each phone. This include: window manager, activity
manager, package manager, content provider,

- Finally, the applications - which are developed using Java language and
finally become android packages known as .apk. This way they are
ready for installation onto the mobile terminal (phone).

Maybe one of the most important components that sustain the second and
the third elements in the classification above is the Java archive (.jar). It is
mostly present in the environment's framework layer.

3. Application design

3.1. Data restoration: possible drawbacks of Java archive

3.1.1 The JAR meta-information

In many cases, JAR files are not just simple collections of java classes
files and/or resources. They are used as building blocks for applications and
extensions. Looking at it from the restoration perspective, in the following I can
identify three possible drawbacks of a Java archive.

The meTa-1NF directory, if it exists, is used to store package and extension
configuration data, including security, versioning, extension and services. [9]

Given the data restoration perspective in this article, the main problem
here (the first identified flaw) is that the meta-information is found within the
archive. Once the .jar file gets corrupted the virtual information that such mMeTA-
1nF directory would have brought is useless. In the approach presented here (I am
referring to the proposed Zipro's .zha archive format), in order to maintain a
proper self-recognition operation, the meta-information was brought outside of the
archive file.

3.1.2 The JAR index

Since its 1.3 version, JarIndex is introduced to optimize the class
searching process of class loaders for network applications, especially applets.
Originally, an applet class loader uses a simple linear search algorithm to search
each element on its internal search path, which is constructed from the "arcuIve"
tag or the "Class-Path™ main attribute. The class loader downloads and opens each
element in its search path, until the class or resource is found. If the class loader
tries to find a nonexistent resource, then all the jar files within the application or
applet will have to be downloaded. For large network applications and applets this
could result in slow startup, sluggish response and wasted network bandwidth.
The Jarindex mechanism collects the contents of all the jar files defined in an
applet and stores the information in an index file in the first .jar file on the applet's
class path. After the first jar file is downloaded, the applet class loader will use the
collected content information for efficient downloading of .jar files.

Data restoration: a mandatory option for critical computational environments; case study (...) 7

The existing JAR tool is enhanced to be able to examine a list of .jar files
and generate directory information as to which classes and resources reside in
which jar file. This directory information is stored in a simple text file named
InDEX. LIST In the META-1NF directory within the root of the Jar file. When the
class loader loads the root jar file, it reads the rnpex.rrst file and uses it to
construct a hash table of mappings from file and package names to lists of jar file
names.

In order to find a class or a resource, the class loader queries the hash-table
to find the proper jar file and then downloads it if necessary. Once the class loader
finds an rvpEx. n1sT file in a particular .jar file, it always trusts the information
listed in it. In my opinion, given the data restoration's point of view, here is
another flaw (the second one identified within this article). This is particularly
dangerous since an attacker may feed in an archive with junk information, or even
worse, with information put there on purpose.

One such attack took place by the end of 2012 [10]. In fact, many types of
attacks took place over time. Some of them were immediately addressed by
Google, while some others were not. A list can be found at [11].

Applications

Application Framework

Android Runtime

Core Libraries

Dalvik ART

Linux Kernel

Fig.2. Typical Android architecture: multi-layered approach ([7])

3.1.3 Java archive based on multiple files

Zipro doesn't allow a file to appear multiple times in a given archive. This
is checked in the moment of the archive construction. The compression process
stops if such a case is encountered.

8 Vlad-Alexandru Grosu

In case of a .jar file, if a mapping is found for a particular java class, but
the class loader fails to find it by following the link, an
InvalidJarIndexException 1S thrown. When this occurs, the application
developer should rerun the JAR tool on the extension to get the right information
into the index file. To prevent adding too much space overhead to the application
and to speed up the construction of the in-memory hash table, the rnpex. 75T file
Is kept as small as possible. From data restoration point of view this is yet
another limitation (the third one), since this index list is kept within the very
archive file. In zipro's approach, there are magic numbers (used as signatures)
spread along the archive file. This classifies zipro as a hybrid compression
technique. 1 call it hybrid since these pieces of information are stored in the
archive as they are (in un-compressed format) along with the most compressed
part of the archive itself. These particular ASCIlI combinations help the
decompression tool by speeding it up. Given this aspect, this kind of archive
cannot necessarily be compared to some other usual (classical) compression
techniques, from either the speed or necessary storage space point of view. In the
meta-information file (which stays outside of the archive itself) there is already a
map of the input archive file. If this is a multiple-file based archive then the
offsets of the compressed files inside the archive are generated and kept within the
meta-information file. As such, any decompression attempt will jump directly to
the desired offset within the archive.

3.2. Data restoration technique: Zipro (.zha) approach

After identifying the possible issues of a .jar file type in the previous
sections, | will show how those drawbacks can be circumvented in zipro's .zha
file type, from data restoration perspective. The developed tool herein can
identify an input archive as being the right one, based on the meta-information
file. As previously stated, the .zha archive itself contains some signature (specific
succession of chars), stored in un-compressed format. Such signature appears at
proper places in the file, in order to help both the file identification step as well as
the file extraction process. Consequently, the signature appears at the very
beginning of .zha archive - for identification purpose - as well as at some
positions within the archive, if a multi-archive file is generated - in order to
delimit the compressed information of each file. It is this raw information
(signature) that gives Zipro's .zha its hybrid nature, very useful in the approach
proposed in here.

Of course, one can say that if the meta-information gets corrupted then
nothing can be done here as well. This is true, and therefore I've thought about a
three-step restoration model, consisting of:

- the symmetrical copy, which is basically an encrypted backup copy of the
input (unaltered) archive file,

Data restoration: a mandatory option for critical computational environments; case study (...) 9

- the meta-data information, stored in a file, that collects specific
information out of the input file,

- the actual archive file, meaning the original file, that eventually needs to
be restored. It also serves the previous two parts of information.

The restoration process assumes that, at any moment in time, at most two
of the previous three parts of information are valid. If and only if all these three
pieces of information get corrupt (e.g. due to some on-purpose attack) then the
restoration cannot take place any longer.

The 'symmetrical copy' is build as follows, in this order:

1. Start scanning the input data (input . zha file), one byte at a time.

2. Pass it through a symmetrical encryption algorithm (processing

phase).

3. Construct the symmetrical copy (the backup file). The locution
'symmetrical copy' is strongly related to the type of encryption
algorithm that | have used here. It can be replaced by other such
algorithms, if necessary.

If the symmetrical copy gets corrupted then, based on the input archive
and the meta-data, it can be generated once again. Conversely, if the input archive
gets altered in any way, such as a read cannot be performed then, based on the
symmetrical copy and meta-data it can be restored (perform the decryption step
upon the symmetrical copy). Eventually, if the meta-data gets corrupted then,
based upon the input archive it can be restored as well. As one can see, this three-
step restoration process can stand against various data corruption that could
happen.

The software solution and specific implementation decisions do not
represent the subject of this article.

4. Mathematical fundamentals of the encryption tool

4.1 The symmetrical copy: the necessity of a correct data restoration

4.1.1 Hill's cipher: mathematical aspects

The encryption algorithm used here is a personal implementation of the
Hill's Cipher. This belongs to the class of ciphers based on the transposition of
symbols. As already stated, the encryption step is useful in the symmetrical copy
generation (see section 1.2).This way the symmetrical copy gains in robustness.
From the conceptual point of view, also given the scale of some actual project
using the tool presented here, I consider that more powerful encryption techniques
can be used, if necessary. The target here consists in domestic applications of
personal use and not governmental or even higher nature (like military or so).
Nevertheless, one has to have in mind that the encryption technique can change if
the practical context requires it. The code behind this tool was written with
modularity in mind.

10 Vlad-Alexandru Grosu

Hill's cipher uses two keys [5]:
- the encryption key,
- the decryption key.

Mathematically speaking, both keys are in fact squared matrices. Among
them, only the decryption key requires matrix calculations. Being an integer based
application - the codes of the characters in use belong to [- all the computations
here are based on modulo M arithmetic. The value of M is chosen so that it is
synchronized with the required input alphabet. [5]

The input consists in the actual file to be restored. Usually, this file is the
corrupted archive. An input file can be presented either as a:

- text-based file,

- binary file.

Fortunately, in both situations the available symbols (the set of useful
characters) belong to the extended ASCII table. Usually, most of the symbols are
alphanumerical. Since extended ASCII table offers 256 useful combinations, my
choice for M is 256. At most we can choose for this value a prime number as well,
for instance m=257. This choice further improves security, in the eventuality of
cryptographic attacks.

The data encryption approach here doesn't require supplementary
processing time (generally speaking, supplementary resources). Given that v=25¢,
the keys are hard-coded in the source code: both the forward and the backward
matrix. Therefore, un-necessary inverse matrix computation was avoided. This
has a benefic effect given the processing limitation of any system on chip (SoC).
The only operations needed for generation of the encryption keys are the
fundamental ones: addition, subtraction, multiplication and division (the last one
rarely used).

Furthermore, from the encryption's safety and power points of view, they
both rely upon the advantage of hiding the encryption and the decryption keys -
by hard-coding them. This way no one knows either the dimension of the
encryption key or the size of the input alphabet (M).

In order to decrypt the symmetrical copy, the key requires modulo M
calculation of the inverse of the input matrix's determinant. This operation is
known as 'modular multiplicative inverse' [4]:

1
modM 1
det(A) () (1)

where:
A - the encryption key (input matrix);
det (A) - the determinant of A.

Data restoration: a mandatory option for critical computational environments; case study (...) 11

It is important to note that, given a modulo ™ class, not each natural
number has an inverse, called symmetrical - that belongs to the same very class
(mod M), as one can see in the following section.

4.2. Hill's cipher and modulo M arithmetic

In the following, the mathematical background required by the Hill's
cipher will be defined. A main conclusion rises here: M must be a prime number
in order to simplify the calculations.

Definition 1:
The set:

Zn = {0, 1,..., m-1} (2)
along with the addition and multiplication operations is called numeration system
of the integers modulo m.

Proposition 1:
Let m be an integer number, having the property m>1.
Then, in the integer numeration system Zn the following properties hold:
1 Forra,b,c & Zm, (a + b) + ¢ = a + (b + ¢)
2 For:a,b € Zm,a+b=b+a
3 Foreacha € Zm,a + 0 = a = 0 + a
4 For each a & Zn, there is a unique X € Zn, called the opposite of
a,sothat: a+x = 0 = x+a
5 For:a,b,c € Zm, (a*b)*c = a+ (bec)
6 For:a,b € Zm, ab = ba.
7 Foreacha € Zm, le)a=a = a-l.
8 For each a € Zm, with a=0, there is a unique y € Zn, called the
symmetrical of a,sothat: asy = 1 = yea
9 For:a,b,c € Zm,a* (b + c) = a*b + asc
10. In Zm we have: 1 = 0.

Generally speaking, the 8" property above is not always true. For instance,
for Z4 numeration system we have the following multiplication table (see Table
1). Note that value 2 doesn't have a symmetrical mod 4, since there is no value in
Z4 multiplied by 2 that gives a remainder of 1 (mod 4). Conversely, the value 3 is
invertible and its symmetrical is 3 (itself).

Table 1.
Multiplication within mod 4 numeration system, Zs.
. 0 1 2 3
0 0 0 0 0
1 0 1 2 3
2 0 2 0 2
3 0 3 2 1

12 Vlad-Alexandru Grosu

The general theorem that justifies the statement I've made earlier follows:
An element in Zm has a symmetrical (or multiplicative inverse) modulo m if and
only if a is relatively prime with m, that means 1 is the common divisor of both a
and m (given the division common sense).

As a consequence of this theorem, the Proposition 2 below follows.

Proposition 2:

Unlike Z4, each element in Zs has a symmetrical, as table 2 shows.

Table 2.
Multiplication within mod 5 numeration system, Zs.

0 1 2 3 4
0 0 0 0 0 0
1 0 1 2 3 4
2 0 2 4 1 3
3 0 3 1 4 2
4 0 4 3 2 1

The distinction between Z4 and Zs is that 5 is prime number whereas 4 is
not.

Definition 2:

A closed numeration system with respect to addition and multiplication is
called field when all the properties above hold (see Proposition 1).

Based on the distinction between Z4 and Zs and starting from the previous
theorem the next proposition follows:

Proposition 3:

Let m be an integer, with m>1. Then Zn, is field if and only if m is a prime
number. Looking at the previous examples related to Z4 and Zs, we have that Zs is
field while Z4 is not.

For each prime number m, the field Zm is also finite. From the
implementation point of view, these results suggest how to choose m, so that to
simplify the calculations: it should be a prime number.

Nevertheless, if the values of the encryption key (input squared matrix) are
properly chosen, then an inverse computation is also possible for sets Zm for
which m is not prime number. This means that the determinant of the matrix has
an inverse belonging to the modulo m remainders class.

5. Results and discussions

5.1 Appropriate choices for the presented case study

In this case study, the data compression works within extended ASCII
table (each character requires 1 byte for encoding). This means a set of 256
possible input combinations. Consequently, the length of the working space can
be chosen as: m=256, meaning that the Z»s6 set have to be used. The number of
column of the input matrix is 4. This choice is based upon the magic number,

Data restoration: a mandatory option for critical computational environments; case study (...) 13

which relates to the 'self recognition' operation. Here, this magic number consists
in a combination of 4 characters. It is used as a delimiter of the information in the
output file resulting after the compression step.

Based on this technique, each file can be easily identified as a native . zha
file. This is done by:

- checking if the file's signature is valid (this information stays within the
input file);

- checking the digital footprint based on MD5 number [11] (this information
stays outside the . zha file presented as input).

This delimiter qualifies the resulting .zha file as a hybrid format. The
term hybrid here means that the output compressed file (the output archive file)
contains both binary information (as a result of the compression step) as well as
clear, unaltered ASCII information, identifiable throughout these magic numbers.
This is the original approach proposed in my PhD thesis. Going back to Hill's
algorithm, if someone wants to use other cryptographic techniques, then these
techniques can be embedded into the software project proposed here thanks to the
modularity approach. Any change should be based on LGPL license this project is
based upon.

6. Conclusions

First of all, it is clear that .jar format hasn't been designed with data
restoration in mind. Otherwise, most likely all the above identified flaws wouldn't
have been there any longer. Secondly, the restoration operation helps a lot when
data corruption appears: it saves both time and money. This option should be
taken into consideration when dealing with sensible environments like mobile
terminals or critical computational situations (e.g. research and development,
scientific laboratories, military applications etc.). The proposed solution takes into
considerations such aspects. It lets the final user to eventually change the
encryption technique, making it more reliable if required.

The extra storage space needed by the 'symmetrical copy' of the proposed
solution tends not to be an issue. Lately, one can choose among a plethora of
storage options. Another reason is that the storage space is not expensive
anymore. Much storage room is now available in less physical space. Besides,
such situations can be foreseen and therefore a proper setup should be taken into
consideration in the first place. | can state that the final user (the customer) must
be an educated user, being aware about the choices he/she is about to make.

Backup facilities must be in place where supplementary copies must be
synchronized with the main data processing steps. This expresses as another form
of the redundancy, which is helpful in so many situations. Of course, this backup
copy is the result of a process that should take place at certain moments in time,
usually subsequent to the major processing steps in a given environment. |

14 Vlad-Alexandru Grosu

consider that it could be performed using specific time slots, properly chosen so
that will not interfere with the main activities of a given computation system.
However, this step can be performed periodically, e.g. while in
maintenance/backup activities or even during overnight activities, all of them not
affecting the main process. Consequently, the solution proposed here is suitable
for periodic tasks, programmed using a time based process (like the cron tool for
*nix systems). However, if no new changes appeared in the necessary input files
(after a check over the input fed data - e.g. based on mdssum binary tool) then the
backup is skipped, no further processing time being required.

Given the reasons identified and presented in this article, | consider that
nowadays the data restoration option must always be a valid and valuable choice,
or even mandatory where possible.

REFERENCES

[1] C. Maia, L. Nogueira, L. M. Pinho,“Evaluating Android OS for Embedded Real-Time
Systems”, in Proceedings of the 6th International Workshop on Operating Systems
Platforms for Embedded Real-Time Applications, Brussels, Belgium, July 2010, pp. 63-
70

[2] W. Mauerer, G. Hillier, J. Sawallisch, S. Honick, S. Oberthur, “Real-Time Android:
Deterministic Ease of Use”, Siemens AG, Siemens Corporate Research and
Technologies, published on http://www.embedded.com/ on Feb. 2014

[3] D. Gentry, “The Six Million Dollar LibC”, Nov. 2008

[4] Murray Eisenberg, Hill Ciphers and Modular Linear Algebra, Nov. 3, 1999

[5] Vlad-Alexandru Grosu, Hill’s Cipher: Analysis of the Cryptographic Computational
Times in the Eventuality of a Brute-Force Attack, posted in IJISC - Volume 2, Issue 2,
published December 2013 (see: http://www.ijisc.com/articles/hills-cipher-analysis-of-the-
cryptographic-computational-times-in-the-eventuality-of-a-brute-force-attack/

[6] ***https://www.statista.com/chart/4112/smartphone-platform-market-share/ (last
accessed 30.06.2017)

[7] ***http://opensourceforgeeks.blogspot.ro/2015/02/difference-between-dalvik-and-
art.html (last accessed 05.07.2017)

[8] ***http://www.h-online.com/open/news/item/Second-Android-signature-attack-
disclosed-1918061.html (accessed on 05.06.2014)

[9] ***http://www.saurik.com/id/17 (accessed on 05.06.2014)

[10] ****http://seclists.org/fulldisclosure/2013/Mar/140 (accessed 05.06.2014)

[11]*** MD5 description (RFC 1521), www.ietf.org/rfc/rfc1521.txt (accessed 05.06.2014)

http://www.embedded.com/
http://www.ijisc.com/articles/hills-cipher-analysis-of-the-cryptographic-computational-times-in-the-eventuality-of-a-brute-force-attack/
http://www.ijisc.com/articles/hills-cipher-analysis-of-the-cryptographic-computational-times-in-the-eventuality-of-a-brute-force-attack/
https://www.statista.com/chart/4112/smartphone-platform-market-share/
http://opensourceforgeeks.blogspot.ro/2015/02/difference-between-dalvik-and-art.html
http://opensourceforgeeks.blogspot.ro/2015/02/difference-between-dalvik-and-art.html
http://www.h-online.com/open/news/item/Second-Android-signature-attack-disclosed-1918061.html
http://www.h-online.com/open/news/item/Second-Android-signature-attack-disclosed-1918061.html
http://www.saurik.com/id/17
http://seclists.org/fulldisclosure/2013/Mar/140
http://www.ietf.org/rfc/rfc1521.txt

