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A METHOD FOR IMPROVING THE RESOLUTION OF
MULTIPLE SIGNALS IN PERIODIC FOURIER TRANSFORM

Xiangcheng CHEN?, Jiandong ZHU?*, Lijuan QIAQ?

The periodic fractional Fourier transform (PFRFT) is very suitable for
estimating linear frequency modulated continuous wave (LFMCW) signals. The
resolution problem of multi-component LFMCW signals in the periodic fractional
domain is studied in this article. Firstly, the article provides a detailed mathematical
derivation and analysis of the spectrum features and critical resolution distance
between multiple signal spectra under the condition of discrete PFRFT calculation.
It is concluded that discrete scaling and dimensional normalization processing can
improve the peak distance between multiple signals. Then, it proposes a
comprehensive optimization method for selecting Dimensional normalization factors
to enhance the resolution of PFRFT for multiple LFMCW signals. Finally, the method
is validated using simulation signals.

Keywords: Multi-signal resolution; normalization of dimensional scales; periodic
fractional Fourier transform; spectral characteristics

1. Introduction

The fractional Fourier transform (FRFT) [1] is a generalized form of the
Fourier transform and can be understood as a linear frequency modulation (LFM)
basis decomposition. In addition, the excellent filtering performance of FRFT has
been widely used in noise reduction [2], speech enhancement [3], image processing
[4][5], fault detection [6], and other fields. FRFT has good energy aggregation for
LFM signals, making it very suitable for their detection, parameter estimation, and
separation. A FRFT-based method for separating multiple overlapping LFM signals
was proposed in [7]. Although FRFT can achieve optimal matching detection for
LFM signals, many shortcomings exist in detecting LFMCW signals. In practice,
the receiver can often receive LFMCW signals with multiple periods. However, the
gain of FRFT processing is limited to one period, and multiple peaks corresponding
to multiple periods are not conducive to signal detection. To solve this problem, the
periodic Wigner-Hough transform (PWHT) [8][9] algorithm is proposed in 2010,
which achieved complete matching detection of LFMCW signals. However, the
disadvantage of WHT is that it is a nonlinear transformation with a large amount of
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computation, which could be more conducive to real-time processing. Zhu [10] and
Huang [11] proposed the periodic fractional Fourier transform (PFRFT) algorithm
in 2013, which achieved the same detection performance as PWHT while
significantly reducing the amount of computation. Zhu [12] further proposed an
adaptive threshold estimation method for LFMCW signals based on PFRFT.
Nevertheless, they did not consider the PFRFT-based resolution problem of multi-
component LFMCW signals. When the peaks of LFMCW signals in the PFRFT
domain are too close to be distinguished, it will lead to signal separation failure and
target signal leakage.

This article studies the PFRFT-based resolution problem. The spectral
characteristics of LFMCW signals in the PFRFT domain are analyzed in Sect 2, and
the approximate expression of the energy spectrum of LFMCW signals is derived
from discrete PFRFT in Sect 3. Based on analysis of the amplitude superposition of
multi-component LFMCW signals, the resolution problem of multi-component
LFMCW signals in the PFRFT parameter plane is studied in Sect 4. By selecting a
suitable normalization factor of dimension, the resolution ability of PFRFT for
multi-component LFMCW signals is improved in Sect 5.

2. The spectral distribution analysis of LFMCW signals in the PFRFT
domain

2.1. Review of PFRFT

The PFRFT for signal *® is given as follows [10]:
PFRFT[x(t)] = j:;o (U)K 5 (t, 7,0,T)dt (1)

The transformation kernel function &®%8.7) js given by
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Where, M40 denotes the modulus operator. The rotation angle and order
of PFRFT are denoted by #=P7/2 and P respectively,  represents the time offset
search parameter, while T represents the modulation period (MP) search
parameter. Compared with FRFT, the kernel function of PFRFT has two additional
parameters T and ? , which can be used to search for unknown parameters and
LFMCW signals.
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According to Eq. (1), the PFRFT of a signal can also be expressed as:
PFRFT[x(®)] =Y. f; x(t +nTK (¢, 7, 0)dt ©)
n

This shows that the PFRFT of a signal is actually the result of coherent
accumulation in the fractional domain with a period of T, which can be used to
design a fast implementation algorithm based on FRFT for PFRFT [12].

PFRFT[X(t)] = FRFT[Y e 12T -)6Cage ¢ 74 nT)x(t)]

" (4)
Where, 9T is Rectangular window function. A single-component LFMCW
signal S® can be represented by

s(t) = Aexp[ j(¢ + 27 fit + zg mod(t + 7,T)?)] ©)

Where A is the signal amplitude, ¢ is the random initial phase, i is the
starting frequency, ¢ is the chirp rate and T is MP of the LFM , 7 is the starting
time offset, 0<7<T and 7 is introduced to consider that the reconnaissance
receiver's intercepted signal may not necessarily be at the starting point of the LFM
signals.

As mentioned earlier, the PFRFT of LFMCW signals is actually the result
of coherent accumulation in the fractional domain with a period of T, so we only
analyze one MP of the LFMCW signals here. The thick black line in Fig.1
represents the time-frequency distribution line of one MP of the LFMCW signals,

where fo is the midpoint of the time-frequency distribution line, and # is the
intersection angle between the time axis and the time-frequency distribution
direction. The U and v axes are the rotation planes corresponding to the period and

time delay (T.?2), %= Por/2 s the optimal rotation angle, and "0 is the optimal
fractional order. A sharp peak is formed by the LFMCW signal at (%0:Umax.T:7)

where “max js the intersection point between the u axis and the time-frequency
distribution direction. Therefore, the PFRFT is equivalent to accumulating the
signal energy of multiple periods of the LFMCW signal into one period and then
performing FRFT.
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Fig.1. Time frequency distribution of single cycle LFMCW signal

As shown in Fig.1, when ao=8+7/2 and g=tanj, then ap=arccot(-g), The
projection coordinates u of the midpoint fo in the PFRFT domain with a rotation
angle « of are given by:

Um = fpsina (6)

Where um is the midpoint of uin the PFRFT. When the optimal rotation
angle is taken as ao , the signal spectrum is concentrated at the midpoint to form a

peak, and the coordinates of the peak are given by
Umax = fosinag

1
ng +1

We denote » as the length of the time-frequency distribution direction in
one MP, then o=T/|cos|. The intersection angle between the u axis and the time-
frequency distribution direction is AZ=|la -4, at rotation angle « . The support width
in the PFRFT domain is given by:

()

sinao =

TcosAS
cospf

Pa =

(8)

It can be seen from Eq.7, the variable interval of pxis [0, [T/cosg[],

2.2. The Continuous PFRFT Spectral Distribution Characteristics of
LFMCW Signals

Assuming the simplified LFMCW signal is

s(t) = Aexp(jzg mod(t + 7, T)?) (9)
Substituting Eq.(9) into Eq.(1). It can be obtained that
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PFRFT(o?,a,TN,f):AADCJ‘_+ exp[J(;zgmod(tHT) 02 mod(t+rT)) jacsca(t +7)ldt
S (10)

[exp(ju?cot&)
Where, @=nz , A, =\[@-jcota)/2z . When (T,7)=(T,7) , the PFRFT of the

signal at a rotation angle &=-arccot2zg is given by

~2
PFRFT(@,0,T,7) = AA, exp(ju?cot d)fiexp(—jﬂcscd(t +7))dt
P (11)
=AA, exp(ju?cotd — jarcsca)o(desca)
Which shows that the PFRFT of the signal is an impulse function at the
optimal search parameter. In the sampling time, Eq. (11) becomes:
2 12
PFRFT(&,0,T,7) = nAA, Tsinc[zT csc(d)a]exp(ju?cotd — jazcsca) ( )
Where n is the number of MP. It means the optimal PFRFT spectrum
follows a Sinc function. When (f,7)=(T,7) and a=-arccot2zg , Eq.(12) can be
transformed as

o 2 .
PFRFT(4,0,T,7) = nAA, explj — (cot@ — — 0 ¢
2 27g+cota (13)
T/2 T cota Gcsca
g e —(2 t
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2rg +cota
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29 +
T
Where,
—Ty =\2g +cota/ (T | 2+z—(cscal (2zg +cot ) (15)
T, =\J2g +cota/ z(T / 2+ 7 —lcsca/ (2zg +cotd)) . (16)

The PFRFT spectrum expression of a finite-length LFMCW signal is

PFRFT (@,0,T, 7) = —— 22 ({[c(Ty) + o(To)] + j[s(Ty) + S(To)]}

’2g+cota
T

g2 0502 a

LEXp[ju?(COID? -——) (17)
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Here, C(T)=IJCOS(§ZZ)0|Z , S(F)=jgsin(%zz)dz denotes the Fresnel integral

function, obtains:
[PFRFT (@,0,T, 7)) = —— 222 {[c(Ty) + o(T)I? + [s(Ty) + s(Tp) 232

29 +M
d z (18)

S(T1)+S(T2)+£(cotd— cscea )
c(M)+c(Tp) 2 27g +cota

When a=0, Ty=\f2g+cota/z(T/2-7) , To=\2g+cota/ (T /2+7) , and when
2g+cota/70 1 , the Fresnel integral function, c(T)=s(T)~05 ,which can be
substituted into Eg. (18) to obtain:

6(a,a,T,7) = arctan

[PFRFT (@0, 7)| =nAsy, / fg 4+ S egan S +5(T) 7 (19)
2 c(f)+c(Ty) 4
when 0=-p, /2 Ty=—z2g+cota/z ,To=(T +7)\J2g +cota/z , and when =0,
obtains =0 |, T,=T2g+cota/~ : When U=p,/2  T=T29+cota/r , T2=0 .
Substituting T and T2 into Eq. (18) obtains:
IPFRFT (@0, 1 2,T,0)| =nAA, / 2 g+%) (20)

The amplitude value is half of when a=0. As 2g+cota/z increases, the
reduced fluctuation of the Fresnel integral function value in the support interval
ue(-po12.p,12) means that the PFRFT spectrum of the signal is flat. Thus, the
spectrum shape is closer to a rectangle. Fig.2 shows a three-dimensional slice of the
PFRFT domain spectrum of an LFMCW signal when (T,7)=(T.7).
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Fig. 2. 3D Spectrum Distribution of LFMCW Signal in PFRFT Domain

3. Discrete PFRFT Spectral Characteristics of LFMCW Signal

3.1. Influence of Dimensional Normalization on the Periodic
Fractional Fourier Spectrum of LFMCW Signals

In practical applications, digital signal processing of PFRFT is generally
used. Ozaktas [13] proposed a fast discrete FRFT algorithm, one of the most
commonly used algorithms due to its high accuracy and low complexity. The
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PFRFT is equivalent to the coherent accumulation of the FRFT of each period of
the LFM signal, so the discrete algorithm for PFRFT is based on the discrete FRFT
algorithm with the same processing of dimensional normalization. The dimensional
normalization method is as follows: assuming that the original signal is tightly
supported on both the time and frequency axes, the time domain interval is
[-At/2, At/2] and the frequency domain interval is [-Af/2, Af/2] which have
different dimensions. To facilitate calculation and processing, both the time and
frequency domains need to be transformed into a unified dimension. Introduce the
dimensional normalization factor s=(at/af)¥2 and define the dimensional
normalization coordinates as x=t/s , v="fs . The new coordinate (xv) system
achieves dimensional normalization.

In practical applications, only the discrete data obtained by sampling the
original continuous signal can be obtained. This paper adopts the discrete scaling
method as follows [14] : let the time width of the signal be At=Tq , the bandwidth

be Af =fs, then s=(14/ f)Y2. The time domain and frequency domain intervals of

the signal become [-4x/2, Ax/2] | where ax=(T4f)¥?. The new coordinate system

achieves dimensional normalization, and the sampling interval becomes 1/ Ax.
Assuming that the new chirp rate after dimensional normalization is g’, the
initial frequency is fi', the corresponding optimal rotation angle is ¢o, and the
coordinates of the maximum value are Umax . The quantization relationship between
them is
g'=—cotag / (27)
{ f{' = Omax CSCag / (277) (21)
According to [14], the actual parameter values after dimensional normalized
are:
g'=vix=(fs)/(t/s)=gTy/ f
{ vz (22)
fi'=fis=fi(Tq / f5)
Combining the above two equations, the peak coordinates can be obtained
as:
ag =arccot(-2zgTy / fg)
{f) ey (23)
Umax =27 i (Tg / f5)™ “sinag
Eqg. (23) shows that dimensional normalization changes the coordinates of
the signal peak. The support area width in the PFRFT domain and the coordinates
of the midpoint are changed as follows, respectively:
A A A .
)r(]zgz/}ﬁ = X(c05a+gTd ! fgsina)

n (24)
Um = fi«/id [ fgsina

Where n is the number of frequency modulation cycles.

’
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3.2 Approximate Expression of Discrete PFRFT Spectrum for
LFMCW Signal

For the continuous signal in Eq. (9), according to Eq. (12), when g , the

spectrum maximum value of s(t) in the optimal PFRFT domain is

[nAT|

|PFRFT (@,0,T,7)| =[nAA,T|= (25)

\Z;rsin&o\llz
After the continuous signal s(t)is sampled and dimensionally normalized,
the maximum value of the spectrum becomes
A@N+) AN L 26
2N |2zsingolU?  [2zsingol'?  |2zsinagll? (26)
Comparing Eq. (26) with Eqg. (25), it can be seen that the maximum value
of the PFRFT-spectrum changes after dimensional normalization. The modulus
squared maximum is

|PFRFT(@,0,T,7)| =

2 |APN
max — [27zsin

|PFRFT (,0,T,7)

(27)

Eq. (24) gives the support width of the signal in the PFRFT domain after
dimensional normalization, and the sampling interval of the signal is1/Ax. Then,
the sampling points number in the support area is

) , . 1 . N )
N 5o =integer(p;, /E)+1: |nteger[F(005a+ gTy / fssine)

1+1 (28)

Where integer() represents the integer part of an actual number. Further
derivation shows that the approximate expression of the energy spectrum is

|PFRFT (a,u,f,f)\z

AN
{integer[%(coww gTy / fs sina)]+l}\27rsindo\
, , (29)
= Ue[u}n—%,thrp?“]
0 , Ue[uh—%’,u,’«ner?a]
4. Resolution analysis of multi-component LFMCW signals
Multi-component LFMCW signals can be represented as
M
X(O = 2 AnxpLi(27 fmt + 70m(Mod(t-+ 2 Tm))” + )], 30)
m=1

-Ty /ZSISTd /12
Where M is the number of signal components. Multi-component LFMCW
signals with similar energy and parameters may appear indistinguishable due to the
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superposition of energy spectra in the PFRFT domain, resulting in missed
detections. This section uses the PFRFT distribution characteristics of LFMCW
signals in Sections 2 and 3 to analyze the resolution problem between multi-
component LFMCW signals quantitatively. When (T,#)=(T,7) is fixed, the
resolution of two LFMCW signals in the parameter plane (p.0) includes the
resolution on the axis and the axis. If the signals can be resolved on one axis, then
the two signals can be distinguished. The signals cannot be distinguished if they
cannot be resolved on both axes.

Take two LFMCW signals sr and s, with initial frequencies fr and fi, and
chirp rate 9r and 91, respectively. Assume that their best rotation angles are «rand
a (ar=p7l2 ag=p/2 assume ar <a ); the axis coordinates of the maximum
energy spectrum points in their respective optimal period FRFT domain are Urmax
and Uimax , respectively; and the coordinates of their peaks in the plane (p.0) are
(Pr. Urmax)and (pr. Gimax) , respectively. Let Grmand Uim be the midpoints of srands
in each PFRFT spectra, respectively; and let s« and siz be the widths of their
PFRFT spectra, respectively. The distances between their peaks on the and axes are
ARpand ARy, respectively. According to Eq. (26) and (27), it can be seen that in the
PFRFT domain with a rotation angle of ar , the energy of signal is mainly

concentrated at one point Grmax, and the value is |A|*N/[2zsine,|. Furthermore,
according to Eq. (12), the PFRFT distribution of sr isasinc function sinc[zT csc(ay)d]

, and becomes sinc{ﬂ%cscwr)ﬂ] after Dimensional normalization, with the support

region width of which is approximately chosen as %. Similarly, in the

n
Axcsc(ay)
rotation angle of « . The critical resolution distances of srand s on the P and d
axis are analyzed below.

There are two cases to consider: (1) the support regions of srand s do not
overlap, which needs |G —Uim [>(ore +Pie) /2, when a€lar,a] ; (2) the support
regions of srand sioverlap, which needs |Urm —Uim < (oro + Aie)/ 2, when a €lar, o],

For the first case, there is no significant amplitude difference between the
two peaks on the axis P, the two signals cannot be distinguished. According to Eq.

(24), when I%(cosmgTd I fssina)<1, the energy spectrum amplitude of the signal is

similar to the maximum value. Let the interval of « that satisfies this inequality be
A, and the peak of the signal cannot be highlighted in this « interval. Taking sr
as an example, it can be analyzed which factors are related to A« from

|%(cosa+gTd  fgsin) |:|%de$2 + 9218 sin(ey —a) <1,

It can be obtained that:
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. n
Ay =2arcsin(—————)
e 2
According to Eq. (31), The influencing factors of width A« includes the
chirp rate 9r, the sampling time Tq, the sampling frequency fs, and the MP
number n, and the midpoint of the interval is «r. Based on the above analysis, the
critical resolution distance of s and si on the axis P in the first case is

ARpmim:%(Aar +Aay)] (712) (32)

When ARp <ARpmin1, sy and s cannot be distinguished on the axis P.

For the second case, the support regions of sr and sjoverlap, and the effect
of energy spectrum superposition on signal resolution needs to be considered.
Taking the typical case fr=fi, the support regions of srand s overlap in any

PFRFT domain. According to Eq. (29), when 15|%(C0505+9Td/f55in(1)|<2 , the

superposition value of the energy spectrum of srand s is similar to the maximum
energy spectrum amplitude in the FRFT domain of arand « . Thus, in the interval
that satisfies this condition, the peaks of the two signals cannot be distinguished.

N . . .
When |F(C050‘+9Td I fssina)>2 the energy spectrum's superposition value is much

larger than the peak value difference, the signals can be distinguished. Therefore,
the critical resolution distance of the second case is

ARpmin2 :{%(Aar + Aay) + min[arcsin( 2n Aoy

7)_ ,
Td\/fs.2+gr2Td2 2

2n Agy

— - 2
W 2 )
2n

—_— 2
Td\]fsz’“grszZ)]/(ﬂ-/ )

Where min() represents the smaller of the two data (it is assumed above that
ar <a1), When ARp=ARpmin2, srand si cannot be distinguished on the axis P.

In the above two cases, the critical resolution distance analysis on the axis
a is as follows. In the first instance, when |Urm —Uim > (orq + Aia) /2, the peak of sris
not in the support region of s, and sr and s have little influence on each other, and
can be differentiated on the axis ¢ . In the second instance, when
|Grm = Gim [< (pre. + Ale) 12 and | P—PrI<ARpmin2 |, the peak distance between srand s
on the axis ¢ is less than 4n the sampling interval 4n/Ax , so the energy
superposition effect of sr and sileads to indistinguishability of their peak on the
axis . When the peak distance between sr and s on the axis d is larger than 4n
the sampling interval 4n/Ax, and the energy spectrum of sr and si does not overlap

arcsin(

A .
= [% +arcsin(
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on the axis ¢, and can be differentiated on the axis a. Therefore, in the second

instance, the critical resolution distance of sr and s on the axis v is:
4n

ARy min m (34)

It can be concluded that:(a)when the peaks distance between the signals sr

and s, satisfies ARp <ARpmin2, and ARy <4n/Ax the peaks cannot be distinguished;

(b)the critical resolution distance between signals sr and si is not only related to

the parameters of the signal, but also affected by the Dimensional normalization
under the condition of discrete PFRFT calculation.

5. Selection of Dimensional Normalization Factor

From EQq.(23), it can be seen that under the condition of discrete PFRFT
calculation, the distance between the peak of sr and si on the axis P is
ARp =|py — pr| =|arccot(-27g Ty / fs) —arccot(-27g,Ty / fs)|/ (= / 2) (35)
and the distance on the axis v is
ARy =‘“rma\x -y max‘
= (Tq ! fs)Y2|fysingy - fysinay|
(36)
fi _ fr
Ve ofa 1197 02T 1 1,2
From Eq. (35) and (36), it can be observed that the distance between signal
peaks is regulated by the dimensionality normalization factor s=(1y/f)Y? .

Obviously, as long as the sampling theorem is satisfied, optimizing the Dimensional
normalization factor increases the peak distance on the parameter plane (p.0) .
When AR is maximum, the resolution is optimal, that is,

ARpmax = max(,fAR% +AR?) (37)

Therefore, when two signals cannot be distinguished, a reasonable
Dimensional normalization factor can be selected to make AR as large as possible
and achieve their resolution.

Taking two sets of parameters as examples, the variation of peak distance

between two signals with the factor s is analyzed bellow. (1) When fr =20Hz |
fi=22Hz and 9r=20Hz/s g =24Hz/s ; (2) When fy =200Hz | fj =220Hz | g, =1500Hz/s

and 9 =1600Hz/s = ARp and AR, change with s=(T, / f5)¥2 as shown in the curves in
Fig.3.

= (Td / fs)l/2
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Fig. 3. Variation curves of three kind of peaks distance of two signal with the change of s.
(a)fr=20Hz, fl=22Hz, gr=20Hz/s, gl=24Hz/s, (b) fr=200Hz, fl=220Hz, gr=1500Hz/s, gl=1600Hz/s.

From Fig. 3, it can be seen that: (a)Both the peaks distance of the two
LFMCW signal on the u-axis and p-axis is regulated by s, and get maximum values
at different s; (b) the the peaks distance adjustment of the two signal on the u-axis
is much larger than that on the p-axis, so the position where AR reaches the
maximum value mainly depends on the coordinate of the maximum value of ARy,
for the first and second sets of data, when s=0.12 and 0.019, respectively.

Taking the first set of data above as an example, the amplitude of the two
signals is set to 1 to verify the selection of the Dimensional normalization factor to
achieve the resolution of the two LFMCW signals. For the first set of data: when
Tg=4s, f3=1000Hz = and n=4, the three-dimensional distribution slice of the two
signals at (T=1z=0) is shown in Fig. 4. When Tq=4s  fs=278Hz and n=4,
s=(Tq / f)Y? =0.12, the three-dimensional distribution slice of the two signals at
(T =17z=0) is shown in Fig.5.

Fig. 4. The 3D-slice PFRFT of the signals, s=0.0632
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Fig. 5. The 3D-slice PFRFT of the signals, s=0.12

It can be seen that in Fig. 4, the two signals are mixed together and cannot
be distinguished, while in Fig. 5, the two signals can be distinguished by increasing
the Dimensional normalization factor s to increase the two peaks distance, which
verifies the rationality of determining the optimal normalization factor based on Eqg.
(37) and the peak distance change curve in Fig. 3. As mentioned earlier, the critical
resolution distance between two LFMCW signals is related to two kinds of elements,
the signal parameters and Dimensional normalization factor. Since the parameters
of signals are uncontrollable, and this paper adopts a Dimensional normalization

factor of s=(14/ 5)Y2, reasonable sampling time Tq and sampling frequency fs can

be selected under the condition of satisfying the sampling theorem to improve the
resolution of the PFRFT.

6. Conclusion

This paper analyzes the frequency spectrum distribution characteristics of
LFMCW continuous and discrete signals in the PFRFT domain and derives an
approximate expression for the energy spectrum of LFMCW signals under discrete
PFRFT calculation. Based on the analysis of the resolution distance on the PFRFT
parameter plane, the resolution problem of multiple LFMCW signals was
investigated. Research found that the resolution distance is related to the following
factors: (1) signal parameters: initial frequency, chirp rate, frequency modulation
cycle, observation time, sampling frequency; (2) Dimensional normalization factor.
The resolution capability of PFRFT to multiple LFMCW signals can be improved.
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