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A METHOD FOR IMPROVING THE RESOLUTION OF 

MULTIPLE SIGNALS IN PERIODIC FOURIER TRANSFORM 

Xiangcheng CHEN1, Jiandong ZHU2,*, Lijuan QIAO3 

The periodic fractional Fourier transform (PFRFT) is very suitable for 

estimating linear frequency modulated continuous wave (LFMCW) signals. The 

resolution problem of multi-component LFMCW signals in the periodic fractional 

domain is studied in this article. Firstly, the article provides a detailed mathematical 

derivation and analysis of the spectrum features and critical resolution distance 

between multiple signal spectra under the condition of discrete PFRFT calculation. 

It is concluded that discrete scaling and dimensional normalization processing can 

improve the peak distance between multiple signals. Then, it proposes a 

comprehensive optimization method for selecting Dimensional normalization factors 

to enhance the resolution of PFRFT for multiple LFMCW signals. Finally, the method 

is validated using simulation signals. 

Keywords: Multi-signal resolution; normalization of dimensional scales; periodic 

fractional Fourier transform; spectral characteristics 

1. Introduction 

The fractional Fourier transform (FRFT) [1] is a generalized form of the 

Fourier transform and can be understood as a linear frequency modulation (LFM) 

basis decomposition. In addition, the excellent filtering performance of FRFT has 

been widely used in noise reduction [2], speech enhancement [3], image processing 

[4][5], fault detection [6], and other fields. FRFT has good energy aggregation for 

LFM signals, making it very suitable for their detection, parameter estimation, and 

separation. A FRFT-based method for separating multiple overlapping LFM signals 

was proposed in [7]. Although FRFT can achieve optimal matching detection for 

LFM signals, many shortcomings exist in detecting LFMCW signals. In practice, 

the receiver can often receive LFMCW signals with multiple periods. However, the 

gain of FRFT processing is limited to one period, and multiple peaks corresponding 

to multiple periods are not conducive to signal detection. To solve this problem, the 

periodic Wigner-Hough transform (PWHT) [8][9] algorithm is proposed in 2010, 

which achieved complete matching detection of LFMCW signals. However, the 

disadvantage of WHT is that it is a nonlinear transformation with a large amount of 
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computation, which could be more conducive to real-time processing. Zhu [10] and 

Huang [11] proposed the periodic fractional Fourier transform (PFRFT) algorithm 

in 2013, which achieved the same detection performance as PWHT while 

significantly reducing the amount of computation. Zhu [12] further proposed an 

adaptive threshold estimation method for LFMCW signals based on PFRFT. 

Nevertheless, they did not consider the PFRFT-based resolution problem of multi-

component LFMCW signals. When the peaks of LFMCW signals in the PFRFT 

domain are too close to be distinguished, it will lead to signal separation failure and 

target signal leakage. 

This article studies the PFRFT-based resolution problem. The spectral 

characteristics of LFMCW signals in the PFRFT domain are analyzed in Sect 2, and 

the approximate expression of the energy spectrum of LFMCW signals is derived 

from discrete PFRFT in Sect 3. Based on analysis of the amplitude superposition of 

multi-component LFMCW signals, the resolution problem of multi-component 

LFMCW signals in the PFRFT parameter plane is studied in Sect 4. By selecting a 

suitable normalization factor of dimension, the resolution ability of PFRFT for 

multi-component LFMCW signals is improved in Sect 5. 

2. The spectral distribution analysis of LFMCW signals in the PFRFT 

domain 

2.1. Review of PFRFT 

The PFRFT for signal ( )x t  is given as follows [10]: 

 [ ( )] ( ) ( , , , )PFRFT x t x t K t u T dt 
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=   (1) 
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Where, mod( )  denotes the modulus operator. The rotation angle and order 

of PFRFT are denoted by / 2p =  and p  respectively,   represents the time offset 

search parameter, while T  represents the modulation period (MP) search 

parameter.  Compared with FRFT, the kernel function of PFRFT has two additional 

parameters T  and   , which can be used to search for unknown parameters and 

LFMCW signals.  
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According to Eq. (1), the PFRFT of a signal can also be expressed as: 

0
[ ( )] ( ) ( , , )

T

n

PFRFT x t x t nT K t u dt= +                                  (3) 

This shows that the PFRFT of a signal is actually the result of coherent 

accumulation in the fractional domain with a period of T , which can be used to 

design a fast implementation algorithm based on FRFT for PFRFT [12]. 
2 ( )csc[ ( )] [ ( ) ( )]j u nT

T
n

PFRFT x t FRFT e g t nT x t   − −= − +
               (4) 

Where, Tg is Rectangular window function. A single-component LFMCW 

signal ( )s t  can be represented by 

2( ) exp[ ( 2 mod( , ) )]is t A j f t g t T   = + + +                           (5) 

Where A  is the signal amplitude,   is the random initial phase, if  is the 

starting frequency, g is the chirp rate and T is MP of the LFM ,   is the starting 

time offset, 0 T  , and   is introduced to consider that the reconnaissance 

receiver's intercepted signal may not necessarily be at the starting point of the LFM 

signals. 

As mentioned earlier, the PFRFT of LFMCW signals is actually the result 

of coherent accumulation in the fractional domain with a period of T , so we only 

analyze one MP of the LFMCW signals here. The thick black line in Fig.1 

represents the time-frequency distribution line of one MP of the LFMCW signals, 

where 0f  is the midpoint of the time-frequency distribution line, and   is the 

intersection angle between the time axis and the time-frequency distribution 

direction.  The u  and v  axes are the rotation planes corresponding to the period and 

time delay ( , )T  . 0 0 / 2p =  is the optimal rotation angle, and 0p  is the optimal 

fractional order. A sharp peak is formed by the LFMCW signal at 0 max( , , , )u T  , 

where maxu is the intersection point between the u axis and the time-frequency 

distribution direction. Therefore, the PFRFT is equivalent to accumulating the 

signal energy of multiple periods of the LFMCW signal into one period and then 

performing FRFT. 



190                                        Xiangcheng Chen, Jiandong Zhu, Lijuan Qiao 

 

Fig.1. Time frequency distribution of single cycle LFMCW signal 

 

As shown in Fig.1, when 0 / 2  = + , and tang = , then 0 cot( )arc g = − . The 

projection coordinates u  of the midpoint 0f  in the PFRFT domain with a rotation 

angle   of are given by: 

0 sinmu f =                                                    (6) 

Where mu  is the midpoint of u in the PFRFT. When the optimal rotation 

angle is taken as 0  , the signal spectrum is concentrated at the midpoint to form a 

peak, and the coordinates of the peak are given by 

max 0 0
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We denote   as the length of the time-frequency distribution direction in 

one MP, then / | cos |T = . The intersection angle between the u axis and the time-

frequency distribution direction is | |   = − , at rotation angle . The support width 

in the PFRFT domain is given by:  

cos

cos

T








=                                                 (8) 

It can be seen from Eq.7, the variable interval of  is [0, | / cos |]T  . 

2.2. The Continuous PFRFT Spectral Distribution Characteristics of 

LFMCW Signals 

Assuming the simplified LFMCW signal is 

2( ) exp( mod( , ) )s t A j g t T = +
                                  (9) 

Substituting Eq.(9) into Eq.(1). It can be obtained that 

0
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Where, n  , (1 cot ) / 2A j  = − . When ( , ) ( , )T T = , the PFRFT of the 

signal at a rotation angle cot2arc g = −  is given by 
2
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Which shows that the PFRFT of the signal is an impulse function at the 

optimal search parameter. In the sampling time, Eq. (11) becomes: 

2

( , , , ) sin [ csc( ) ]exp( cot csc )
2

u
PFRFT u T nAA T c T u j ju      = −

           (12) 

Where n is the number of MP. It means the optimal PFRFT spectrum 

follows a Sinc function. When ( , ) ( , )T T =  and cot2arc g  − , Eq.(12) can be 

transformed as 
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Where, 

1 2 cot / ( / 2 csc / (2 cot ))T g T u g     − = + − + − +             (15) 

2 2 cot / ( / 2 csc / (2 cot ))T g T u g     = + + − + .              (16) 

The PFRFT spectrum expression of a finite-length LFMCW signal is 
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Here, 
2
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function, obtains: 
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When 0u = , 1 2 cot / ( / 2 )T g T  = + − , 2 2 cot / ( / 2 )T g T  = + + , and when

2 cot / 1g  + , the Fresnel integral function, ( ) ( ) 0.5c T s T=  ,which can be 

substituted into Eq. (18) to obtain: 
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when / 2u = − , 1 2 cot /T g  = − + , 2 ( ) 2 cot /T T g  = + + , and when 0 = , 

obtains 1 0T = , 2 2 cot /T T g  = + ;  when / 2u = , 1 2 cot /T T g  = + , 2 0T = . 

Substituting 1T  and 2T  into Eq. (18) obtains: 

cot
( , / 2, ,0) / (2 )

2
PFRFT T nAA g 


 


 = +                       (20) 

The amplitude value is half of when 0u = . As 2 cot /g  +  increases, the 

reduced fluctuation of the Fresnel integral function value in the support interval 
( / 2, / 2)u    −  means that the PFRFT spectrum of the signal is flat. Thus, the 

spectrum shape is closer to a rectangle. Fig.2 shows a three-dimensional slice of the 

PFRFT domain spectrum of an LFMCW signal when ( , ) ( , )T T = . 

 
Fig. 2. 3D Spectrum Distribution of LFMCW Signal in PFRFT Domain 

3. Discrete PFRFT Spectral Characteristics of LFMCW Signal  

3.1. Influence of Dimensional Normalization on the Periodic 

Fractional Fourier Spectrum of LFMCW Signals 

In practical applications, digital signal processing of PFRFT is generally 

used. Ozaktas [13] proposed a fast discrete FRFT algorithm, one of the most 

commonly used algorithms due to its high accuracy and low complexity. The 
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PFRFT is equivalent to the coherent accumulation of the FRFT of each period of 

the LFM signal, so the discrete algorithm for PFRFT is based on the discrete FRFT 

algorithm with the same processing of dimensional normalization. The dimensional 

normalization method is as follows: assuming that the original signal is tightly 

supported on both the time and frequency axes, the time domain interval is
[ / 2, / 2]t t−   and the frequency domain interval is [ / 2, / 2]f f−  ,which have 

different dimensions. To facilitate calculation and processing, both the time and 

frequency domains need to be transformed into a unified dimension. Introduce the 

dimensional normalization factor 1/2( / )s t f=   and define the dimensional 

normalization coordinates as /x t s= , v fs= . The new coordinate ( , )x v system 

achieves dimensional normalization. 

In practical applications, only the discrete data obtained by sampling the 

original continuous signal can be obtained. This paper adopts the discrete scaling 

method as follows [14] : let the time width of the signal be dt T = , the bandwidth 

be sf f = , then 1/2( / )d ss T f= . The time domain and frequency domain intervals of 

the signal become [ / 2, / 2]x x−  , where 1/2( )d sx T f = . The new coordinate system 

achieves dimensional normalization, and the sampling interval becomes 1 / x . 

Assuming that the new chirp rate after dimensional normalization is g , the 

initial frequency is if  , the corresponding optimal rotation angle is 0̂ , and the 

coordinates of the maximum value are maxû . The quantization relationship between 

them is 

0
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ˆcot / (2 )

ˆˆ csc / (2 )i

g

f u

 

 

 = −


 =
                                                   (21) 

According to [14], the actual parameter values after dimensional normalized 

are: 
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Combining the above two equations, the peak coordinates can be obtained 

as: 

0

1/2
max 0

ˆ cot( 2 / )

ˆˆ 2 ( / ) sin

d s

i d s

arc gT f

u f T f

 

 

= −


=
                                   (23) 

Eq. (23) shows that dimensional normalization changes the coordinates of 

the signal peak. The support area width in the PFRFT domain and the coordinates 

of the midpoint are changed as follows, respectively:  
cos

(cos / sin )
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/ sin

d s

m i d s

x x
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
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 = = +
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Where n is the number of frequency modulation cycles. 
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3.2 Approximate Expression of Discrete PFRFT Spectrum for 

LFMCW Signal 

For the continuous signal in Eq. (9), according to Eq. (12), when 0u =  , the 

spectrum maximum value of ( )s t in the optimal PFRFT domain is 

1/2
0

( ,0, , )
2 sin

nAT
PFRFT T nAA T 

 
= =                            (25) 

After the continuous signal ( )s t is sampled and dimensionally normalized, 

the maximum value of the spectrum becomes 

1/2 1/2 1/2
0 0 0

(2 1)
( ,0, , )
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A N A N A x
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N
 

     

+ 
=  =           (26) 

Comparing Eq. (26) with Eq. (25), it can be seen that the maximum value 

of the PFRFT-spectrum changes after dimensional normalization. The modulus 

squared maximum is 
2

2

max
0

( ,0, , )
2 sin

A N
PFRFT T 

 
=                                (27) 

Eq. (24) gives the support width of the signal in the PFRFT domain after 

dimensional normalization, and the sampling interval of the signal is1 / x . Then, 

the sampling points number in the support area is 
1

int ( / ) 1 int [ (cos / sin ) ] 1d s
N

N eger eger gT f
x n

   = + = + +

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Where int ( )eger represents the integer part of an actual number. Further 

derivation shows that the approximate expression of the energy spectrum is 
2
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4. Resolution analysis of multi-component LFMCW signals 

Multi-component LFMCW signals can be represented as 

2

1

( ) exp[ (2 (mod( , )) )],

/ 2 / 2

M

m m m m m m
m

d d

x t A j f t g t T

T t T
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=

= + + +

−  


               (30) 

Where M  is the number of signal components. Multi-component LFMCW 

signals with similar energy and parameters may appear indistinguishable due to the 
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superposition of energy spectra in the PFRFT domain, resulting in missed 

detections. This section uses the PFRFT distribution characteristics of LFMCW 

signals in Sections 2 and 3 to analyze the resolution problem between multi-

component LFMCW signals quantitatively. When ( , ) ( , )T T =  is fixed, the 

resolution of two LFMCW signals in the parameter plane ( , )p u  includes the 

resolution on the axis and the axis. If the signals can be resolved on one axis, then 

the two signals can be distinguished. The signals cannot be distinguished if they 

cannot be resolved on both axes. 

Take two LFMCW signals rs  and ls , with initial frequencies rf  and lf , and 

chirp rate rg  and lg , respectively. Assume that their best rotation angles are r and 

l ( / 2, / 2r r l lp p   = = , assume r l   ); the axis coordinates of the maximum 

energy spectrum points in their respective optimal period FRFT domain are maxru

and maxlu , respectively；and the coordinates of their peaks in the plane ( , )p u  are 

max( , )r rp u and max( , )l lp u , respectively. Let rmu and lmu  be the midpoints of rs and ls  

in each PFRFT spectra, respectively; and let r  and l  be the widths of their 

PFRFT spectra, respectively. The distances between their peaks on the and axes are 

pR and uR , respectively. According to Eq. (26) and (27), it can be seen that in the 

PFRFT domain with a rotation angle of r  , the energy of signal is mainly 

concentrated at one point maxru , and the value is 2
/ 2 sinr rA N   . Furthermore, 

according to Eq. (12), the PFRFT distribution of rs  is a sinc function sin [ csc( ) ]rc T u 

, and becomes  sin [ csc( ) ]r
x

c u
n

 


 after Dimensional normalization, with the support 

region width of 
2

csc( )r

n

x 
, which is approximately chosen as 

2n

x
. Similarly, in the 

rotation angle of l . The critical resolution distances of rs and ls  on the p  and u  

axis are analyzed below. 

There are two cases to consider: (1) the support regions of rs and ls do not 

overlap, which needs | | ( ) / 2rm lm r lu u      −  + , when [ , ]r l   ; (2) the support 

regions of rs and ls overlap, which needs | | ( ) / 2rm lm r lu u      −  + , when [ , ]r l   .  

For the first case, there is no significant amplitude difference between the 

two peaks on the axis p , the two signals cannot be distinguished. According to Eq. 

(24), when | (cos / sin )|<1d s
N

gT f
n

 + , the energy spectrum amplitude of the signal is 

similar to the maximum value. Let the interval of   that satisfies this inequality be 
 , and the peak of the signal cannot be highlighted in this   interval. Taking rs  

as an example, it can be analyzed which factors are related to r  from

2 2 2| (cos / sin ) | | sin( ) | 1d
d s s r d r

TN
gT f f g T

n n
   + = + −  . 

It can be obtained that: 
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2 2 2
2arcsin( )r

d s r d

n

T f g T

 =

+
                                (31) 

According to Eq. (31), The influencing factors of width r includes the 

chirp rate rg , the sampling time dT , the sampling frequency sf , and the  MP  

number n , and the midpoint of the interval is r . Based on the above analysis, the 

critical resolution distance of rs  and ls  on the axis p  in the first case is 

min1
1

( ) / ( / 2)
2

p r lR    =  +                                  (32) 

When min1p pR R   , rs  and ls cannot be distinguished on the axis p . 

For the second case, the support regions of rs  and ls overlap, and the effect 

of energy spectrum superposition on signal resolution needs to be considered. 

Taking the typical case r lf f= , the support regions of rs and ls overlap in any 

PFRFT domain. According to Eq. (29), when 1 | (cos / sin )|<2d s
N

gT f
n

  + , the 

superposition value of the energy spectrum of rs and ls is similar to the maximum 

energy spectrum amplitude in the FRFT domain of r and l . Thus, in the interval 

that satisfies this condition, the peaks of the two signals cannot be distinguished. 

When | (cos / sin )|>2d s
N

gT f
n

 + the energy spectrum's superposition value is much 

larger than the peak value difference, the signals can be distinguished. Therefore, 

the critical resolution distance of the second case is 

min 2
2 2 2

2 2 2

2 2 2

1 2
{ ( ) min[arcsin( ) ,

2 2

2
arcsin( ) ]} / ( / 2)

2

2
[ arcsin( )] / ( / 2)

2
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p r l

d s r d

l

d s r d

r

d s r d

n
R

T f g T

n

T f g T

n

T f g T


 








 =  +  + −

+


−

+


= +

+

               (33) 

Where min( )  represents the smaller of the two data (it is assumed above that 

r l  ). When min2p pR R   , rs and ls cannot be distinguished on the axis p . 

In the above two cases, the critical resolution distance analysis on the axis 
u  is as follows. In the first instance, when | | ( ) / 2rm lm r lu u      −  + , the peak of rs is 

not in the support region of ls , and rs  and ls  have little influence on each other, and 

can be differentiated on the axis u . In the second instance, when 
| | ( ) / 2rm lm r lu u      −  +  and min2| |l r pp p R−   , the peak distance between rs and ls  

on the axis u  is less than 4n  the sampling interval 4 /n x , so the energy 

superposition effect of rs  and ls leads to  indistinguishability of their peak on the 

axis u . When the peak distance between rs  and ls  on the axis u  is larger than 4n  

the sampling interval 4 /n x , and the energy spectrum of rs  and ls  does not overlap 
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on the axis u , and can be differentiated on the axis u . Therefore, in the second 

instance, the critical resolution distance of rs  and ls  on the axis u  is:  

min
4

u
d s

n
R

T f
 =                                               (34) 

It can be concluded that:(a)when the peaks distance between the signals rs  

and ls , satisfies min2p pR R   , and 4 /uR n x   , the peaks cannot be distinguished; 

(b)the critical resolution distance between signals rs  and ls  is not only related to 

the parameters of the signal, but also affected by the Dimensional normalization 

under the condition of discrete PFRFT calculation. 

5. Selection of Dimensional Normalization Factor 

From Eq.(23), it can be seen that under the condition of discrete PFRFT 

calculation, the distance between the peak of rs  and ls  on the axis p  is 
cot( 2 / ) cot( 2 / ) / ( / 2)p l r l d s r d sR p p arc g T f arc g T f   = − = − − −           (35) 

and the distance on the axis u  is 

max max

1/2

1/2

2 2 2 2

( / ) sin sin

( / )

1 ( / ) 1 ( / )

u r l

d s l l r r

l r
d s

l d s r d s

R u u

T f f f

f f
T f

g T f g T f

 

 = −

= −

= −

+ +

                      (36) 

From Eq. (35) and (36), it can be observed that the distance between signal 

peaks is regulated by the dimensionality normalization factor 1/2( / )d ss T f= . 

Obviously, as long as the sampling theorem is satisfied, optimizing the Dimensional 

normalization factor increases the peak distance on the parameter plane ( , )p u . 

When R  is maximum, the resolution is optimal, that is, 

 2 2
max max( )p uR R R =  +                                      (37) 

Therefore, when two signals cannot be distinguished, a reasonable 

Dimensional normalization factor can be selected to make R  as large as possible 

and achieve their resolution. 

Taking two sets of parameters as examples, the variation of peak distance 

between two signals with the factor s is analyzed bellow. (1) When 20rf Hz= , 
22lf Hz= , and 20 /rg Hz s= , 24 /lg Hz s=  ; (2) When 200rf Hz= , 220lf Hz= , 1500 /rg Hz s=  

and 1600 /lg Hz s= , pR  and uR  change with 1/2( / )d ss T f=  as shown in the curves in 

Fig.3. 
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(a)                             (b) 

Fig. 3. Variation curves of three kind of peaks distance of two signal with the change of s. 

(a)fr=20Hz, fl=22Hz, gr=20Hz/s, gl=24Hz/s, (b) fr=200Hz, fl=220Hz, gr=1500Hz/s, gl=1600Hz/s. 
 

From Fig. 3, it can be seen that: (a)Both the peaks distance of the two 

LFMCW signal on the u-axis and p-axis is regulated by s, and get maximum values 

at different s; (b) the the peaks distance adjustment of the two signal on the u-axis 

is much larger than that on the p-axis, so the position where R  reaches the 

maximum value mainly depends on the coordinate of the maximum value of uR , 

for the first and second sets of data, when s=0.12 and 0.019, respectively.  

Taking the first set of data above as an example, the amplitude of the two 

signals is set to 1 to verify the selection of the Dimensional normalization factor to 

achieve the resolution of the two LFMCW signals. For the first set of data: when 
4dT s= , 1000sf Hz= , and 4n = , the three-dimensional distribution slice of the two 

signals at ( 1, 0)T = =  is shown in Fig. 4. When 4dT s= , 278sf Hz= , and 4n = , 
1/2( / ) 0.12d ss T f= = , the three-dimensional distribution slice of the two signals at 

( 1, 0)T = =  is shown in Fig.5. 

 

Fig. 4. The 3D-slice PFRFT of the signals, s=0.0632 
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Fig. 5. The 3D-slice PFRFT of the signals, s=0.12 
 

It can be seen that in Fig. 4, the two signals are mixed together and cannot 

be distinguished, while in Fig. 5, the two signals can be distinguished by increasing 

the Dimensional normalization factor s  to increase the two peaks distance, which 

verifies the rationality of determining the optimal normalization factor based on Eq. 

(37) and the peak distance change curve in Fig. 3. As mentioned earlier, the critical 

resolution distance between two LFMCW signals is related to two kinds of elements, 

the signal parameters and Dimensional normalization factor. Since the parameters 

of signals are uncontrollable, and this paper adopts a Dimensional normalization 

factor of 1/2( / )d ss T f= , reasonable sampling time dT  and sampling frequency sf  can 

be selected under the condition of satisfying the sampling theorem to improve the 

resolution of the PFRFT.  

6. Conclusion 

This paper analyzes the frequency spectrum distribution characteristics of 

LFMCW continuous and discrete signals in the PFRFT domain and derives an 

approximate expression for the energy spectrum of LFMCW signals under discrete 

PFRFT calculation. Based on the analysis of the resolution distance on the PFRFT 

parameter plane, the resolution problem of multiple LFMCW signals was 

investigated. Research found that the resolution distance is related to the following 

factors: (1) signal parameters: initial frequency, chirp rate, frequency modulation 

cycle, observation time, sampling frequency; (2) Dimensional normalization factor. 

The resolution capability of PFRFT to multiple LFMCW signals can be improved. 
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