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FUNDAMENTALS OF I'-ALGEBRA AND I'-DIMENSION

A. H. Rezaei!, B. Davvaz?, S. O. Dehkordi?

In this paper, we generalize the notion of algebra over a field. A T'-algebra
is an algebraic structure consisting of a vector space V', a groupoid I' together with
a map from VxT'xV toV, usually called multiplication. We introduce the notion
of I'- dimension and give some examples and prove some properties of I'-algebras.
Then, we give some results about m X n real matrices. Also, we study the notion
of regular T'-algebra and we obtain some results in this respect. Finally, we define
the notions of T-functor and H-system over a I'-algebra and prove some results.
Moreover, we see that there exists a covariant functor between the categories of
I'- algebras and algebras. We see that this functor is exact.
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1. I'-algebra

In [5], Nobusawa introduced the notion of I'-ring, as more general than ring.
Barnes [2] weakened slightly the conditions in the definition of the I'-ring in the
sense of Nobusawa. After these two papers are published, many mathematicians
made good works on I'-ring in the sense of Barnes and Nobusawa. Luh [4] and
Kyuno [3] studied the structure of I'-rings and obtained various generalization anal-
ogous to corresponding parts in ring theory. In [1], Chakraborty and Pau defined
an isomorphism, an anti-isomorphism and a Jordan isomorphism in a I'-ring and
developed some important results relating to these concepts, also see [6, 7).

An algebra over a field is a vector space equipped with a bilinear vector prod-
uct. That is to say, it is an algebraic structure consisting of a vector space together
with an operation, usually called multiplication, that combines any two vectors to
form a third vector; to qualify as an algebra, this multiplication must satisfy certain
compatibility axioms with the given vector space structure, such as distributivity.
In other words, an algebra over a field is a set together with operations of multiplica-
tion, addition, and scalar multiplication by elements of the field. Now, we generalize
this notion.
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Definition 1.1. Let T" be a groupoid and V' be a vector space over a field F'. Then, V
is called a T-algebra over the field F if there exists a mapping V xT'xV — V (the
image is denoted by xay for x,y € V and o € T') such that the following conditions
hold:

(1) (z+y)az =zaz +yaz, za(y + 2z) = zay + zaz,
(2) z(a+ By = zay + zPy,
(3) (cx)ay = c(zay) = alcy),
(4) Oy = yal =0,

forallx,y,z€V,ce F anda €.

Moreover, a I'- algebra is called associative if

(5) (zay)Bz = za(yp),

and unital if for every o € T, there is an element 1, in V such that 1,av = v = val,
for all non-zero elements of V.

A non-empty subset V' of a T-algebra V is called a T'-subalgebra if it is a
subspace of V and for all 2,y € V' and a € T' we have zay € V'. A subset I of a T'-
algebra V' is called a left (right) ideal if it is a I-subalgebra of V' and for all a € I
and v € V and o € I we have vaa € I (acw € I) and is a (two-sided) ideal if it is
both a left and right ideal. It easy to see that V and {0} are ideals of V. An ideal
I such that {0} C I C V is called proper.

Let X be a subset of I'-algebra V. Then, the smallest left (right, two-sided)
ideal of V' containing X exists and we shall call it the left (right or two-sided) ideal
generated by X, and will be denoted by < X >; (< X >, or < X >). If X = {z},
then we also write < & > instead of < {z} >.

Example 1.1. Let A be a vector space and I' be a groupoid. For every x,y € A and
a € I we define xay = 0. Then, A is a I'-algebra.

Example 1.2. Let F be a field, V and W be two vector spaces and A = Homp(V,W),
I'=Homp(W,V). For every f,g € A and a € I' we define fag = f oo g, where
o is the combination operation. Then, A is an associative I"-algebra.

Example 1.3. Let A and I" be the sets of n x m and m X n matrices over the field
F, respectively. Then, it is easy to see that A is an associative I'-algebra.

Example 1.4. Consider the pervious example. Let A be the set of 3 x 2 matrices
over the field of real numbers R and

a 0 O
{200 s}

Then, A is an associative I'-algebra and

B = cz,yeR S,

[ i
ow O©

s a ['-subalgebra of A.
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Let V1 and V5 be I'y- and I's-algebras respectively, T' be a linear transformation
from V; to Vi, f be a homomorphism from I'y to I's. Then, we say that (7', f) is a
(I'1,T'2)- homomorphism (homomorphism) from (V4,T'1) to (Va,Is) if (T}, f)(zay) =
T(zay) = T(z) f(@)T(y).

Example 1.5. Let Vi be the vector space of n x 1 real matrices generated by a =

(@i1)nx1 such that a1 =1 and a;; =0 fori#1, T = {( rn 0 --- 0 )1><n 17 €
R}, Va be the vector space of m x 1 real matrices generated by b = (bi1)mx1 such that
b11:1andb“:Ofori;él,I‘g:{(rg 0 --- 0)1xm:r26R},Tbethe
linear transformation from Vi to Vo with the matriz

E 0O --- 0

00 --- 0

00 --- 0

where 0 # k € R and f : 'y — Ty defined by f(X) = % x X. Then, (T,f) is a
homomorphism from Vi to Vs.

For non-empty subsets A and B of I™-algebra V' and non-empty subset I'y of
I'. Let
AT''B:={avb:a € A,b€ Band v €T},

AFIZB = {Zai%bi ca; € Ab; € B,y;, €'y andn € N},
=1

n
7X = {Znimi:niez,xieX}.
=1

If A= {a}, then we also write aI'1 B instead of {a}I'1 B.
An ideal P is called prime if A2 B C P,then AC Por BC P and P is
called semiprime if AT2A C P then A C P.

Lemma 1.1. Let V be a I'-algebra and X be a non-empty subset of V.. Then,
(1) < X >=7ZX + XI'2V,

(2) < X >=7ZX +VIXX,
(3) < X >=7ZX + XTXV + VIZX + VIZXI2V,

Definition 1.2. Let V' be a I'-algebra. Then, the ordinary dimension of V as a
vector space is called the dimension and the dimension of the subspace of V generated
by all products of the form aab is called the I'-dimension.

Example 1.6. Let A be the vector space of 2 X 3 real matrices with the basis

ooo)(oo)(ia)(at)h
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r 0
and I’ be a groupoid of 3 X 2 matrices of the form | —r 0 |, wherer € Z. Then,
0 O
A is a I'-algebra and the dimension of A is 4 but the I'-dimension is 0. Since
(110) _Trg_<oo> 00 1 fT8_<00>
0 00 0 0 0 0 0 0 O 0 0 0 0
<ooo> frg_<oo> 000 _Trg_<oo>
1 10 0 0 00 O 0 1 0 0 0 0
Example 1.7. Suppose that
r 0
a 0 0 O 0 0
A_{<O 0 b C>.a,b,c€R andF 0 0 :reR
0 0
Then, the dimension of A is 8 and the I'-dimension of A is 1

2. Results about m x n matrices

Lemma 2.1. Let A be the vector space of m X n real matrices and I' be a set of
n X m real matrices, where the ij entire is a real number and the others are zero.
Then, the elements of I'-algebra A are m X n-matrices with dependent rows.

Proof. The proof is straightforward. O

Proposition 2.1. Let A be the vector space of m X n real matrices and I" is a set
of n x m real matrices with 1 < k < mn non-zero entries. Then, every element of
I-algebra A is the sum of k, m X n real matrices with dependent rows.

Proof. The proof obtains by Lemma 2.1 and the following relation,
a(ay +ag + -+ ap)b = aarb + agb+, - - - + aayb,
where a,b € A and o; € T'. O

Proposition 2.2. Let A be the vector space of mxn real matrices and I is a groupoid
of n X m real matrices with at least one non-zero entire. Then, the dimension and
I'-dimension of A are equals.

r 0 0
0 0 -0

Proof. With out loss of generality, suppose that a,xm = L . is an
00 --- 0

arbitrary element of I'.  Then, the basis element FE;; obtained from the product

ApmxnQnxmBmxn, where Ap,yp = ((L /J/)’ Bixn = (bi/j/)



Fundamentals of I'-Algebra and I'-dimension 115

This completes the proof. ]

3. Regular I'-algebra
A T-algebra V' is regular if for every z € V, there exists y € V and o, 8 € T’
such that
T = zaypfx.
In this case x is called an («, 3)-regular element. An ideal I of a I'-algebra V is called

(a, B)-regular if every element of I is («, §)-regular. An element x of a I'-algebra V'
is called a-idempotent if xaxr = x.

Example 3.1. Let F be a field, V = F x F and I" be a sub-groupoid of F'. For
every o, B € I' and x1,x2,x3,24 € F, we define

(3317@3(963, ry) = (x1+ 23,22 + 24),
(x1,22) (o, B) (w3, 24) = (T10023, T2 4).

Then, V is a regular I'-algebra.

Notice: Let V be a regular I-algebra. Then, < 2 >,= 2I'>V. Indeed, since V
is regular there exist a, 8 € I' and y € V such that z = zayBx. Hence, Zx =
Z(zayBz) C T2V, This implies that < z >,= 22V,

Proposition 3.1. Let V' be an associative regular I'-algebra such that every element
is (o, B)-regular. Then, every finitely generated right (left) ideal of V is generated
by idempotent elements.

Proof. Suppose that z € V. Then, there exists y € V such that z = zayfx. We

have (zay)B(zay) = (rayBr)ay = xay. Hence, zay is a S-idempotent element of
V. We see that

< zay >,= (zay)T2V = {Z(xay)ﬁwi neNwy eV ;€ F}
i=1
= {Zza(yﬁivi) :neNwvy eV, B e F}
i=1
Cal2V =<z >,.
On the other hand, since
© = zoyfr € (zay)TZV,

< x >,C< zay >,. Therefore, < z >,=< zay >,.
Without lose of generality we suppose that I =< x,y >,. Now, < z >,=<
a >, for some (-idempotent element and since y — afy €< z,y >,, we have <
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x,y >r=< a,y — afy >,, and there exists a S-idempotent element b € V' such that
< b>,=<y—afy >, . Consequently, ab = 0 and

(b— bBa)B(b — bBa) = bBb — (b3b)Ba — (bBa)Bb + (bBa)B(bBa) = b — bja;
bB(b — bBa) = bBb — bB(bBa) = bBb — (bBb)Ba = b — bBa.

We conclude that < b —bfa >,=< b >,=<y —afy >, .
Therefore, < z,y >,=< a,b — bfa >,. This completes the proof. ]

Proposition 3.2. Let V be a I'-algebra, 1 = ¢ — xayBx and v1 = xr1aafxy for
some a € V. Then, x = xabfx for somebe V.

Proof. We observe that

r=x1 +zrayfr = zxiaafri+ rayfr
= (z — zayfr)aalb(z — xayPz) + raypx
= za(a — afray — yfraa + yBraafray)px.
This implies that * = xabfz for some, b € a — afray — yPBraa+ yLBraafray. This
completes the proof. O

Lemma 3.1. Let Vi < V5 be ideals in an associative I'-algebra V. Then, Vo is
(o, B)-regular if and only if Vi and [Va : V1] are both (o, B)-regular.

Proof. Suppose that V3 is (o, 3)-regular. Then, obviously [Va : V1] is (a, §)-regular.
Let x € V4. Then, we have x = xayfx for some y € Vo. We set b = yBxay. Then,
b is an element of V; such that

zabfr = za(ypray)fr = (zaybzr)ayfr = zayfr = x,
Then, Vj is (a, B)-regular.
Conversely, assume that V; and [Va : V4] are both («, 5)-regular and = € V;.
Hence, there exist @, 5 € I and y + Vi € [V, : V4] such that

~

x4+ V1= (x+WV)aly+WV)sx+WV) =zaybx + V4,

where [' = {7 : v € T'}. Hence, z — zayfzx € V; for some y € V. Since V; is
(c, B)-regular,

x — zayfx = (x — zayfr)azf(x — zayfr)
for some z € Vi, from which we conclude that x = zabfx. Therefore, V5 is (a, §)-
regular. O

Proposition 3.3. Let V be a regular associative I'-algebra such that every element
is (a, a)-regular. Then, 8 = {x € V : xay = yax for ally € V,a € I : x = zayax}
is (o, a)-regular.

Proof. Suppose that z € 0. There exists y € V such that © = zayaxr. We set
z = yaxay. Then, we obtain that

razar = za(yazray)axr = (rayor)oayor = rayor = x.
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We have
zow = yarayav = (Yay)avarar = Yyurayaravay = yaravay.

In the same way, vaz = yavazray = yaravay = zav, where v € V. Therefore,
z € 0 and 0 is (o, a)-regular. O

Let V be a I'-algebra. An equivalence relation p on V is called regular if for
every aj, az, by, be, such that (a1,b1) and (a9, bs) € p, then (a1 + az, by + b2) € p and
for all @ € T, (a1vag, biabs) € p and is called strong regular if (a1 + ag, b1 + b2) € p
and (ayaag, b1fbe) € p for every «, 5 € T

Suppose that p is a regular relation on a I'-algebra. We define a binary oper-
ations on [V : p|, the set of all equivalence classes, as follows:

pla)ap(b) =
Let a1, a2,b1,b2 € V and p(a1) = p(b1) and p(a2) = p(b2). Then,

(a1,b1) € p and (az,b2) € p = (a1aaz,biabs) € p
— plar)ap(az) = p(br)ap(bs)
and p(a1) ® p(az) = p(b1) ® p(b2).
It is easy to see that [V : p] is a [-algebra. Suppose that p is a strong regular
relation. Then, for every o, 5 € T’

Hence, [V : p| is an algebra.
Suppose that V' is a '-algebra and a is an element of V. We say that b is an
(o, B)-inversion of a if aabfa = a, bBaadb = b.

Example 3.2. Let V =R3 and T' = {(r,0,0) : r € R}. Then, V is a I'-algebra with
[-dimension 1. If a = (1,0,0), b = (3,0,0), a« = (2,0,0), 5 = (%,0,0), then b is an
(a, B)-inversion of a.

Suppose that V' is an associative I'-algebra and a is an («, §)-regular. Then,
there exist a, 8 € I' and b € V such that a = aabfBa. Let x = bBaadb. Then, we
observe that

aazxfa = aa(bfaad)fa = (aabfa)abfa = aabfa = a;
zfacx = (bfaab)Baa(bfaab) = bS(aabfa)a(bBaad)
= bBaabfacdb = bB(aabfa)ab = bfaab = .

Proposition 3.4. Let p be a regular relation on a reqular associative I'-algebra and
p(a) be an idempotent in [V : p|. Then, there exists an idempotent element e in V
such that p(a) = p(e).
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Proof. Suppose that p(a) is a y-idempotent element in [V : p]. Then, there exists
~v € T such that p(a) = p(a)yp(a) = p(aya). Let x be an (a, B)-inversion of avya.
Then,

(aya)azxf(aya) = ayazxfB(aya)ax = x.
Let e = aaxBa. Then,

eve = (aazxfa)y(aazfa) = aa(xfayacx)fa = aaxfa = e.
and so e is y-idempotent. We have
(aaxfa, (aya)oxf(aya)) € p,
and (e, aya) € p. Therefore, p(e) = p(aya). O

Theorem 3.1. Let V be an associative I'-algebra such that {0} is a semiprime ideal,
every family of semiprime ideals has a mazimal element and [V : P] is (a, B)-regular
for all prime ideal of V.. Then, V is a reqular algebra.

Proof. Suppose that V' is not regular. Then, there exists z € V such that = ¢
xI'VTz. There exists a semiprime ideal P in V such that it is maximal with respect
the property = ¢ 2I'VT'z + P. If [V : P] is regular, then

z+Pe(z+PI[V:PT(z+P).
Hence, there exists y + P € [V : P] such that

~

x+ P € (x+ P)a(ly+ P)B(x + P) = zaypfz + P.

This implies that « € zayBz + P C zI'yl'x + P, which is a contradiction. Thus,
x ¢ xI'VT'z+ P. Then, P is not prime. Hence, there exist ideals A and B such that
ATXB C Pand A ¢ P, B ¢ P. Now, suppose that Ty = {v € V : vTXB C P}
and T = {v € V : T\T2v C P}. We see that T} and T, are semiprime.

Now, let A; and Ay be two ideals such that A,T2~A; C Ty. Then, (AlI‘ZAl)I‘ZB
and AjT>=(A;TXB) C P. Since P is prime and B ¢ P, implies that A; C P. In
the same way, one can see that T5 is a semiprime ideal. On the other hand

(Ty N Ty)T=(Ty N'Ty) € TITET, C P.

Hence, Ty N T, C P. Since A ¢ P and B ¢ P, Ti and T, properly contain P.
Because the maximality of P, [V : T1] and [V : T3] are regular. Thus, there exist
r1,x2 € V such that

~

x4+ P = (zx+ P)a(x; + P)pB(x+ P),

~

x+ P = (z+ P)a(xa+ P)B(z+ P).
Thus, z — zax16x € T1 and x — xaxefSx € Ts. This implies that
x — za(zr) + xo — 1 fraxs)fr = (v — raxifz) — (v — zaxifx)axfr € Ty
and

x — za(x + ro — x1fraxs)fr = (v — raxsfr) — var1f(x — xaxsfr) € Th.
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We conclude that z € zI'VI'z + 11 N1y C x2I'VI'xz + P, which is a contradiction.
Therefore, V' must be regular. t

Proposition 3.5. Let V' be an associative unital I'-algebra and set
0= {x EV :VIZal'XV is an (o, B)-regular ideal} .
Then, © is an («a, B)-regular ideal and [V : ©] has no non-zero (a, B)-regular ideal.

Proof. Suppose that 2,y € ©. Then, VT2V and VI 2yI'>V are (a, B)-regular
ideals. By Lemma 4.3, VI 222V 4+ VI'22T'2V is a regular ideal. Since

VI (24 y)I2V C VIZal 2V + VIZyI' 2V,

VIZ(x + y)T2V is regular. In the same way, we can see that OT'V, VIO C O.
Let J be an (a, B)-regular ideal of V and x € J. Then,,

VI22l2V C VIZJT2V C J.

Hence, VI22T'XV is (o, B)-regular and J C ©. Let [J : ©] be an (a, 3)-regular
ideal of [V : ©]. Since O is (o, 3)- regular, J is (a, §)-regular and J C ©. This
implies that [V : O] has not non-zero («, §)-regular ideal. O

Proposition 3.6. Let V be a regular I'-algebra. Then, the dimension and the I'-
dimension of V' are equal.

Proof. Let x € V. Since V is regular there exist a,8 € I" and y € V such that
x = zayPx. This completes the proof. O

4. T-functor and H-system

The category I'AL is the category whose objects are I'- algebras. For I'i-
algebra V; and T's- algebra Vi, Mor(Vy, V2) is the set of all (I'y, I'2)- epimorphisms.
The composition of morphisms denotes the usual composition of homomorphisms
and so satisfies the associative law. (Idy,Idr) : (V,T') — (V,T') is the identity
map satisfies the required property (Idy,Idr) o (¢, f) = (¢, f) for every (¢, f) €
Mor(V',V) and (¢, f) o (Idy,Idp) = (p, f), for every (¢, f) € Mor(V,V'). The
category AL is the category whose objects are algebras and Mor(A;, As) is the set
of all algebra homomorphisms from A; to Ay and it satisfies the associative law.

Let V be a I'-algebra and

AV:{H(.%,O@):CMGF, x; €V, nEN}.
=1

Then, the relation 6 on Ay defined by

<H (fﬂi,ai)) 0 ( (%5;‘)) if and only if > zjoux = ) y;B;x, Ve €V,
i=1 = ; j=1

=1

L=
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n
is an equivalence relation. We denote the equivalence class containing [] (z;, ;) by
i=1

0 <H (x4, ai)>. Then, [Ay : 6] forms a vector space. Now, we define a multiplication
i=1
on [Ay : 0] as follows:

0 (ﬁ (a:i,a») 0 (ﬁ <yj,/3j>> 4 <n<xiaiyj7/3j>> .
i=1 j=1 2,]

We denote this algebra by Vi and is called the left operator algebra. In the same
way, we can define the right operator algebra.

Proposition 4.1. Let Vi and V3 be T'1- and T'9- algebras, respectively. If (p, f) :
(V1,T1) — (Va,T'9) is an epimorphism, then there exists a unique homomorphism
(o, f) 1 [Avy : 01] — [Ay, : 03] such that the following diagram is commutative:

(o, f)

(Vi,Th) —— — (Va,T9)
{ 1
(e.f)

[Av, 6] —— " [Avy, 0]

Moreover, if (p, f) is an isomorphism, then (¢, f) is an isomorphism.

P?"OOf. We define (@7.]6) : [AVMGI] — [AV2792] by

) (0(Flnan)) =0 (H et san).

i=1 i=1

n

for every 0 (H (:ci,ozi)> € [Ay,,01]. It is easy to see that this function is well-

i=1
defined and homomorphism. One can see that if (p, f) is an isomorphism, then
induced homomorphism (¢, f) is an isomorphism. O

Corollary 4.1. There is a covariant functor between the subcategory of I'-algebras
and the category of algebras.

Proof. By Proposition 4.1, it is straightforward. O

Let (¢1,f1) @ (Vi,T1) — (Vo,T2) and (¢, f2) = (V4,T1) — (Va,T'2) be
homomorphisms. We define

5(9017@2) = {Z Spi(’U?")fj(aT)U:UT € VY17047" Gfl,nGN,l SZ?] <27’L§£]}

r=1
This homomorphism is said to be S-conjugate if S(p1,p2) = 0.

Let Vi,Va,...V, and V be I'1-, I'o-, ..., I')-and I' = I'y x I'y... [~ alge-
bras, respectively, and suppose that we are given (I';, I')- homomorphisms (o, x;) :
(Vi,Ty) — (V,T), (1 < ¢ < n) and (T',T;)- homomorphism (m;,d;) : (V.T') —
(Vi,Ti), (1 <i < n) such that mjo; = 6;; and ) o;m = Idy. Then, V is called an
H- system.
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Proposition 4.2. Let V be an H-system and (p;, fi) : (Vi, ;) — (W, T), (1 <i <
n) are given. Then, there exists a unique homomorphism (¢, f) : (V,T) — (W,T)
such that (@, f)o(oi, xi) = (@i, fi). If (Wi, g:) : (W, T) — (V;, 1), then there exists a
unique homomorphism (¢, g) : (W,T') — (V,T") such that (¢,9;) o (¢, 9) = (¢i, g:).

Proof. Suppose that (¢, g) : (W,I') — (V,T) defined by ¢ =377 ;| ;. Then,

poi = (Z @j@') 0i = 2L 90 = 2 90y = fi
j=1 j=1 J=1

It is easy to see that this homomorphism is unique.
Now, we define ¢p : W — V by ¢ = 2?21 ojj. This is a unique homomor-
phism such that ;7 = ;. This completes the proof. O

Theorem 4.1. Let Q) be a subcategory of AL such that for every H-system V
of Q, Ay is an H-system in AL. Then, for every morphism o1 and @y in €,
T(p1+ p2) =T (1) + T(p2).

Proof. Suppose that (¢i, fi) : (V;,I) — (W, Ty), (1 < i < 2) are morphisms.
Since Ay, is an H-system of AL, we have T'(m1)T (01 + 02) and T'(m2)T (01 + 02) are
identity morphisms. Hence,
T(O’l + O’Q) = T(O’l)T<7T1)T(01 + 0'2) + T(O’Q)T(gbg)T(O'l + 02).
We define ¢ : W — Vo by ¢ = @1m + pame. Then, po1 = ¢1 and oy = ¢a.
Moreover, ¢(o1 + 02) = 1 + ¢2. Hence,
T(p1+ p2) =T(p1) + T(p2)-
This completes the proof. ]

Theorem 4.2. Let 0 — (Vi,T1) ‘2% (v,1) ™% (15,15) — 0 be an exact
sequence in U'AL. Then, the following statements are equivalent:
(1) There exists (I'y,T")-homomorphism (o2, f2) : (Vo,T'2) — (V,T') and (I',T'1)-
homomorphism (m1,g1) : (V,T') — (V1,T'1) such that V is an H-system.
(2) There exists I'-subalgebra of Vi such that V = (o1, f1)(V1,T1) & V1.

Proof. The proof is straightforward. O

Proposition 4.3. Let 0 — (Vi,T) ‘2% (v,r) %) (v, 1) — 0 be a split

T T
exact sequence in I'AL. Then, 0 — Ay, (&{1) Ay (%2) Ay, — 0 is a split
exact sequence in AL.

Proof. The proof is straightforward. O

Proposition 4.4. Let for every split exact sequence
0— (V1,T1) — (V,T) — (Vo,T2) — 0

implies that 0 — Ay, — Ay — Ay, — 0 is a split exact sequence. Then, for
every homomorphism ¢1,p2, we have T(p1 + p2) = T(p1) + T(p2).
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Proof. Suppose that V is an H-system. This implies that

0 — (vi,11) 2% (v,r) %) (15, 15) — 0

is a split exact sequence. By hypothesis

0— Avl T(ﬂl) AV T(%Q) AVQ — 0

is a split exact sequence. In the same way

T(o s Z T(7 )
0 j ( 2 2) : ( 1 l) : O
iS a Split (fX&Ct S(fqu(fnc(f. H(fIlCe,

T'(m2,92)T (o1, f1) = T((72, g2)(o1, f1)) = 1d,

T(m,91)T (02, f2) = T((m1, 91)(02, f2)) = 1d.
By a routine process, T'(V,T") is an H-system. This completes the proof. O
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