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FUNDAMENTALS OF Γ-ALGEBRA AND Γ-DIMENSION

A. H. Rezaei1, B. Davvaz2, S. O. Dehkordi3

In this paper, we generalize the notion of algebra over a field. A Γ-algebra

is an algebraic structure consisting of a vector space V , a groupoid Γ together with

a map from V ×Γ×V to V , usually called multiplication. We introduce the notion

of Γ- dimension and give some examples and prove some properties of Γ-algebras.

Then, we give some results about m× n real matrices. Also, we study the notion

of regular Γ-algebra and we obtain some results in this respect. Finally, we define

the notions of T -functor and H-system over a Γ-algebra and prove some results.

Moreover, we see that there exists a covariant functor between the categories of

Γ- algebras and algebras. We see that this functor is exact.
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1. Γ-algebra

In [5], Nobusawa introduced the notion of Γ-ring, as more general than ring.

Barnes [2] weakened slightly the conditions in the definition of the Γ-ring in the

sense of Nobusawa. After these two papers are published, many mathematicians

made good works on Γ-ring in the sense of Barnes and Nobusawa. Luh [4] and

Kyuno [3] studied the structure of Γ-rings and obtained various generalization anal-

ogous to corresponding parts in ring theory. In [1], Chakraborty and Pau defined

an isomorphism, an anti-isomorphism and a Jordan isomorphism in a Γ-ring and

developed some important results relating to these concepts, also see [6, 7].

An algebra over a field is a vector space equipped with a bilinear vector prod-

uct. That is to say, it is an algebraic structure consisting of a vector space together

with an operation, usually called multiplication, that combines any two vectors to

form a third vector; to qualify as an algebra, this multiplication must satisfy certain

compatibility axioms with the given vector space structure, such as distributivity.

In other words, an algebra over a field is a set together with operations of multiplica-

tion, addition, and scalar multiplication by elements of the field. Now, we generalize

this notion.
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Definition 1.1. Let Γ be a groupoid and V be a vector space over a field F . Then, V

is called a Γ-algebra over the field F if there exists a mapping V ×Γ×V −→ V (the

image is denoted by xαy for x, y ∈ V and α ∈ Γ) such that the following conditions

hold:

(1) (x+ y)αz = xαz + yαz, xα(y + z) = xαy + xαz,

(2) x(α+ β)y = xαy + xβy,

(3) (cx)αy = c(xαy) = xα(cy),

(4) 0αy = yα0 = 0,

for all x, y, z ∈ V , c ∈ F and α ∈ Γ.

Moreover, a Γ- algebra is called associative if

(5) (xαy)βz = xα(yβz),

and unital if for every α ∈ Γ, there is an element 1α in V such that 1ααv = v = vα1α
for all non-zero elements of V .

A non-empty subset V
′

of a Γ-algebra V is called a Γ-subalgebra if it is a

subspace of V and for all x, y ∈ V ′
and α ∈ Γ we have xαy ∈ V ′

. A subset I of a Γ-

algebra V is called a left (right) ideal if it is a Γ-subalgebra of V and for all a ∈ I
and v ∈ V and α ∈ Γ we have vαa ∈ I (aαv ∈ I) and is a (two-sided) ideal if it is

both a left and right ideal. It easy to see that V and {0} are ideals of V . An ideal

I such that {0} ⊂ I ⊂ V is called proper.

Let X be a subset of Γ-algebra V . Then, the smallest left (right, two-sided)

ideal of V containing X exists and we shall call it the left (right or two-sided) ideal

generated by X, and will be denoted by < X >l (< X >r or < X >). If X = {x},
then we also write < x > instead of < {x} >.

Example 1.1. Let A be a vector space and Γ be a groupoid. For every x, y ∈ A and

α ∈ Γ we define xαy = 0. Then, A is a Γ-algebra.

Example 1.2. Let F be a field, V and W be two vector spaces and A = HomF (V,W ),

Γ = HomF (W,V ). For every f, g ∈ A and α ∈ Γ we define fαg = f ◦ α ◦ g, where

◦ is the combination operation. Then, A is an associative Γ-algebra.

Example 1.3. Let A and Γ be the sets of n×m and m× n matrices over the field

F , respectively. Then, it is easy to see that A is an associative Γ-algebra.

Example 1.4. Consider the pervious example. Let A be the set of 3 × 2 matrices

over the field of real numbers R and

Γ =

{(
a 0 0

0 b 0

)
: a, b ∈ R

}
.

Then, A is an associative Γ-algebra and

B =


 x 0

0 y

0 0

 : x, y ∈ R

 ,

is a Γ-subalgebra of A.
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Let V1 and V2 be Γ1- and Γ2-algebras respectively, T be a linear transformation

from V1 to V2, f be a homomorphism from Γ1 to Γ2. Then, we say that (T, f) is a

(Γ1,Γ2)- homomorphism (homomorphism) from (V1,Γ1) to (V2,Γ2) if (T, f)(xαy) =

T (xαy) = T (x)f(α)T (y).

Example 1.5. Let V1 be the vector space of n × 1 real matrices generated by a =

(ai1)n×1 such that a11 = 1 and ai1 = 0 for i 6= 1, Γ1 = {
(
r1 0 · · · 0

)
1×n : r1 ∈

R},V2 be the vector space of m× 1 real matrices generated by b = (bi1)m×1 such that

b11 = 1 and bi1 = 0 for i 6= 1, Γ2 = {
(
r2 0 · · · 0

)
1×m : r2 ∈ R} , T be the

linear transformation from V1 to V2 with the matrix
k 0 · · · 0

0 0 · · · 0
...

...
. . .

...

0 0 · · · 0


where 0 6= k ∈ R and f : Γ1 −→ Γ2 defined by f(X) = 1

k × X. Then, (T, f) is a

homomorphism from V1 to V2.

For non-empty subsets A and B of Γ-algebra V and non-empty subset Γ1 of

Γ. Let

AΓ1B := {aγb : a ∈ A, b ∈ B and γ ∈ Γ1},

AΓ
∑
1 B :=

{ n∑
i=1

aiγibi : ai ∈ A, bi ∈ B, γi ∈ Γ1 and n ∈ N
}
,

ZX =
{ n∑
i=1

nixi : ni ∈ Z, xi ∈ X
}
.

If A = {a}, then we also write aΓ1B instead of {a}Γ1B.

An ideal P is called prime if AΓ
∑
B ⊆ P , then A ⊆ P or B ⊆ P and P is

called semiprime if AΓ
∑
A ⊆ P then A ⊆ P .

Lemma 1.1. Let V be a Γ-algebra and X be a non-empty subset of V . Then,

(1) < X >r= ZX +XΓ
∑
V ,

(2) < X >l= ZX + V Γ
∑
X,

(3) < X >= ZX +XΓ
∑
V + V Γ

∑
X + V Γ

∑
XΓ

∑
V .

Definition 1.2. Let V be a Γ-algebra. Then, the ordinary dimension of V as a

vector space is called the dimension and the dimension of the subspace of V generated

by all products of the form aαb is called the Γ-dimension.

Example 1.6. Let A be the vector space of 2× 3 real matrices with the basis{(
1 1 0

0 0 0

)
,

(
0 0 1

0 0 0

)
,

(
0 0 0

1 1 0

)
,

(
0 0 0

0 0 1

)}
,
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and Γ be a groupoid of 3× 2 matrices of the form

 r 0

−r 0

0 0

, where r ∈ Z. Then,

A is a Γ-algebra and the dimension of A is 4 but the Γ-dimension is 0. Since(
1 1 0

0 0 0

) r 0

−r 0

0 0

 =

(
0 0

0 0

)
,

(
0 0 1

0 0 0

) r 0

−r 0

0 0

 =

(
0 0

0 0

)
,

(
0 0 0

1 1 0

) r 0

−r 0

0 0

 =

(
0 0

0 0

)
,

(
0 0 0

0 0 1

) r 0

−r 0

0 0

 =

(
0 0

0 0

)
.

Example 1.7. Suppose that

A =

{(
a 0 0 0

0 0 b c

)
: a, b, c ∈ R

}
and Γ =




r 0

0 0

0 0

0 0

 : r ∈ R

.

Then, the dimension of A is 3 and the Γ-dimension of A is 1.

2. Results about m× n matrices

Lemma 2.1. Let A be the vector space of m × n real matrices and Γ be a set of

n ×m real matrices, where the ij entire is a real number and the others are zero.

Then, the elements of Γ-algebra A are m× n-matrices with dependent rows.

Proof. The proof is straightforward. �

Proposition 2.1. Let A be the vector space of m × n real matrices and Γ is a set

of n ×m real matrices with 1 ≤ k ≤ mn non-zero entries. Then, every element of

Γ-algebra A is the sum of k, m× n real matrices with dependent rows.

Proof. The proof obtains by Lemma 2.1 and the following relation,

a(α1 + α2 + · · ·+ αk)b = aα1b+ α2b+, · · ·+ aαkb,

where a, b ∈ A and αi ∈ Γ. �

Proposition 2.2. Let A be the vector space of m×n real matrices and Γ is a groupoid

of n ×m real matrices with at least one non-zero entire. Then, the dimension and

Γ-dimension of A are equals.

Proof. With out loss of generality, suppose that αn×m =


r 0 · · · 0

0 0 · · · 0
...

...
. . .

...

0 0 · · · 0

 is an

arbitrary element of Γ. Then, the basis element Eij obtained from the product

Am×nαn×mBm×n, where Am×n = (ai′j′ ), Bm×n = (bi′j′ )

ai′j′ =

{
1
r i

′
= i, j

′
= 1

0 o.w



Fundamentals of Γ-Algebra and Γ-dimension 115

bi′j′ =

{
1 i

′
= 1, j

′
= j

0 o.w

This completes the proof. �

3. Regular Γ-algebra

A Γ-algebra V is regular if for every x ∈ V , there exists y ∈ V and α, β ∈ Γ

such that

x = xαyβx.

In this case x is called an (α, β)-regular element. An ideal I of a Γ-algebra V is called

(α, β)-regular if every element of I is (α, β)-regular. An element x of a Γ-algebra V

is called α-idempotent if xαx = x.

Example 3.1. Let F be a field, V = F × F and Γ be a sub-groupoid of F . For

every α, β ∈ Γ and x1, x2, x3, x4 ∈ F , we define

(x1, x2)⊕ (x3, x4) = (x1 + x3, x2 + x4),

(x1, x2)(̂α, β)(x3, x4) = (x1αx3, x2βx4).

Then, V is a regular Γ-algebra.

Notice: Let V be a regular Γ-algebra. Then, < x >r= xΓ
∑
V. Indeed, since V

is regular there exist α, β ∈ Γ and y ∈ V such that x = xαyβx. Hence, Zx =

Z(xαyβx) ⊆ xΓ
∑
V . This implies that < x >r= xΓ

∑
V .

Proposition 3.1. Let V be an associative regular Γ-algebra such that every element

is (α, β)-regular. Then, every finitely generated right (left) ideal of V is generated

by idempotent elements.

Proof. Suppose that x ∈ V . Then, there exists y ∈ V such that x = xαyβx. We

have (xαy)β(xαy) = (xαyβx)αy = xαy. Hence, xαy is a β-idempotent element of

V . We see that

< xαy >r= (xαy)Γ
∑
V =

{ n∑
i=1

(xαy)βivi : n ∈ N, vi ∈ V, βi ∈ Γ
}

=
{ n∑
i=1

xα(yβivi) : n ∈ N, vi ∈ V, βi ∈ Γ
}

⊆ xΓ
∑
V =< x >r .

On the other hand, since

x = xαyβx ∈ (xαy)Γ
∑
V,

< x >r⊆< xαy >r. Therefore, < x >r=< xαy >r.

Without lose of generality we suppose that I =< x, y >r. Now, < x >r=<

a >r, for some β-idempotent element and since y − aβy ∈< x, y >r, we have <
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x, y >r=< a, y − aβy >r, and there exists a β-idempotent element b ∈ V such that

< b >r=< y − aβy >r . Consequently, aβb = 0 and

(b− bβa)β(b− bβa) = bβb− (bβb)βa− (bβa)βb+ (bβa)β(bβa) = b− bβa;

bβ(b− bβa) = bβb− bβ(bβa) = bβb− (bβb)βa = b− bβa.
We conclude that < b− bβa >r=< b >r=< y − aβy >r .

Therefore, < x, y >r=< a, b− bβa >r. This completes the proof. �

Proposition 3.2. Let V be a Γ-algebra, x1 = x − xαyβx and x1 = x1αaβx1 for

some a ∈ V . Then, x = xαbβx for some b ∈ V .

Proof. We observe that

x = x1 + xαyβx = x1αaβx1 + xαyβx

= (x− xαyβx)αaβ(x− xαyβx) + xαyβx

= xα(a− aβxαy − yβxαa+ yβxαaβxαy)βx.

This implies that x = xαbβx for some, b ∈ a− aβxαy− yβxαa+ yβxαaβxαy. This

completes the proof. �

Lemma 3.1. Let V1 ≤ V2 be ideals in an associative Γ-algebra V . Then, V2 is

(α, β)-regular if and only if V1 and [V2 : V1] are both (α, β)-regular.

Proof. Suppose that V2 is (α, β)-regular. Then, obviously [V2 : V1] is (α, β)-regular.

Let x ∈ V1. Then, we have x = xαyβx for some y ∈ V2. We set b = yβxαy. Then,

b is an element of V1 such that

xαbβx = xα(yβxαy)βx = (xαyβx)αyβx = xαyβx = x,

Then, V1 is (α, β)-regular.

Conversely, assume that V1 and [V2 : V1] are both (α, β)-regular and x ∈ V1.

Hence, there exist α̂, β̂ ∈ Γ̂ and y + V1 ∈ [V2 : V1] such that

x+ V1 = (x+ V1)α̂(y + V1)β̂(x+ V1) = xαyβx+ V1,

where Γ̂ = {γ̂ : γ ∈ Γ}. Hence, x − xαyβx ∈ V1 for some y ∈ V2. Since V1 is

(α, β)-regular,

x− xαyβx = (x− xαyβx)αzβ(x− xαyβx)

for some z ∈ V1, from which we conclude that x = xαbβx. Therefore, V2 is (α, β)-

regular. �

Proposition 3.3. Let V be a regular associative Γ-algebra such that every element

is (α, α)-regular. Then, θ = {x ∈ V : xαy = yαx for all y ∈ V, α ∈ Γ : x = xαyαx}
is (α, α)-regular.

Proof. Suppose that x ∈ θ. There exists y ∈ V such that x = xαyαx. We set

z = yαxαy. Then, we obtain that

xαzαx = xα(yαxαy)αx = (xαyαx)αyαx = xαyαx = x.
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We have

zαv = yαxαyαv = (yαy)αvαxαx = yαxαyαxαvαy = yαxαvαy.

In the same way, vαz = yαvαxαy = yαxαvαy = zαv, where v ∈ V . Therefore,

z ∈ θ and θ is (α, α)-regular. �

Let V be a Γ-algebra. An equivalence relation ρ on V is called regular if for

every a1, a2, b1, b2, such that (a1, b1) and (a2, b2) ∈ ρ, then (a1 + a2, b1 + b2) ∈ ρ and

for all α ∈ Γ, (a1αa2, b1αb2) ∈ ρ and is called strong regular if (a1 + a2, b1 + b2) ∈ ρ
and (a1αa2, b1βb2) ∈ ρ for every α, β ∈ Γ.

Suppose that ρ is a regular relation on a Γ-algebra. We define a binary oper-

ations on [V : ρ], the set of all equivalence classes, as follows:

ρ(a)α̂ρ(b) = ρ(aαb),

ρ(a)⊕ ρ(b) = ρ(a+ b).

Let a1, a2, b1, b2 ∈ V and ρ(a1) = ρ(b1) and ρ(a2) = ρ(b2). Then,

(a1, b1) ∈ ρ and (a2, b2) ∈ ρ =⇒ (a1αa2, b1αb2) ∈ ρ
=⇒ ρ(a1)α̂ρ(a2) = ρ(b1)α̂ρ(b2)

and ρ(a1)⊕ ρ(a2) = ρ(b1)⊕ ρ(b2).

It is easy to see that [V : ρ] is a Γ̂-algebra. Suppose that ρ is a strong regular

relation. Then, for every α, β ∈ Γ

ρ(a)α̂ρ(b) = ρ(a)β̂ρ(b).

Hence, [V : ρ] is an algebra.

Suppose that V is a Γ-algebra and a is an element of V . We say that b is an

(α, β)-inversion of a if aαbβa = a, bβaαb = b.

Example 3.2. Let V = R3 and Γ = {(r, 0, 0) : r ∈ R}. Then, V is a Γ-algebra with

Γ-dimension 1. If a = (1, 0, 0), b = (3, 0, 0), α = (2, 0, 0), β = (1
6 , 0, 0), then b is an

(α, β)-inversion of a.

Suppose that V is an associative Γ-algebra and a is an (α, β)-regular. Then,

there exist α, β ∈ Γ and b ∈ V such that a = aαbβa. Let x = bβaαb. Then, we

observe that

aαxβa = aα(bβaαb)βa = (aαbβa)αbβa = aαbβa = a;

xβaαx = (bβaαb)βaα(bβaαb) = bβ(aαbβa)α(bβaαb)

= bβaαbβaαb = bβ(aαbβa)αb = bβaαb = x.

Proposition 3.4. Let ρ be a regular relation on a regular associative Γ-algebra and

ρ(a) be an idempotent in [V : ρ]. Then, there exists an idempotent element e in V

such that ρ(a) = ρ(e).



118 A. H. Rezaei, B. Davvaz, S. O. Dehkordi

Proof. Suppose that ρ(a) is a γ-idempotent element in [V : ρ]. Then, there exists

γ ∈ Γ such that ρ(a) = ρ(a)γ̂ρ(a) = ρ(aγa). Let x be an (α, β)-inversion of aγa.

Then,

(aγa)αxβ(aγa) = aγaxβ(aγa)αx = x.

Let e = aαxβa. Then,

eγe = (aαxβa)γ(aαxβa) = aα(xβaγaαx)βa = aαxβa = e.

and so e is γ-idempotent. We have

(aαxβa, (aγa)αxβ(aγa)) ∈ ρ,

and (e, aγa) ∈ ρ. Therefore, ρ(e) = ρ(aγa). �

Theorem 3.1. Let V be an associative Γ-algebra such that {0} is a semiprime ideal,

every family of semiprime ideals has a maximal element and [V : P ] is (α, β)-regular

for all prime ideal of V . Then, V is a regular algebra.

Proof. Suppose that V is not regular. Then, there exists x ∈ V such that x /∈
xΓV Γx. There exists a semiprime ideal P in V such that it is maximal with respect

the property x /∈ xΓV Γx+ P . If [V : P ] is regular, then

x+ P ∈ (x+ P )Γ̂[V : P ]Γ̂(x+ P ).

Hence, there exists y + P ∈ [V : P ] such that

x+ P ∈ (x+ P )α̂(y + P )β̂(x+ P ) = xαyβx+ P.

This implies that x ∈ xαyβx + P ⊆ xΓyΓx + P , which is a contradiction. Thus,

x /∈ xΓV Γx+P . Then, P is not prime. Hence, there exist ideals A and B such that

AΓ
∑
B ⊆ P and A * P , B * P . Now, suppose that T1 = {v ∈ V : vΓ

∑
B ⊆ P}

and T2 = {v ∈ V : T1Γ
∑
v ⊆ P}. We see that T1 and T2 are semiprime.

Now, letA1 andA2 be two ideals such thatA1Γ
∑
A1 ⊆ T1. Then, (A1Γ

∑
A1)Γ

∑
B

and A1Γ
∑

(A1Γ
∑
B) ⊆ P . Since P is prime and B * P , implies that A1 ⊆ P . In

the same way, one can see that T2 is a semiprime ideal. On the other hand

(T1 ∩ T2)Γ
∑

(T1 ∩ T2) ⊆ T1Γ
∑
T2 ⊆ P.

Hence, T1 ∩ T2 ⊆ P . Since A * P and B * P , T1 and T2 properly contain P .

Because the maximality of P , [V : T1] and [V : T2] are regular. Thus, there exist

x1, x2 ∈ V such that

x+ P = (x+ P )α̂(x1 + P )β̂(x+ P ),

x+ P = (x+ P )α̂(x2 + P )β̂(x+ P ).

Thus, x− xαx1βx ∈ T1 and x− xαx2βx ∈ T2. This implies that

x− xα(x1 + x2 − x1βxαx2)βx = (x− xαx1βx)− (x− xαx1βx)αxβx ∈ T1

and

x− xα(x1 + x2 − x1βxαx2)βx = (x− xαx2βx)− xαx1β(x− xαx2βx) ∈ T2.
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We conclude that x ∈ xΓV Γx + T1 ∩ T2 ⊆ xΓV Γx + P , which is a contradiction.

Therefore, V must be regular. �

Proposition 3.5. Let V be an associative unital Γ-algebra and set

Θ =
{
x ∈ V : V Γ

∑
xΓ

∑
V is an (α, β)-regular ideal

}
.

Then, Θ is an (α, β)-regular ideal and [V : Θ] has no non-zero (α, β)-regular ideal.

Proof. Suppose that x, y ∈ Θ. Then, V Γ
∑
xΓ

∑
V and V Γ

∑
yΓ

∑
V are (α, β)-regular

ideals. By Lemma 4.3, V Γ
∑
xΓ

∑
V + V Γ

∑
xΓ

∑
V is a regular ideal. Since

V Γ
∑

(x+ y)Γ
∑
V ⊆ V Γ

∑
xΓ

∑
V + V Γ

∑
yΓ

∑
V,

V Γ
∑

(x+ y)Γ
∑
V is regular. In the same way, we can see that ΘΓV, V ΓΘ ⊆ Θ.

Let J be an (α, β)-regular ideal of V and x ∈ J . Then,,

V Γ
∑
xΓ

∑
V ⊆ V Γ

∑
JΓ

∑
V ⊆ J.

Hence, V Γ
∑
xΓ

∑
V is (α, β)-regular and J ⊆ Θ. Let [J : Θ] be an (α, β)-regular

ideal of [V : Θ]. Since Θ is (α, β)- regular, J is (α, β)-regular and J ⊆ Θ. This

implies that [V : Θ] has not non-zero (α, β)-regular ideal. �

Proposition 3.6. Let V be a regular Γ-algebra. Then, the dimension and the Γ-

dimension of V are equal.

Proof. Let x ∈ V . Since V is regular there exist α, β ∈ Γ and y ∈ V such that

x = xαyβx. This completes the proof. �

4. T -functor and H-system

The category ΓAL is the category whose objects are Γ- algebras. For Γ1-

algebra V1 and Γ2- algebra V2, Mor(V1, V2) is the set of all (Γ1,Γ2)- epimorphisms.

The composition of morphisms denotes the usual composition of homomorphisms

and so satisfies the associative law. (IdV , IdΓ) : (V,Γ) −→ (V,Γ) is the identity

map satisfies the required property (IdV , IdΓ) ◦ (ϕ, f) = (ϕ, f) for every (ϕ, f) ∈
Mor(V

′
, V ) and (ϕ, f) ◦ (IdV , IdΓ) = (ϕ, f), for every (ϕ, f) ∈ Mor(V, V

′
). The

category AL is the category whose objects are algebras and Mor(A1, A2) is the set

of all algebra homomorphisms from A1 to A2 and it satisfies the associative law.

Let V be a Γ-algebra and

∆V =

{
n∏
i=1

(xi, αi) : αi ∈ Γ, xi ∈ V, n ∈ N
}
.

Then, the relation θ on ∆V defined by(
n∏
i=1

(xi, αi)

)
θ

(
m∏
j=1

(yj , βj)

)
if and only if

n∑
i=1

xiαix =
m∑
j=1

yjβjx, ∀x ∈ V,
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is an equivalence relation. We denote the equivalence class containing
n∏
i=1

(xi, αi) by

θ

(
n∏
i=1

(xi, αi)

)
. Then, [∆V : θ] forms a vector space. Now, we define a multiplication

on [∆V : θ] as follows:

θ

(
n∏
i=1

(xi, αi)

)
θ

(
n∏
j=1

(yj , βj)

)
= θ

(∏
i,j

(xiαiyj , βj)

)
.

We denote this algebra by VL and is called the left operator algebra. In the same

way, we can define the right operator algebra.

Proposition 4.1. Let V1 and V2 be Γ1- and Γ2- algebras, respectively. If (ϕ, f) :

(V1,Γ1) −→ (V2,Γ2) is an epimorphism, then there exists a unique homomorphism

(ϕ, f) : [∆V1 : θ1] −→ [∆V2 : θ2] such that the following diagram is commutative:

(V1,Γ1)
(ϕ,f)
−− −→ (V2,Γ2)

↓ ↓

[∆V1 , θ1]
(ϕ,f)
−− −→ [∆V2 , θ2]

Moreover, if (ϕ, f) is an isomorphism, then (ϕ, f) is an isomorphism.

Proof. We define (ϕ, f) : [∆V1 , θ1] −→ [∆V2 , θ2] by

(ϕ, f)

(
θ

(
n∏
i=1

(xi, αi)

))
= θ

(
n∏
i=1

(ϕ(xi), f(αi))

)
,

for every θ

(
n∏
i=1

(xi, αi)

)
∈ [∆V1 , θ1]. It is easy to see that this function is well-

defined and homomorphism. One can see that if (ϕ, f) is an isomorphism, then

induced homomorphism (ϕ, f) is an isomorphism. �

Corollary 4.1. There is a covariant functor between the subcategory of Γ-algebras

and the category of algebras.

Proof. By Proposition 4.1, it is straightforward. �

Let (ϕ1, f1) : (V1,Γ1) −→ (V2,Γ2) and (ϕ2, f2) : (V1,Γ1) −→ (V2,Γ2) be

homomorphisms. We define

S(ϕ1, ϕ2) =

{
n∑
r=1

ϕi(vr)fj(αr)v : vr ∈ V1, αr ∈ Γ1, n ∈ N, 1 ≤ i, j ≤ 2, i 6= j

}
.

This homomorphism is said to be S-conjugate if S(ϕ1, ϕ2) = 0.

Let V1, V2, . . . Vn and V be Γ1-, Γ2-, . . ., Γn- and Γ = Γ1 × Γ2 . . .Γn- alge-

bras, respectively, and suppose that we are given (Γi,Γ)- homomorphisms (σi, χi) :

(Vi,Γi) −→ (V,Γ), (1 ≤ i ≤ n) and (Γ,Γi)- homomorphism (πi, ϑi) : (V,Γ) −→
(Vi,Γi), (1 ≤ i ≤ n) such that πjσi = δij and

∑
σiπi = IdV . Then, V is called an

H- system.
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Proposition 4.2. Let V be an H-system and (ϕi, fi) : (Vi,Γi) −→ (W,Γ), (1 ≤ i ≤
n) are given. Then, there exists a unique homomorphism (ϕ, f) : (V,Γ) −→ (W,Γ)

such that (ϕ, f)◦(σi, χi) = (ϕi, fi). If (ψi, gi) : (W,Γ) −→ (Vi,Γi), then there exists a

unique homomorphism (ψ, g) : (W,Γ) −→ (V,Γ) such that (ψ, ϑi) ◦ (ψ, g) = (ψi, gi).

Proof. Suppose that (ϕ, g) : (W,Γ) −→ (V,Γ) defined by ϕ =
∑n

j=1 ϕjφj . Then,

ϕσi =

(
n∑
j=1

ϕjφj

)
σi =

n∑
j=1

ϕjφjσi =
n∑
j=1

ϕjφjδij = fi.

It is easy to see that this homomorphism is unique.

Now, we define ψ : W −→ V by ψ =
∑n

j=1 σjψj . This is a unique homomor-

phism such that πiψ = ψi. This completes the proof. �

Theorem 4.1. Let Ω be a subcategory of ΓAL such that for every H-system V

of Ω, ∆V is an H-system in AL. Then, for every morphism ϕ1 and ϕ2 in Ω,

T (ϕ1 + ϕ2) = T (ϕ1) + T (ϕ2).

Proof. Suppose that (ϕi, fi) : (Vi,Γi) −→ (Wi,Γi), (1 ≤ i ≤ 2) are morphisms.

Since ∆V1 is an H-system of AL, we have T (π1)T (σ1 +σ2) and T (π2)T (σ1 +σ2) are

identity morphisms. Hence,

T (σ1 + σ2) = T (σ1)T (π1)T (σ1 + σ2) + T (σ2)T (φ2)T (σ1 + σ2).

We define ϕ : W −→ V2 by ϕ = ϕ1π1 + ϕ2π2. Then, ϕσ1 = ϕ1 and ϕσ2 = ϕ2.

Moreover, ϕ(σ1 + σ2) = ϕ1 + ϕ2. Hence,

T (ϕ1 + ϕ2) = T (ϕ1) + T (ϕ2).

This completes the proof. �

Theorem 4.2. Let 0 −→ (V1,Γ1)
(σ1,f1)−→ (V,Γ)

(π2,g2)−→ (V2,Γ2) −→ 0 be an exact

sequence in ΓAL. Then, the following statements are equivalent:

(1) There exists (Γ2,Γ)-homomorphism (σ2, f2) : (V2,Γ2) −→ (V,Γ) and (Γ,Γ1)-

homomorphism (π1, g1) : (V,Γ) −→ (V1,Γ1) such that V is an H-system.

(2) There exists Γ-subalgebra of V1 such that V = (σ1, f1)(V1,Γ1)⊕ V1.

Proof. The proof is straightforward. �

Proposition 4.3. Let 0 −→ (V1,Γ1)
(σ1,f1)−→ (V,Γ)

(π2,g2)−→ (V2,Γ2) −→ 0 be a split

exact sequence in ΓAL. Then, 0 −→ ∆V1

T (σ1,f1)−→ ∆V
T (π2,g2)−→ ∆V2 −→ 0 is a split

exact sequence in AL.

Proof. The proof is straightforward. �

Proposition 4.4. Let for every split exact sequence

0 −→ (V1,Γ1) −→ (V,Γ) −→ (V2,Γ2) −→ 0

implies that 0 −→ ∆V1 −→ ∆V −→ ∆V2 −→ 0 is a split exact sequence. Then, for

every homomorphism ϕ1,ϕ2, we have T (ϕ1 + ϕ2) = T (ϕ1) + T (ϕ2).
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Proof. Suppose that V is an H-system. This implies that

0 −→ (V1,Γ1)
(σ1,f1)−→ (V,Γ)

(π2,g2)−→ (V2,Γ2) −→ 0

is a split exact sequence. By hypothesis

0 −→ ∆V1

T (σ1,f1)−→ ∆V
T (π2,g2)−→ ∆V2 −→ 0

is a split exact sequence. In the same way

0 −→ ∆V2

T (σ2,f2)−→ ∆V
T (π1,g1)−→ ∆V1 −→ 0

is a split exact sequence. Hence,

T (π2, g2)T (σ1, f1) = T ((π2, g2)(σ1, f1)) = Id,

T (π1, g1)T (σ2, f2) = T ((π1, g1)(σ2, f2)) = Id.

By a routine process, T (V,Γ) is an H-system. This completes the proof. �
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[6] D. Özden, M.A. Öztürk and Y.B. Jun, Permuting tri-derivations in prime and semi-prime

gamma rings, Kyungpook Math. J., 46 (2006), 153-167.

[7] A.C. Paul and S. Uddin, On Artinian gamma rings, Aligarh Bull. Math., 28 (2009), 15-19.


