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DEFECT PREDICTION METHOD FOR POWER 

TRANSMISSION EQUIPMENT BASED ON GREY WOLF 

OPTIMIZATION ALGORITHM AND LSTM-HNA 

Zhennan YANG1, Jie ZHANG2*, Ke ZHANG3, Youqiang SUN2, Wenli 

HUANG3, Le ZOU1 

Predicting defects in power transmission equipment is crucial for ensuring the 

stable operation of the power grid. However, existing methods suffer from 

shortcomings such as ignoring temporal features, susceptibility to irrelevant feature 

interference, and lack of hyperparameter optimization. To address this, this paper 

proposes a novel method for defect prediction in power transmission equipment that 

combines the Grey Wolf Optimization (GWO) algorithm with Long Short-Term 

Memory networks and an attention mechanism. This method utilizes LSTM networks 

to extract temporal feature information, innovatively designs a Hidden-layer Neuron 

Attention module (HNA) to reduce the impact of irrelevant features, incorporates the 

Grey Wolf Optimization algorithm for automatic hyperparameter tuning, and 

proposes a joint training strategy for GWO and LSTM-HNA to improve efficiency. 

Extensive experiments validate the effectiveness of the proposed method, achieving a 

high accuracy of 97.37% in defect prediction tasks for power transmission equipment. 

Precision, recall, F1 score, and other metrics outperform other methods, providing a 

new approach to enhancing the monitoring and fault prevention capabilities of power 

transmission equipment. 

Keywords: Power Transmission Equipment; Defect Prediction; Grey Wolf 

Optimization Algorithm; Attention Mechanism; Long Short-Term 

Memory Network 

1. Introduction 

To meet the growing demand for electricity, an increasing number of large 

substations are being constructed and operated [1]. Substations, as crucial nodes in 

the transmission system, play a vital role in ensuring the overall reliability of the 

power system. Therefore, the timely detection and prediction of potential defects in 

substation equipment, along with the implementation of effective maintenance and 

preventive measures, are of significant importance for ensuring the safe operation 

of the grid, reducing risks, and maintaining cost-effectiveness. 

Currently, with the aging of equipment intensifying, the risks of defects and 

failures are increasing annually, and traditional manual inspections and periodic 
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maintenance are no longer sufficient to meet the requirements of real-time 

monitoring. Consequently, the scientific and efficient maintenance of substation 

equipment has become an urgent issue. With the continuous development of 

artificial intelligence (AI) technology, attempts have been made to use AI 

techniques to address this challenge. One such approach is the use of AI-based 

techniques for predicting defects in substation equipment, [2]-[5] which involves 

extracting patterns from historical data accumulated during the operation of the 

equipment. By identifying characteristic features in the monitoring data before 

defects occur, timely warnings can be issued when similar data patterns reappear, 

enabling early detection and maintenance. 

Existing research on substation equipment defect prediction includes 

methods such as [6] SMOTE-XGBoost-based transformer defect prediction, [7]A 

transformer fault diagnosis method based on Dissolved Gas Analysis (DGA) is 

proposed. This method combines the ReliefF feature weighting method and the 

HPO-SVM model, improving the accuracy of fault diagnosis, [8]autoencoder 

neural network-based grid fault prediction algorithms, [9] knowledge graph-based 

power transformer fault prediction methods, [10] least squares support vector 

machine Bayesian network decision tree (LSSVM-BNDT) defect diagnosis 

methods, and [11] a novel support vector machine multi-classification strategy for 

power transformer fault diagnosis. These methods primarily address issues such as 

missing or imbalanced datasets and, through data processing and model 

optimization, have somewhat improved prediction accuracy. However, these 

traditional methods neglect the inherent temporal dependencies within the data, 

failing to fully exploit crucial temporal information such as time trends and periodic 

patterns. Instead, they treat data simply as static feature vectors, limiting further 

improvements in predictive performance. 

To capture temporal features, some researchers have proposed time series 

modeling methods, including [12] transformer fault prediction using Long Short-

Term Memory networks (LSTM), [13] support vector machine-based power grid 

fault diagnosis methods, and [14] machine learning-based regression classification 

joint solutions for predicting power equipment defects, faults, and their occurrence 

times. Although these methods consider time series information, they inefficiently 

discern the importance of input features during the model training stage, resulting 

in the inclusion of redundant and non-critical features that impact generalization 

and prediction accuracy. 

Addressing the aforementioned issues, this paper proposes a power 

equipment defect prediction method based on the Grey Wolf Optimization 

algorithm (GWO) combined with Long Short-Term Memory networks and an 

Attention Mechanism. This method: 1) effectively utilizes temporal information in 

defect data through the use of the LSTM model, improving defect prediction 

accuracy; 2) introduces the Hidden-layer Neural Attention module (HNA) to reduce 
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the impact of redundant features on model performance; 3) incorporates the GWO 

algorithm for automatic hyperparameter optimization; and 4) proposes a joint 

training mechanism to enhance model training efficiency. This approach improves 

the accuracy and efficiency of substation equipment defect prediction. 

2. Materials and Methods 

This section introduces the data used in this work and the details of the 

proposed model. 

 2.1 Datasets 

In this study, the data acquisition encompasses the asset register, operational 

monitoring, and defect records of a specific substation. The operational monitoring 

data includes oil chromatography, top oil temperature, core grounding current, and 

power supply load data, among others. These data are collected in real-time by the 

online monitoring devices installed in the substation and are aggregated and 

organized by a data monitoring platform. The process of collecting online 

monitoring data is depicted in Fig. 1. 

 
Fig. 1. The data acquisition process for online monitoring 

2.2 Data Preprocessing 

Before training the model, we preprocessed various types of collected data 

to construct a dataset suitable for training. These data include ledger data such as 

manufacturer, voltage level, and months in operation, as well as operational 

monitoring data such as power load, temperature, micro-water, and defect data. 

2.2.1 Data Cleaning 

In the data cleaning stage, we first identify and analyze outliers and missing 

values for numerical data. For outliers, we replace them with the mean value; for 

missing values, we fill them in. For non-numerical data, we analyze and process 

missing and erroneous values, typically choosing to delete them. 

2.2.2 Feature Vectorization 

Since string-type data cannot be directly used for neural network training, we need 

to convert them into vector form. Although label encoding and one-hot encoding 
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are mainstream feature vectorization methods, they each have their limitations. 

Label encoding typically requires clear size relationships between categories, while 

one-hot encoding can lead to a sharp increase in feature dimensions when there are 

many categories. Therefore, we use target encoding to vectorize categorical 

variables. This method calculates the mean label of the feature category and 

replaces the category value with this mean value, thereby avoiding increasing data 

dimensions and enhancing the interpretability of the encoding. 

 2.3 LSTM model 

Long Short-Term Memory (LSTM) is an improved type of Recurrent 

Neural Networks (RNN) known for its memory capabilities [15][16]. Compared to 

traditional RNNs [17], LSTM exhibits excellent performance in handling long time 

series problems. Its key lies in the carefully designed gate mechanisms and state 

transition methods, which enable more effective capturing and utilization of 

information embedded in long-term temporal dependencies, thus avoiding the 

vanishing or exploding gradient problem and significantly enhancing the modeling 

ability for long sequences of data. The LSTM neuron structure is illustrated in Fig. 

2. 

 
Fig. 2. LSTM neuron structure 

The core design idea of LSTM networks is to selectively retain and forget 

information through carefully designed gate mechanisms to capture long-term 

temporal dependencies. Specifically: 

The forget gate determines which information from the previous time step's 

cell state needs to be forgotten, and its calculation formula is: 

𝑓𝑡 = 𝜎(𝑊𝑓 · [ℎ𝑡−1 + 𝑥𝑡] + 𝑏𝑓)                                             (1) 

Where 𝑓𝑡 is the activation value vector of the forget gate, 𝑊𝑓 and 𝑏𝑓 are the 

weight matrix and bias, ℎ𝑡−1 is the previous time step's hidden state, and 𝑥𝑡 is the 

current input. 

The input gate controls the extraction and updating of useful information 

from the current input and the memory cell vector: 
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 𝑖𝑡 = 𝜎(𝑊𝑖 · [ℎ𝑡−1 + 𝑥𝑡] + 𝑏𝑖)                                          (2) 

𝐶𝑡̃ = tanh (𝑊𝑐 · [ℎ𝑡−1 + 𝑥𝑡] + 𝑏𝑐)                                   (3) 
where  𝑖𝑡 is the activation value vector of the input gate, 𝐶𝑡̃ is the new 

candidate memory cell vector. 

The cell state 𝐶𝑡  is the core of LSTM, responsible for transmitting and 

storing long-term state information, and its update rule is: 

𝐶𝑡 = 𝑓𝑡⨀𝐶𝑡−1 + 𝑖𝑡⨀𝐶𝑡̃                                                    (4)   

Finally, the output gate controls the output hidden state ℎ𝑡 based on the cell 

state and the current input: 

𝑜𝑡 = 𝜎(𝑊𝑜 · [ℎ𝑡−1 + 𝑥𝑡] + 𝑏𝑜)                                     (5) 
ℎ𝑡 = 𝑜𝑡⨀tanh (𝐶𝑡)                                              (6) 

Through the carefully designed gate mechanisms described above, LSTM 

can efficiently learn and extract key temporal patterns and trend information from 

long-term input sequences, significantly improving its ability to model long-term 

dependencies. 

2.4 The model based on Grey Wolf Optimization and LSTM-HNA 

We have designed a LSTM-HNA (Long Short-Term Memory with Hidden 

Layer Neuron Attention) model for defect prediction of power substation 

equipment based on the Grey Wolf Optimization Algorithm. This model consists 

of two main modules: the hyperparameter optimization module and the main 

network module. The framework of the model is shown in Fig. 3. 

 
Fig. 3. Model framework 

The hyperparameter optimization module utilizes the Grey Wolf 

Optimization Algorithm to automatically search for the optimal hyperparameters. 

In the main network module, to fully utilize the temporal information in the 

historical defect data of the equipment and improve prediction accuracy, we adopt 

the LSTM network. Additionally, to enhance model performance and reduce the 

impact of redundant features, we introduce a hidden layer neuron attention module. 

The workflow of the model is as follows: first, the defect data with temporal 
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information is input into the LSTM layer. Then, the hidden state of the LSTM layer 

is passed to the hidden layer neuron attention module. Finally, the model prediction 

result is output through a linear layer. Combining the memory characteristics of 

LSTM and the dynamic attention ability of the attention mechanism, our model can 

more effectively model and learn representations of sequence data. 

 2.5 The proposed Attention model 

 2.5.1 Attention mechanism 

The attention mechanism [18]-[20] is an efficient technique that mimics the 

way the human brain processes problems, aiming to simplify the resolution process 

of complex issues. When faced with complex problems, humans selectively focus 

on different information elements, prioritizing the most crucial information for the 

current problem, thereby reducing interference from irrelevant information. 

Similarly, by applying the attention mechanism, we can filter the input device 

defect features, calculate the contribution of each input feature to the output results, 

and effectively reduce the impact of irrelevant features on the model's performance.  

2.5.2 Hidden Layer Neuron Attention 

The Hidden Layer Neuron Attention (HNA) module is a novel mechanism 

proposed by us to enhance the performance of neural network models. By 

introducing the attention mechanism between hidden layer neurons, HNA allows 

each neuron to dynamically focus on the output of other neurons. This adaptive 

weight adjustment enables the model to more effectively learn and utilize the 

information of the input data, thereby improving overall performance. The hidden 

layer neuron attention module design is depicted in Fig. 4. 

 
Fig. 4. HNA block 

The workflow of the HNA module is as follows: 

1) Multi-Head Attention Calculation: The hidden layer neurons are first 

processed through the multi-head attention mechanism, where the output of each 

attention head is concatenated and undergoes a linear transformation. 

2) Layer Normalization: Subsequently, layer normalization is applied to the 

output from the previous step to stabilize the training process. 
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3) Residual Connection: The normalized output is then combined with the 

original hidden layer output through a residual connection to facilitate information 

flow and gradient propagation. 

4) Final Output: Finally, layer normalization is applied again to obtain the 

final output of the HNA module. 

Through this series of steps, the HNA module not only enhances the model's 

learning ability but also improves training stability and convergence speed, thereby 

enhancing the model's generalization ability. 

2.6 Grey Wolf Optimizer for hyperparameter tuning 

2.6.1 Grey Wolf Optimizer 

The Grey Wolf Optimizer (GWO) [21]-[22] is an efficient intelligent 

optimization algorithm inspired by the hunting behavior of grey wolf packs. There 

are many similar swarm intelligence optimization algorithms that have also been 

widely applied to the hyperparameter tuning of neural networks [23][24]. 

Compared to other heuristic search algorithms, GWO has several significant 

advantages. Firstly, GWO demonstrates outstanding convergence performance, 

with not only fast convergence speed but also greater stability compared to 

algorithms like Particle Swarm Optimization. Secondly, GWO requires fewer 

parameter settings, making the algorithm easier to understand and implement, and 

consequently, the computation speed is faster. These characteristics have led to the 

widespread application of GWO in the field of parameter optimization. 

In the Grey Wolf Optimizer algorithm, the social hierarchy of the wolf pack 

is divided into four levels: α (the leader), β (the deputy), δ (the scout), and ω (the 

ordinary wolf). The optimization process of the algorithm simulates the hunting 

strategy of grey wolves, where wolves of each rank play different roles in the search 

for solutions. The hierarchical division of the wolf pack is illustrated in Fig. 5. 

 
Fig. 5. Ranking in a wolf pack 

During the search for the optimal solution, guidance is primarily provided 

by the α, β, and δ wolves, while the ω wolf follows. The hunting process of grey 

wolves can be divided into three main steps: 

1) Encircling the prey: The process of grey wolves surrounding and 

gradually approaching the prey can be defined by the following formula: 

𝐷 = |𝐶 · 𝑋𝑝(𝑡) − 𝑋(𝑡)|                                           (7) 
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𝑋(𝑡 + 1) = 𝑋𝑝(𝑡) − 𝐴 · 𝐷                                        (8) 
Here, D represents the distance between the grey wolf and the prey, 𝑋𝑝 and 

𝑋 are the position vectors of the prey and the grey wolf respectively. A and C are 

coefficient vectors calculated by the following formulas: 

𝐴 = 2𝑎 · 𝑟1 − 𝑎                                                (9) 

𝐶 = 2 · 𝑟2                                                    (10) 

where a is the convergence factor, 𝑟1and 𝑟2 are random numbers in the 

interval [0,1]. 

2) Hunting: After the wolf pack discovers the prey, the β and δ wolves, led 

by the α wolf, surround the prey. The mathematical model for individual grey 

wolves tracking the prey's position is as follows: 

𝐷α = |𝐶1 · 𝑋α − 𝑋| 
𝐷β = |𝐶2 · 𝑋β − 𝑋|                                          (11) 

𝐷δ = |𝐶3 · 𝑋δ − 𝑋| 

Here, 𝐷α,𝐷β, and 𝐷δ represent the distances between the α, β, and δ wolves 

respectively, and the other individuals. 𝑋α, 𝑋β , and 𝑋δrepresent the current 

positions of the α, β, and δ wolves respectively. 𝐶1, 𝐶2, and 𝐶3 are random vectors. 

𝑋1, 𝑋2, and 𝑋3 define the step length and direction towards α, β, and δ respectively, 

and the final updated position of ω is defined as: 

𝑋1 = 𝑋α − 𝐴1 · (𝐷α) 

𝑋2 = 𝑋β − 𝐴2 · (𝐷β)                                        (12) 
𝑋3 = 𝑋δ − 𝐴3 · (𝐷δ) 

𝑋(𝑡 + 1) =
𝑋1+𝑋2+𝑋3

3
                                        (13) 

3) Attacking the prey: When the prey stops moving, the grey wolves 

complete the hunting process by attacking to finally lock onto the optimal solution. 

2.6.2 Hyperparameter Tuning  

Hyperparameters play a crucial role in training neural network models, as 

they directly determine the performance and effectiveness of the training process. 

These hyperparameters include learning rate, number of neurons, number of 

epochs, batch size, etc., which are usually manually set based on experience, 

making it difficult to find an optimal set of hyperparameters. 

To address this issue, we propose using the Grey Wolf Optimization 

Algorithm to automatically optimize the hyperparameters of neural network 

models. The main implementation steps are as follows: 

Step 1: First, we set the learning rate, number of hidden layer neurons, 

number of epochs, and batch size as the optimization objectives of the population. 

Then, initialize the grey wolf population with N individuals and set the number of 

iterations as T. 



Defect prediction method for power transmission equipment based on GWO algorithm and…  133 

Step 2: We use the loss value of model training as the fitness value of the 

population, determine the top three wolves with the best fitness values, and save 

the current optimal values. 

Step 3: Calculate and update the parameters a, A, C as shown in equation 

(9) and equation (10). 

Step 4: Calculate the positions of the grey wolves according to the position 

update formula (12) and formula (13). 

Step 5: Repeat steps 2 to 4 until T iterations are completed. After each 

iteration, we compare the optimal values obtained to find a globally optimal set of 

hyperparameters. 

Through this method, we can automatically and effectively find an optimal 

set of hyperparameters, thereby improving the training effectiveness and 

performance of neural network models. This approach has broad application 

prospects and is of great significance for the training of neural network models. 

2.7 Training Strategy 

For the model proposed by us, this study designed an innovative joint 

training strategy, which integrates the Grey Wolf Optimization Algorithm (GWO), 

Long Short-Term Memory (LSTM), and the attention mechanism of hidden layer 

neurons. By integrating the GWO algorithm into the main network, we can 

simultaneously search for the optimal hyperparameter combination during the 

model training process. As a result, after training, we not only obtain a model 

optimized for performance but also a set of precisely tuned optimal 

hyperparameters. The flowchart for the joint training strategy is shown in Fig. 6. 

 
Fig. 6. Joint training flowchart 

The specific process of the joint training strategy is as follows: 
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1) Initialization: Set the size of the grey wolf population and assign a set of 

hyperparameters to each grey wolf. 

2) Model Training: Train the model using the hyperparameter combinations 

of each grey wolf individual and calculate the corresponding loss value. 

3) Evaluation and Saving: Based on the loss value, identify and record the 

hyperparameter combinations of the top three grey wolves with the smallest losses. 

4) Parameter Update: Update the hyperparameters of the grey wolf 

individuals using the GWO algorithm. 

5) Iterative Optimization: Repeat the above process until the predetermined 

number of iterations is completed. Finally, select the hyperparameter combination 

with the smallest loss value and obtain the corresponding optimal model. 

Through the above steps, our joint training strategy not only improves the 

training efficiency of the model but also ensures the optimization of 

hyperparameters. See the attached diagram for a detailed flowchart. 

 3 Experiment and Result Analysis 

3.1 Experimental Data and Environment Setup 

The data was collected from a substation in Anhui, primarily including three 

types: ledger data, online monitoring data, and defect data. The oil chromatography 

data records the monitoring values of various gases, such as hydrogen, methane, 

ethylene, etc., with a total of 19 features and 1,000 data sets. The specific features 

are shown in Table 1. 
Tabel1 

Feature variable statistics  

Variable Name Variable Type Data Source 

Device ID String Ledger Data 

Manufacturer String Ledger Data 

Voltage Level String Ledger Data 

Months in Operation Integer Ledger Data 

Power Load Float Monitoring Data 

Core Grounding Current Float Monitoring Data 

Top Oil Temperature Float Monitoring Data 

Oil Chromatography Float Monitoring Data 

Micro Water Float Monitoring Data 

Temperature Float Monitoring Data 

Weather String Monitoring Data 

Month of Defect Occurrence Integer Defect Data 

Defect Occurrence String Defect Data 

The experimental environment is a Windows 10 operating system, with an 

NVIDIA GeForce MX150 GPU. The deep learning framework used is Pytorch, and 

the code is run in PyCharm. The data is split into training and testing sets in a 7:3 

ratio for comparative experiments. The target variable is " Defect Occurrence ", 



Defect prediction method for power transmission equipment based on GWO algorithm and…  135 

with values of 0 (no defect) and 1 (defect). The experiment uses the Adam optimizer 

with an initial learning rate of 0.001, and the loss function is the cross-entropy loss 

function. 

3.2 Evaluation Metrics 

In binary classification problems, each instance is classified as either 

positive or negative, resulting in four possible classification outcomes: True 

Positive (TP), False Negative (FN), False Positive (FP), and True Negative (TN). 

Specifically: True Positive (TP): Instances that are actually positive and correctly 

classified as positive. False Negative (FN): Instances that are actually positive but 

incorrectly classified as negative. False Positive (FP): Instances that are actually 

negative but incorrectly classified as positive. True Negative (TN): Instances that 

are actually negative and correctly classified as negative. 

These classification outcomes form the basis for evaluating the performance 

of classification algorithms, with commonly used evaluation metrics including 

accuracy, recall, F1 score, and others. The specific evaluation metrics and their 

calculation methods are defined as follows: 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
                   (14) 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
                       (15) 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
      (16) 

𝐹1 = 2 ∙
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛⋅𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛⋅𝑅𝑒𝑐𝑎𝑙𝑙
     (17) 

(1) ROC (Receiver Operating Characteristic) Curve 

The ROC curve is an important tool for evaluating the performance of 

classification models. It depicts the model's ability to identify signals by plotting 

the True Positive Rate (TPR) against the False Positive Rate (FPR) at different 

thresholds. Each point on the ROC curve represents the model's response to signal 

stimuli at a specific threshold. Specifically horizontal axis (FPR) represents the rate 

at which the model incorrectly classifies negative instances as positive, also known 

as 1-specificity. vertical axis (TPR) represents the rate at which the model correctly 

identifies positive instances, also known as sensitivity. When the ROC curve is 

closer to the upper-left corner (0,1), the model's ability to identify signals is 

stronger, indicating better discrimination between positive and negative classes. 

(2) AUC (Area Under the Curve) 

The AUC value is the area under the ROC curve, providing a quantitative 

measure of the model's classification ability. The AUC value ranges from 0 to 1, 

where a higher AUC value closer to 1 indicates stronger classification ability. It 

signifies the model's higher capability to correctly differentiate between positive 

and negative classes across various thresholds. 
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3.3 Comparative Experiments 

To validate the effectiveness of the GWO-LSTM-HNA network model in 

predicting defects in power substation equipment, extensive comparative 

experiments were conducted on the dataset in this study. The model was compared 

with various mainstream classification models, including Support Vector Machine 

(SVM), Decision Tree (DT), Random Forest (RF), LightGBM, and Multilayer 

Perceptron (MLP). Throughout the experiments, we meticulously recorded the 

performance of each model on four key performance metrics: precision, recall, F1-

score, and accuracy. The experimental results are presented in Table . 
Table 2 

Comparison experiments with traditional methods 

Method Precision Recall F1-score Accuracy 

SVM 73.74 75.16 78.98 85.15 

DecisionTree 79.35 76.49 77.80 89.23 

RandomForest 93.16 73.52 79.34 91.83 

LightGBM 94.35 82.77 88.12 94.88 

MLP 79.04 65.27 70.58 89.46 

GWO-LSTM-HNA 97.71 91.65 94.38 97.37 

As shown in Table , the GWO-LSTM-HNA model achieved an accuracy of 

97.37%, which is 12.2% higher than the lowest-performing SVM model and 2.5% 

higher than the second-best performing LightGBM model. In terms of precision, 

the model outperformed the second-best model by 3.4%, demonstrating better 

performance in predicting positive instances. For recall, our model showed an 

improvement of 8.9% compared to the second-best model, indicating its stronger 

ability to identify positive instances. F1 score, as a comprehensive metric 

considering precision and recall, also exhibited a 6.3% improvement in our model, 

which comprehensively reflects the superiority of the model. 

Furthermore, to visually demonstrate the superior classification ability of 

our model, we graphically compared the performance of the GWO-LSTM-HNA 

model with traditional classification models using ROC curves. Fig. 7(left):  

 
Fig. 7.  left: ROC curve for traditional methods. right: Comparison of AUC for traditional 

methods. 
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It illustrates the ROC curves of the traditional classification methods, clearly 

indicating the significant advantages of our proposed model in classification 

prediction capability. Additionally, we utilized AUC values to plot Fig.7(right), 

providing a more intuitive display of the classification abilities of each model. 

To further validate the effectiveness of our proposed GWO-LSTM-HNA 

network model, this study conducted a comparative analysis with relevant research 

results published in the field of power equipment defect prediction in recent years. 

Specifically, we compared our model with the SMOTE-XGBoost method [6] and 

the LSSVM-BNDT [10] method. The former was proposed by Wang et al. in 2021, 

which is based on SMOTE-XGBoost for transformer defect prediction, while the 

latter was proposed by Jia et al. in the same year, based on least squares support 

vector machine Bayesian network decision tree for defect diagnosis. 
Table 3 

 Comparison experiments with relevant methods 

Method Precision Recall F1-score Accuracy 

SMOTE-XGBoost 94.08 88.52 83.91 93.08 

LSSVM-BNDT 94.77 84.07 80.09 91.96 

GWO-LSTM-HNA 97.39 91.65 94.38 97.37 

In the experiment, we recorded the performance of these methods and 

conducted a comprehensive evaluation using consistent evaluation metrics. As 

shown in Table , our model achieved an improvement of 4.29% and 5.41% in 

accuracy compared to the SMOTE-XGBoost and LSSVM-BNDT methods, 

respectively. In other key performance metrics precision, recall, and F1 score our 

model also demonstrated significant advantages. Particularly, in terms of the F1 

score, compared to the SMOTE-XGBoost method, we achieved a 10.47% 

improvement, highlighting the significant enhancement of our model in overall 

performance.  

Furthermore, to visually demonstrate the classification prediction capability 

of our model, we also plotted ROC curves and utilized AUC values for 

quantification (Fig. 8), which clearly showcase the superiority of our method. 

 
Fig. 8. left: ROC curve for relevant method. right: Comparison of AUC for relevant methods. 
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 3.4 Ablation Experiments 

To validate the superiority of our proposed GWO-LSTM-HNA model and 

identify the key contributions of each component in the model, this study conducted 

further ablation experiments based on comparative experiments. By gradually 

removing the key components of the model, we evaluated the impact of these 

components on the overall performance of the model. Specifically, experiments 

were conducted to remove the Grey Wolf Optimization (GWO) module and the 

Hidden Layer Neuron Attention (HNA) module. 
Table 4 

Ablation experiment 

Method Precision Recall F1-score Accuracy 

LSTM 96.36 86.53 90.62 95.80 

GWO-LSTM 96.37 87.18 91.46 96.26 

LSTM-HNA 95.92 91.20 93.37 96.86 

GWO-LSTM-HNA 97.39 91.65 94.38 97.37 

The experimental results summarized in Table  show the changes in various 

metrics. The results indicate that the GWO module, by optimizing hyperparameters 

adjustments, improved the accuracy of the model by 0.5%. Furthermore, the HNA 

module, by addressing the issue of redundant features, further increased the model's 

accuracy by 1.1%. These findings confirm the effectiveness of both modules, with 

the neuron attention mechanism module making a significant contribution to 

performance improvement. When these two modules were combined with the 

LSTM network, the model achieved the highest accuracy, improving by 1.6% 

compared to the original LSTM network. To visually demonstrate the results of the 

ablation experiments and to substantiate the superiority of the proposed method, we 

plotted the ROC curves and AUC comparison chart for the ablation experiments 

(Fig. 9).  
 Fig. 9. left: ROC curve for ablation experiment. right: Comparison of AUC for ablation 

experiment. 
 

From the chart, it is evident that the performance of the LSTM model significantly 

improved after integrating the GWO and HNA modules, with the GWO-LSTM-

HNA model exhibiting the most outstanding performance, surpassing the other 

three models. 
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4. Conclusion 

Defect prediction in power equipment aims to utilize historical defect data to 

forecast potential issues in the future. Although existing prediction methods, such as 

transformer defect prediction based on SMOTE-XGBoost and LSTM-based 

transformer fault prediction, have achieved some success, they still have 

shortcomings. Firstly, these methods fail to fully consider the influence of temporal 

relationships on predictions. Secondly, even when considering temporal 

relationships, they do not effectively handle features, leading to an inability to reduce 

interference from non-key features, thus impacting the efficiency and prediction 

accuracy of the models. Additionally, the adjustment of hyperparameters plays a 

crucial role in determining model performance, but existing methods do not provide 

effective tuning solutions. 

In view of these issues, this study proposes a transformer defect prediction 

method that combines the Grey Wolf Optimizer (GWO) with LSTM-HNA. This 

method adopts LSTM networks to learn temporal features from historical data and 

innovatively designs a hidden layer neural attention mechanism (HNA) to enable the 

model to focus more on important features. Simultaneously, it automatically searches 

for the optimal combination of hyperparameters using the Grey Wolf Optimizer 

algorithm. Ultimately, we use a joint training strategy to train the model and validate 

the effectiveness and superiority of the proposed method through comparative 

experiments and ablation studies. 
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