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DEFECT PREDICTION METHOD FOR POWER
TRANSMISSION EQUIPMENT BASED ON GREY WOLF
OPTIMIZATION ALGORITHM AND LSTM-HNA

Zhennan YANG!, Jie ZHANG?*, Ke ZHANG?, Yougiang SUN?, Wenli
HUANG?, Le ZOU*

Predicting defects in power transmission equipment is crucial for ensuring the
stable operation of the power grid. However, existing methods suffer from
shortcomings such as ignoring temporal features, susceptibility to irrelevant feature
interference, and lack of hyperparameter optimization. To address this, this paper
proposes a novel method for defect prediction in power transmission equipment that
combines the Grey Wolf Optimization (GWQO) algorithm with Long Short-Term
Memory networks and an attention mechanism. This method utilizes LSTM networks
to extract temporal feature information, innovatively designs a Hidden-layer Neuron
Attention module (HNA) to reduce the impact of irrelevant features, incorporates the
Grey Wolf Optimization algorithm for automatic hyperparameter tuning, and
proposes a joint training strategy for GWO and LSTM-HNA to improve efficiency.
Extensive experiments validate the effectiveness of the proposed method, achieving a
high accuracy of 97.37% in defect prediction tasks for power transmission equipment.
Precision, recall, F1 score, and other metrics outperform other methods, providing a
new approach to enhancing the monitoring and fault prevention capabilities of power
transmission equipment.

Keywords: Power Transmission Equipment; Defect Prediction; Grey Wolf
Optimization Algorithm; Attention Mechanism; Long Short-Term
Memory Network

1. Introduction

To meet the growing demand for electricity, an increasing number of large
substations are being constructed and operated [1]. Substations, as crucial nodes in
the transmission system, play a vital role in ensuring the overall reliability of the
power system. Therefore, the timely detection and prediction of potential defects in
substation equipment, along with the implementation of effective maintenance and
preventive measures, are of significant importance for ensuring the safe operation
of the grid, reducing risks, and maintaining cost-effectiveness.

Currently, with the aging of equipment intensifying, the risks of defects and
failures are increasing annually, and traditional manual inspections and periodic
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maintenance are no longer sufficient to meet the requirements of real-time
monitoring. Consequently, the scientific and efficient maintenance of substation
equipment has become an urgent issue. With the continuous development of
artificial intelligence (Al) technology, attempts have been made to use Al
techniques to address this challenge. One such approach is the use of Al-based
techniques for predicting defects in substation equipment, [2]-[5] which involves
extracting patterns from historical data accumulated during the operation of the
equipment. By identifying characteristic features in the monitoring data before
defects occur, timely warnings can be issued when similar data patterns reappear,
enabling early detection and maintenance.

Existing research on substation equipment defect prediction includes
methods such as [6] SMOTE-XGBoost-based transformer defect prediction, [7]A
transformer fault diagnosis method based on Dissolved Gas Analysis (DGA) is
proposed. This method combines the ReliefF feature weighting method and the
HPO-SVM model, improving the accuracy of fault diagnosis, [8]autoencoder
neural network-based grid fault prediction algorithms, [9] knowledge graph-based
power transformer fault prediction methods, [10] least squares support vector
machine Bayesian network decision tree (LSSVM-BNDT) defect diagnosis
methods, and [11] a novel support vector machine multi-classification strategy for
power transformer fault diagnosis. These methods primarily address issues such as
missing or imbalanced datasets and, through data processing and model
optimization, have somewhat improved prediction accuracy. However, these
traditional methods neglect the inherent temporal dependencies within the data,
failing to fully exploit crucial temporal information such as time trends and periodic
patterns. Instead, they treat data simply as static feature vectors, limiting further
improvements in predictive performance.

To capture temporal features, some researchers have proposed time series
modeling methods, including [12] transformer fault prediction using Long Short-
Term Memory networks (LSTM), [13] support vector machine-based power grid
fault diagnosis methods, and [14] machine learning-based regression classification
joint solutions for predicting power equipment defects, faults, and their occurrence
times. Although these methods consider time series information, they inefficiently
discern the importance of input features during the model training stage, resulting
in the inclusion of redundant and non-critical features that impact generalization
and prediction accuracy.

Addressing the aforementioned issues, this paper proposes a power
equipment defect prediction method based on the Grey Wolf Optimization
algorithm (GWO) combined with Long Short-Term Memory networks and an
Attention Mechanism. This method: 1) effectively utilizes temporal information in
defect data through the use of the LSTM model, improving defect prediction
accuracy; 2) introduces the Hidden-layer Neural Attention module (HNA) to reduce
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the impact of redundant features on model performance; 3) incorporates the GWO
algorithm for automatic hyperparameter optimization; and 4) proposes a joint
training mechanism to enhance model training efficiency. This approach improves
the accuracy and efficiency of substation equipment defect prediction.

2. Materials and Methods

This section introduces the data used in this work and the details of the
proposed model.

2.1 Datasets

In this study, the data acquisition encompasses the asset register, operational
monitoring, and defect records of a specific substation. The operational monitoring
data includes oil chromatography, top oil temperature, core grounding current, and
power supply load data, among others. These data are collected in real-time by the
online monitoring devices installed in the substation and are aggregated and
organized by a data monitoring platform. The process of collecting online
monitoring data is depicted in Fig. 1.
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Fig. 1. The data acquisition process for online monitoring
2.2 Data Preprocessing

Before training the model, we preprocessed various types of collected data
to construct a dataset suitable for training. These data include ledger data such as
manufacturer, voltage level, and months in operation, as well as operational
monitoring data such as power load, temperature, micro-water, and defect data.

2.2.1 Data Cleaning

In the data cleaning stage, we first identify and analyze outliers and missing
values for numerical data. For outliers, we replace them with the mean value; for
missing values, we fill them in. For non-numerical data, we analyze and process
missing and erroneous values, typically choosing to delete them.

2.2.2 Feature Vectorization
Since string-type data cannot be directly used for neural network training, we need
to convert them into vector form. Although label encoding and one-hot encoding
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are mainstream feature vectorization methods, they each have their limitations.
Label encoding typically requires clear size relationships between categories, while
one-hot encoding can lead to a sharp increase in feature dimensions when there are
many categories. Therefore, we use target encoding to vectorize categorical
variables. This method calculates the mean label of the feature category and
replaces the category value with this mean value, thereby avoiding increasing data
dimensions and enhancing the interpretability of the encoding.

2.3 LSTM model

Long Short-Term Memory (LSTM) is an improved type of Recurrent
Neural Networks (RNN) known for its memory capabilities [15][16]. Compared to
traditional RNNs [17], LSTM exhibits excellent performance in handling long time
series problems. Its key lies in the carefully designed gate mechanisms and state
transition methods, which enable more effective capturing and utilization of
information embedded in long-term temporal dependencies, thus avoiding the
vanishing or exploding gradient problem and significantly enhancing the modeling
ability for long sequences of data. The LSTM neuron structure is illustrated in Fig.
2.
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Fig. 2. LSTM neuron structure

The core design idea of LSTM networks is to selectively retain and forget
information through carefully designed gate mechanisms to capture long-term
temporal dependencies. Specifically:

The forget gate determines which information from the previous time step's
cell state needs to be forgotten, and its calculation formula is:

fo=0Ws - [he—q + x¢] + by) )

Where f; is the activation value vector of the forget gate, W, and b, are the
weight matrix and bias, h,_, is the previous time step's hidden state, and x; is the
current input.

The input gate controls the extraction and updating of useful information
from the current input and the memory cell vector:
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_ ip = o(W; - [he—1 + x] + b)) 2
Cy = tanh (W, - [he—q + x¢] + D.) 3
where i, is the activation value vector of the input gate, C, is the new
candidate memory cell vector.
The cell state ¢, is the core of LSTM, responsible for transmitting and
storing long-term state information, and its update rule is:
Ct = f:OC—y +1,OC 4)
Finally, the output gate controls the output hidden state h, based on the cell
state and the current input:
or = oWy - [he—q1 + x¢] + by) )
h: = o,Otanh (C;) (6)
Through the carefully designed gate mechanisms described above, LSTM
can efficiently learn and extract key temporal patterns and trend information from
long-term input sequences, significantly improving its ability to model long-term
dependencies.

2.4 The model based on Grey Wolf Optimization and LSTM-HNA

We have designed a LSTM-HNA (Long Short-Term Memory with Hidden
Layer Neuron Attention) model for defect prediction of power substation
equipment based on the Grey Wolf Optimization Algorithm. This model consists
of two main modules: the hyperparameter optimization module and the main
network module. The framework of the model is shown in Fig. 3.

Hyperparameters

Fig. 3. Model framework

The hyperparameter optimization module utilizes the Grey Wolf
Optimization Algorithm to automatically search for the optimal hyperparameters.
In the main network module, to fully utilize the temporal information in the
historical defect data of the equipment and improve prediction accuracy, we adopt
the LSTM network. Additionally, to enhance model performance and reduce the
impact of redundant features, we introduce a hidden layer neuron attention module.
The workflow of the model is as follows: first, the defect data with temporal
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information is input into the LSTM layer. Then, the hidden state of the LSTM layer
is passed to the hidden layer neuron attention module. Finally, the model prediction
result is output through a linear layer. Combining the memory characteristics of
LSTM and the dynamic attention ability of the attention mechanism, our model can
more effectively model and learn representations of sequence data.

2.5 The proposed Attention model

2.5.1 Attention mechanism

The attention mechanism [18]-[20] is an efficient technique that mimics the
way the human brain processes problems, aiming to simplify the resolution process
of complex issues. When faced with complex problems, humans selectively focus
on different information elements, prioritizing the most crucial information for the
current problem, thereby reducing interference from irrelevant information.
Similarly, by applying the attention mechanism, we can filter the input device
defect features, calculate the contribution of each input feature to the output results,
and effectively reduce the impact of irrelevant features on the model's performance.

2.5.2 Hidden Layer Neuron Attention

The Hidden Layer Neuron Attention (HNA) module is a novel mechanism
proposed by us to enhance the performance of neural network models. By
introducing the attention mechanism between hidden layer neurons, HNA allows
each neuron to dynamically focus on the output of other neurons. This adaptive
weight adjustment enables the model to more effectively learn and utilize the
information of the input data, thereby improving overall performance. The hidden
layer neuron attention module design is depicted in Fig. 4.

Fig. 4. HNA block

The workflow of the HNA module is as follows:

1) Multi-Head Attention Calculation: The hidden layer neurons are first
processed through the multi-head attention mechanism, where the output of each
attention head is concatenated and undergoes a linear transformation.

2) Layer Normalization: Subsequently, layer normalization is applied to the
output from the previous step to stabilize the training process.
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3) Residual Connection: The normalized output is then combined with the
original hidden layer output through a residual connection to facilitate information
flow and gradient propagation.

4) Final Output: Finally, layer normalization is applied again to obtain the
final output of the HNA module.

Through this series of steps, the HNA module not only enhances the model's
learning ability but also improves training stability and convergence speed, thereby
enhancing the model's generalization ability.

2.6 Grey Wolf Optimizer for hyperparameter tuning

2.6.1 Grey Wolf Optimizer

The Grey Wolf Optimizer (GWO) [21]-[22] is an efficient intelligent
optimization algorithm inspired by the hunting behavior of grey wolf packs. There
are many similar swarm intelligence optimization algorithms that have also been
widely applied to the hyperparameter tuning of neural networks [23][24].
Compared to other heuristic search algorithms, GWO has several significant
advantages. Firstly, GWO demonstrates outstanding convergence performance,
with not only fast convergence speed but also greater stability compared to
algorithms like Particle Swarm Optimization. Secondly, GWO requires fewer
parameter settings, making the algorithm easier to understand and implement, and
consequently, the computation speed is faster. These characteristics have led to the
widespread application of GWO in the field of parameter optimization.

In the Grey Wolf Optimizer algorithm, the social hierarchy of the wolf pack
is divided into four levels: a (the leader), B (the deputy), 6 (the scout), and ® (the
ordinary wolf). The optimization process of the algorithm simulates the hunting
strategy of grey wolves, where wolves of each rank play different roles in the search
for solutions. The hierarchical division of the wolf pack is illustrated in Fig. 5.
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Fig. 5. Ranking in a wolf pack

During the search for the optimal solution, guidance is primarily provided
by the a, B, and 6 wolves, while the ® wolf follows. The hunting process of grey
wolves can be divided into three main steps:

1) Encircling the prey: The process of grey wolves surrounding and
gradually approaching the prey can be defined by the following formula:

D=|C-X,(t) = X(®)| (7)
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Xt+1)=X,(t)-A-D (8)

Here, D represents the distance between the grey wolf and the prey, X,, and
X are the position vectors of the prey and the grey wolf respectively. A and C are
coefficient vectors calculated by the following formulas:

A=2a-1r—a 9)

C=2-1 (10)

where a is the convergence factor, r,and r, are random numbers in the
interval [0,1].

2) Hunting: After the wolf pack discovers the prey, the p and & wolves, led
by the a wolf, surround the prey. The mathematical model for individual grey
wolves tracking the prey's position is as follows:

Dy = |C1 - Xo — X|
Ds = |C5 - X5 — X]|

Here, D, Dg, and Ds represent the distances between the o, 3, and 8 wolves
respectively, and the other individuals. X,, Xg , and Xsrepresent the current
positions of the a, B, and & wolves respectively. C;, C,, and C5 are random vectors.
X4, X,, and X5 define the step length and direction towards a, 3, and d respectively,
and the final updated position of ® is defined as:

X1 =Xa— A1 (Do)

X, =Xp— Ay - (Dp) (12)
X3 = X5 — A3z - (Ds)
X(t +1) = 2ttt (13)

3
3) Attacking the prey: When the prey stops moving, the grey wolves

complete the hunting process by attacking to finally lock onto the optimal solution.

2.6.2 Hyperparameter Tuning

Hyperparameters play a crucial role in training neural network models, as
they directly determine the performance and effectiveness of the training process.
These hyperparameters include learning rate, number of neurons, number of
epochs, batch size, etc., which are usually manually set based on experience,
making it difficult to find an optimal set of hyperparameters.

To address this issue, we propose using the Grey Wolf Optimization
Algorithm to automatically optimize the hyperparameters of neural network
models. The main implementation steps are as follows:

Step 1. First, we set the learning rate, number of hidden layer neurons,
number of epochs, and batch size as the optimization objectives of the population.
Then, initialize the grey wolf population with N individuals and set the number of
iterations as T.
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Step 2: We use the loss value of model training as the fitness value of the
population, determine the top three wolves with the best fitness values, and save
the current optimal values.

Step 3: Calculate and update the parameters a, A, C as shown in equation
(9) and equation (10).

Step 4: Calculate the positions of the grey wolves according to the position
update formula (12) and formula (13).

Step 5: Repeat steps 2 to 4 until T iterations are completed. After each
iteration, we compare the optimal values obtained to find a globally optimal set of
hyperparameters.

Through this method, we can automatically and effectively find an optimal
set of hyperparameters, thereby improving the training effectiveness and
performance of neural network models. This approach has broad application
prospects and is of great significance for the training of neural network models.

2.7 Training Strategy

For the model proposed by us, this study designed an innovative joint
training strategy, which integrates the Grey Wolf Optimization Algorithm (GWO),
Long Short-Term Memory (LSTM), and the attention mechanism of hidden layer
neurons. By integrating the GWO algorithm into the main network, we can
simultaneously search for the optimal hyperparameter combination during the
model training process. As a result, after training, we not only obtain a model
optimized for performance but also a set of precisely tuned optimal
hyperparameters. The flowchart for the joint training strategy is shown in Fig. 6.
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Fig. 6. Joint training flowchart

The specific process of the joint training strategy is as follows:
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1) Initialization: Set the size of the grey wolf population and assign a set of
hyperparameters to each grey wolf.

2) Model Training: Train the model using the hyperparameter combinations
of each grey wolf individual and calculate the corresponding loss value.

3) Evaluation and Saving: Based on the loss value, identify and record the
hyperparameter combinations of the top three grey wolves with the smallest losses.

4) Parameter Update: Update the hyperparameters of the grey wolf
individuals using the GWO algorithm.

5) Iterative Optimization: Repeat the above process until the predetermined
number of iterations is completed. Finally, select the hyperparameter combination
with the smallest loss value and obtain the corresponding optimal model.

Through the above steps, our joint training strategy not only improves the
training efficiency of the model but also ensures the optimization of
hyperparameters. See the attached diagram for a detailed flowchart.

3 Experiment and Result Analysis

3.1 Experimental Data and Environment Setup

The data was collected from a substation in Anhui, primarily including three
types: ledger data, online monitoring data, and defect data. The oil chromatography
data records the monitoring values of various gases, such as hydrogen, methane,
ethylene, etc., with a total of 19 features and 1,000 data sets. The specific features
are shown in Table 1.

Tabell
Feature variable statistics
Variable Name Variable Type Data Source
Device ID String Ledger Data
Manufacturer String Ledger Data
Voltage Level String Ledger Data
Months in Operation Integer Ledger Data
Power Load Float Monitoring Data
Core Grounding Current Float Monitoring Data
Top Oil Temperature Float Monitoring Data
Oil Chromatography Float Monitoring Data
Micro Water Float Monitoring Data
Temperature Float Monitoring Data
Weather String Monitoring Data
Month of Defect Occurrence Integer Defect Data
Defect Occurrence String Defect Data

The experimental environment is a Windows 10 operating system, with an
NVIDIA GeForce MX150 GPU. The deep learning framework used is Pytorch, and
the code is run in PyCharm. The data is split into training and testing sets in a 7:3
ratio for comparative experiments. The target variable is " Defect Occurrence ",



Defect prediction method for power transmission equipment based on GWO algorithm and... 135

with values of 0 (no defect) and 1 (defect). The experiment uses the Adam optimizer
with an initial learning rate of 0.001, and the loss function is the cross-entropy loss
function.

3.2 Evaluation Metrics

In binary classification problems, each instance is classified as either
positive or negative, resulting in four possible classification outcomes: True
Positive (TP), False Negative (FN), False Positive (FP), and True Negative (TN).
Specifically: True Positive (TP): Instances that are actually positive and correctly
classified as positive. False Negative (FN): Instances that are actually positive but
incorrectly classified as negative. False Positive (FP): Instances that are actually
negative but incorrectly classified as positive. True Negative (TN): Instances that
are actually negative and correctly classified as negative.

These classification outcomes form the basis for evaluating the performance
of classification algorithms, with commonly used evaluation metrics including
accuracy, recall, F1 score, and others. The specific evaluation metrics and their

calculation methods are defined as follows:
TP+TN

Accuracy = ——— (14)
TP;PTN+FP+FN
Precision = (15)
T PYFP
Recall = (16)
TP+FN
Precision-Recall
Precision-Recall

(1) ROC (Receiver Operating Characteristic) Curve

The ROC curve is an important tool for evaluating the performance of
classification models. It depicts the model's ability to identify signals by plotting
the True Positive Rate (TPR) against the False Positive Rate (FPR) at different
thresholds. Each point on the ROC curve represents the model's response to signal
stimuli at a specific threshold. Specifically horizontal axis (FPR) represents the rate
at which the model incorrectly classifies negative instances as positive, also known
as 1-specificity. vertical axis (TPR) represents the rate at which the model correctly
identifies positive instances, also known as sensitivity. When the ROC curve is
closer to the upper-left corner (0,1), the model's ability to identify signals is
stronger, indicating better discrimination between positive and negative classes.

(2) AUC (Area Under the Curve)

The AUC value is the area under the ROC curve, providing a quantitative
measure of the model's classification ability. The AUC value ranges from 0 to 1,
where a higher AUC value closer to 1 indicates stronger classification ability. It
signifies the model's higher capability to correctly differentiate between positive
and negative classes across various thresholds.
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3.3 Comparative Experiments

To validate the effectiveness of the GWO-LSTM-HNA network model in
predicting defects in power substation equipment, extensive comparative
experiments were conducted on the dataset in this study. The model was compared
with various mainstream classification models, including Support Vector Machine
(SVM), Decision Tree (DT), Random Forest (RF), LightGBM, and Multilayer
Perceptron (MLP). Throughout the experiments, we meticulously recorded the
performance of each model on four key performance metrics: precision, recall, F1-
score, and accuracy. The experimental results are presented in Table .

Table 2
Comparison experiments with traditional methods
Method Precision Recall F1-score Accuracy
SVM 73.74 75.16 78.98 85.15
DecisionTree 79.35 76.49 77.80 89.23
RandomForest 93.16 7352 79.34 91.83
LightGBM 94.35 82.77 88.12 94.88
MLP 79.04 65.27 70.58 89.46

GWO-LSTM-HNA  97.71 91.65 94.38 97.37

As shown in Table , the GWO-LSTM-HNA model achieved an accuracy of
97.37%, which is 12.2% higher than the lowest-performing SVM model and 2.5%
higher than the second-best performing LightGBM model. In terms of precision,
the model outperformed the second-best model by 3.4%, demonstrating better
performance in predicting positive instances. For recall, our model showed an
improvement of 8.9% compared to the second-best model, indicating its stronger
ability to identify positive instances. F1 score, as a comprehensive metric
considering precision and recall, also exhibited a 6.3% improvement in our model,
which comprehensively reflects the superiority of the model.

Furthermore, to visually demonstrate the superior classification ability of
our model, we graphically compared the performance of the GWO-LSTM-HNA
model with traditional classification models using ROC curves. Fig. 7(left):
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It illustrates the ROC curves of the traditional classification methods, clearly
indicating the significant advantages of our proposed model in classification
prediction capability. Additionally, we utilized AUC values to plot Fig.7(right),
providing a more intuitive display of the classification abilities of each model.

To further validate the effectiveness of our proposed GWO-LSTM-HNA
network model, this study conducted a comparative analysis with relevant research
results published in the field of power equipment defect prediction in recent years.
Specifically, we compared our model with the SMOTE-XGBoost method [6] and
the LSSVM-BNDT [10] method. The former was proposed by Wang et al. in 2021,
which is based on SMOTE-XGBoost for transformer defect prediction, while the
latter was proposed by Jia et al. in the same year, based on least squares support
vector machine Bayesian network decision tree for defect diagnosis.

Table 3
Comparison experiments with relevant methods
Method Precision Recall F1-score Accuracy
SMOTE-XGBoost  94.08 88.52 83.91 93.08
LSSVM-BNDT 94.77 84.07 80.09 91.96
GWO-LSTM-HNA 97.39 91.65 94.38 97.37

In the experiment, we recorded the performance of these methods and
conducted a comprehensive evaluation using consistent evaluation metrics. As
shown in Table , our model achieved an improvement of 4.29% and 5.41% in
accuracy compared to the SMOTE-XGBoost and LSSVM-BNDT methods,
respectively. In other key performance metrics precision, recall, and F1 score our
model also demonstrated significant advantages. Particularly, in terms of the F1
score, compared to the SMOTE-XGBoost method, we achieved a 10.47%
improvement, highlighting the significant enhancement of our model in overall
performance.

Furthermore, to visually demonstrate the classification prediction capability
of our model, we also plotted ROC curves and utilized AUC values for
quantification (Fig. 8), which clearly showcase the superiority of our method.
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3.4 Ablation Experiments

To validate the superiority of our proposed GWO-LSTM-HNA model and
identify the key contributions of each component in the model, this study conducted
further ablation experiments based on comparative experiments. By gradually
removing the key components of the model, we evaluated the impact of these
components on the overall performance of the model. Specifically, experiments
were conducted to remove the Grey Wolf Optimization (GWQO) module and the
Hidden Layer Neuron Attention (HNA) module.

Table 4
Ablation experiment
Method Precision Recall F1-score Accuracy
LSTM 96.36 86.53 90.62 95.80
GWO-LSTM 96.37 87.18 91.46 96.26
LSTM-HNA 95.92 91.20 93.37 96.86

GWO-LSTM-HNA  97.39 91.65 94.38 97.37

The experimental results summarized in Table show the changes in various
metrics. The results indicate that the GWO module, by optimizing hyperparameters
adjustments, improved the accuracy of the model by 0.5%. Furthermore, the HNA
module, by addressing the issue of redundant features, further increased the model's
accuracy by 1.1%. These findings confirm the effectiveness of both modules, with
the neuron attention mechanism module making a significant contribution to
performance improvement. When these two modules were combined with the
LSTM network, the model achieved the highest accuracy, improving by 1.6%
compared to the original LSTM network. To visually demonstrate the results of the
ablation experiments and to substantiate the superiority of the proposed method, we
plotted the ROC curves and AUC comparison chart for the ablation experiments
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Fig. 9. left: ROC curve for ablation experiment. right: Comparison of AUC for ablation
experiment.

From the chart, it is evident that the performance of the LSTM model significantly
improved after integrating the GWO and HNA modules, with the GWO-LSTM-
HNA model exhibiting the most outstanding performance, surpassing the other
three models.
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4. Conclusion

Defect prediction in power equipment aims to utilize historical defect data to
forecast potential issues in the future. Although existing prediction methods, such as
transformer defect prediction based on SMOTE-XGBoost and LSTM-based
transformer fault prediction, have achieved some success, they still have
shortcomings. Firstly, these methods fail to fully consider the influence of temporal
relationships on predictions. Secondly, even when considering temporal
relationships, they do not effectively handle features, leading to an inability to reduce
interference from non-key features, thus impacting the efficiency and prediction
accuracy of the models. Additionally, the adjustment of hyperparameters plays a
crucial role in determining model performance, but existing methods do not provide
effective tuning solutions.

In view of these issues, this study proposes a transformer defect prediction
method that combines the Grey Wolf Optimizer (GWO) with LSTM-HNA. This
method adopts LSTM networks to learn temporal features from historical data and
innovatively designs a hidden layer neural attention mechanism (HNA) to enable the
model to focus more on important features. Simultaneously, it automatically searches
for the optimal combination of hyperparameters using the Grey Wolf Optimizer
algorithm. Ultimately, we use a joint training strategy to train the model and validate
the effectiveness and superiority of the proposed method through comparative
experiments and ablation studies.
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