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FIXED POINTS RESULTS OF DOMINATED MAPPINGS ON A

CLOSED BALL IN ORDERED PARTIAL METRIC SPACES

WITHOUT CONTINUITY

Muhammad Arshad1, Akbar Azam1, Mujahid Abbas2, Abdullah Shoaib3

Fixed point results for mappings satisfying locally contractive condi-

tions on a closed ball in a complete ordered partial metric space have been es-

tablished without the assumption of continuity. Instead of monotone mapping,

the notion of dominated mappings of Economics, Finance, Trade and Industry

is also been applied to approximate the unique solution of non linear functional

equations. We have used weaker contractive conditions and weaker restrictions to

obtain unique fixed points. An example is given which shows that how this result

can be used when the corresponding results can not. Our results improve some

well-known,primary and conventional results.
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1. Introduction

In most of the fixed point results, contractive condition holds on a whole

space X. From the application point of view the situation is not yet completely

satisfactory because it frequently happens that a mapping T is a contraction not on

the entire space X but merely on a subset Y of X. However, if Y is closed then by

imposing a subtle restriction, one can establish the existence of a fixed point of T.

Arshad et. al. [3] proved some results concerning the existence of fixed points of a

mapping satisfying a contractive conditions on closed ball in a complete dislocated

metric space. Other results on closed ball can be seen in [5, 4, 7]. These results are

very useful in the sense that they require the contraction of the mapping only on

the closed ball instead on the whole space.
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Ran and Reurings [10] proved an analogue of Banach’s fixed point theorem in

metric space endowed with a partial order and gave applications to matrix equations.

Subsequently, Nieto et. al. [9] extended the result in [10] for nondecreasing map-

pings and applied it to obtain a unique solution for a 1st order ordinary differential

equation with periodic boundary conditions.

Partial metric spaces have applications in theoretical computer science (see

[8]). [2] used the idea of partial metric space and partial order and gave some fixed

point theorems for contractive condition on ordered partial metric spaces. Consistent

with [2] and [8], the following definitions and results will be needed in the sequel.

Definition 1.1. Let p : X ×X → R+, where X is a nonempty set, is said to be a

partial metric on X if for any x, y, z ∈ X:

(P1) p(x, x) = p(y, y) = p(x, y) if and only if x = y,

(P2) p(x, x) ≤ p(x, y),

(P3) p(x, y) = p(y, x),

(P4) p(x, z) ≤ p(x, y) + p(y, z)− p(y, y).

The pair (X, p) is then called a partial metric space. Each partial metric p

on X induces a T0 topology p on X which has as a base the family of open balls

{Bp(x, r) : x ∈ X, r > 0}, where Bp(x, r) = {y ∈ X : p(x, y) < p(x, x) + r} for all

x ∈ X and r > 0.

It is clear that if p(x, y) = 0, then from P1 and P2, x = y. But if x = y,

p(x, y) may not be 0. A basic example of a partial metric space is the pair (R+, p) ,

where p(x, y) = max{x, y} for all x, y ∈ R+. If (X, p) is a partial metric space, then

ps(x, y) = 2p(x, y)− p(x, x)− p(y, y), x, y ∈ X, is a metric on X.

Lemma 1.1. [8] Let (X, p) be a partial metric space.

(a) {xn} is a Cauchy sequence in (X, p) if and only if it is a Cauchy sequence in

the metric space (X, ps).

(b) A partial metric space (X, p) is complete if and only if the metric space

(X, ps) is complete. Furthermore, lim
n→∞

ps(xn, z) = 0 if and only if p(z, z) =

lim
n→∞

p(xn, z) = lim
n,m→∞

p(xn, xm).

Definition 1.2. Let X be a nonempty set. Then (X,�, p) is called an ordered

partial metric space if: (i) p is a partial metric on X and (ii) � is a partial order on

X.

Definition 1.3. [2] Let (X,�) be a partial ordered set. Then x, y ∈ X are called

comparable if x � y or y � x holds.

2. Fixed Points of Banach Mappings

Theorem 2.1. [6] Let (X, d) be a complete metric space, S : X → X be a mapping,

r > 0 and x0 be an arbitrary point in X. Suppose there exists k ∈ [0, 1) with

d(Sx, Sy) ≤ kd(x, y), for all x, y ∈ Y = B(x0, r)



Fixed points results of dominated mappings on a closed ball in ordered partial metric spaces without continuity125

and d(x0, Sx0) < (1 − k)r then there exists a unique point x∗ in B(x0, r) such that

x∗ = Sx∗.

In the proof [6], the author considers an iterative sequence xn = Sxn−1, n ≥
0 and exploits the contraction condition on the points xm’s to see

d(xm, xn) ≤ km

1− k
d(x0, x1),

by using techniques of [6, Theorem 5.1.2] before proving that xm’s lie in the closed

ball.

Following theorem not only extend above theorem to ordered partial metric

spaces but also rectifies this mistake specially for those researchers who are utilizing

the style of the proof of [6, Theorem 5.1.4] to study more general results.

Theorem 2.2. Let (X,�, p) be a complete ordered partial metric space, S : X → X

be a dominated map and x0 be an arbitrary point in X. Suppose there exists k ∈ [0, 1)

with

p(Sx, Sy) ≤ kp(x, y), (2.1)

for all comparable elements x, y in B(x0, r) and

p(x0, Sx0) ≤ (1− k)[r + p(x0, x0)]. (2.2)

If, for a nonincreasing sequence {xn}in B(x0, r), {xn} → u implies that u � xn,

then there exists a point x∗ in B(x0, r) such that x∗ = Sx∗. Further p(x∗, x∗) = 0.

Proof. Consider a Picard sequence xn+1 = Sxn with initial guess x0. As xn+1 =

Sxn � xn for all n ∈ {0} ∪N. Now by inequality (2.2)

p(x0, Sx0) ≤ r + p(x0, x0).

⇒ x1 ∈ B(x0, r). It follows that

p(x1, x2) = p(Sx0, Sx1) ≤ kp(x0, x1) ≤ k(1− k)r + k(1− k)p(x0, x0).

Now,

p(x0, x2) ≤ p(x0, x1) + p(x1, x2)− p(x1, x1)
≤ (1− k)r + (1− k)p(x0, x0) + k(1− k)r + k(1− k)p(x0, x0)

≤ r + p(x0, x0)

⇒ x2 ∈ B(x0, r) and hence all points of a sequence {xn} are in the closed ball

B(x0, r). Now by inequality (2.1), we have

p(xn, xn) ≤ kp(xn−1, xn−1) ≤ · · · ≤ knp(x0, x0) −→ 0 as n→∞ (2.3)

Also

p(xn, xn+1) ≤ knp(x0, x1). (2.4)

Therefore by inequality (2.4) and by using definition of ps,

ps(xn, xn+1) ≤ 2knp(x0, x1). (2.5)
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It follows that

ps(xn, xn+i) ≤ ps(xn, xn+1) + ...+ ps(xn+i−1, xn+i)

≤ 2knp(x0, x1) + ...+ 2kn+i−1p(x0, x1), by (2.5)

ps(xn, xn+i) ≤
2kn(1− ki)

1− k
p(x0, x1) −→ 0 as n→∞.

Notice that the sequence {xn} is a Cauchy sequence in (B(x0, r), ps). By Lemma

1.1, {xn} is a Cauchy sequence in (B(x0, r), p). Therefore there exists a point x∗ ∈
B(x0, r) with lim

n→∞
ps(xn, x

∗) = 0. Then by Lemma 1.1 and inequality (2.3), we have

p(x∗, x∗) = lim
n→∞

p(xn, x
∗) = lim

n→∞
p(xn, xn) = 0. (2.6)

Moreover by assumptions x∗ � xn � xn−1 , therefore

p(x∗, Sx∗) ≤ p(x∗, xn) + p(xn, Sx
∗)− p(xn, xn)

≤ p(x∗, xn) + kp(xn−1, x
∗).

On taking limit as n→∞ and by inequality (2.6), we obtain

p(x∗, Sx∗) ≤ 0

and hence x∗ = Sx∗. �

In the above result the fixed point of S may not be unique, whereas with some

more restriction we can have unique fixed point of S which is proved now.

Theorem 2.3. Let (X,�, p) be a complete ordered partial metric space, and S :

X → X be a mapping with all conditions of Theorem 2.2. Also if for any two points

x, y in B(x0, r) there exists a point z ∈ B(x0, r) such that z � x and z � y that

is every pair of elements in B(x0, r) has a lower bound, then there exists a unique

point x∗ in B(x0, r) such that x∗ = Sx∗. Also p(x∗, x∗) = 0.

Proof. We prove uniqueness only. Let y be another point in B(x0, r) such that

y = Sy. If x∗ and y are comparable then

p(x∗, y) = p(Sx∗, Sy) ≤ kp(x∗, y).

This shows that x∗ = y. Now if x∗ and y are not comparable then there exists

a point z ∈ B(x0, r) which is lower bound of both x∗ and y that is z � x∗ and

z � y. Moreover by assumptions z � x∗ � xn... � x0. Now we will prove that Snz ∈
B(x0, r).

p(x0, Sz) ≤ p(x0, x1) + p(x1, Sz)− p(x1, x1)
≤ (1− k)[r + p(x0, x0)] + kp(x0, z),

≤ (1− k)[r + p(x0, x0)] + k[r + p(x0, x0)]

= r + p(x0, x0).
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It follows that Sz ∈ B(x0, r). Now

p(x0, S
2z) ≤ p(x0, x1) + p(x1, S

2z)− p(x1, x1)
≤ (1− k)[r + p(x0, x0)] + kp(x0, Sz),

It follows that S2z ∈ B(x0, r). Hence Snz ∈ B(x0, r) for all n ∈ N. Now as S is

dominated, it follows that Sn−1z � Sn−2z � ... � z � x∗ and Sn−1z � y for all

n ∈ N. Which further implies Sn−1z � Snx∗ and Sn−1z � Sny for all n ∈ N as

Snx∗ = x∗ and Sny = y for all n ∈ N.

p(x∗, y) = p(Snx∗, Sny)

≤ p(Snx∗, Sn−1z) + p(Sn−1z, Sny)− p(Sn−1z, Sn−1z)

≤ kp(Sn−1x∗, Sn−2z) + kp(Sn−2z, Sn−1y)

...

≤ kn−2p(x∗, Sz) + kn−2p(Sz, y) −→ 0asn→∞

Hence x∗ = y. �

3. Fixed Points of Kannan Mappings

In 1969 Kannan established the following fixed point theorem:

Theorem 3.1. Let (X, d) be a complete metric space. If a mapping S : X −→ X

satisfies,

d(Sx, Sy) 6 α[d(x, Sx) + d(y, Sy)],

for all α ∈ [0, 12). Then S has a unique fixed point in X.

Theorem 3.2. Let (X,�, p) be a complete ordered partial metric space, S : X → X

be a dominated map and x0 be an arbitrary point in X. Suppose there exists k ∈ [0, 12)

with

p(Sx, Sy) ≤ k[p(x, Sx) + p(y, Sy)], (3.1)

for all comparable elements x, y in B(x0, r) and

p(x0, Sx0) ≤ (1− θ)[r + p(x0, x0)], (3.2)

where θ = k
1−k . If for a nonincreasing sequence {xn} → u implies that u � xn, then

there exists a point x∗ in B(x0, r) such that x∗ = Sx∗ and p(x∗, x∗) = 0.

Proof. Consider a Picard sequence xn+1 = Sxn with initial guess x0. Then xn+1 =

Sxn � xn for all n ∈ {0} ∪N and by using inequality (3.2), we have

p(x0, Sx0) ≤ r + p(x0, x0).

Therefore, x1 ∈ B(x0, r). Thus, by using inequality (3.1), we have

p(x1, x2) = p(Sx0, Sx1) ≤ k[p(x0, x1) + p(x1, x2)]

≤ θp(x0, x1) ≤ θ[r + p(x0, x0)]
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Now

p(x0, x2) ≤ p(x0, x1) + p(x1, x2)− p(x1, x1)
≤ (1− θ)[r + p(x0, x0)] + θ[r + p(x0, x0)]

It implies that x2 ∈ B(x0, r) and hence all points of a sequence {xn} are in the

closed ball B(x0, r). Now by using inequality (3.1), we have

p(Sxn, Sxn+1) ≤ k[p(xn, Sxn) + p(xn+1, Sxn+1)]

≤ k

1− k
p(xn, xn+1) = θp(xn, xn+1)

p(xn+1, xn+2) ≤ θ2p(xn−1, xn) ≤ ... ≤ θn+1p(x0, x1).

Again by using inequality (3.1), we have

p(xn, xn) ≤ k[p(xn−1, xn) + p(xn−1, xn)]

which implies that

p(xn, xn) ≤ θn−1p(x0, x1) −→ 0 as n→∞. (3.3)

And by using definition of ps,

ps(xn+1, xn+2) ≤ 2p(xn+1, xn+2) ≤ 2θn+1p(x0, x1), (3.4)

Now, we have

ps(xn, xn+i) ≤ ps(xn, xn+1) + ...+ ps(xn+i−1, xn+i),

by using inequality (3.4), we have

ps(xn, xn+i) ≤ 2θnp(x0, x1) + ...+ 2θn+i−1p(x0, x1)

≤ 2θnp(x0, x1)[1 + ...+ θi−2 + θi−1]

≤ 2θn(1− θi)
1− θ

p(x0, x1) −→ 0 as n→∞.

It follows that the sequence {xn} is a Cauchy sequence in (B(x0, r), ps). By Lemma

1.2, {xn} is a Cauchy sequence in (B(x0, r), p). Therefore there exists a point x∗ ∈
B(x0, r) with lim

n→∞
ps(xn, x

∗) = 0. Then by using Lemma 1.1 and inequality (3.3),

we have

p(x∗, x∗) = lim
n→∞

p(xn, x
∗) = lim

n→∞
p(xn, xn) = 0. (3.5)

Moreover, by assumptions x∗ � xn � xn−1 , therefore

p(x∗, Sx∗) ≤ p(x∗, xn) + p(xn, Sx
∗)− p(xn, xn)

≤ p(x∗, xn) + k[p(xn−1, Sxn−1) + p(x∗, Sx∗)]

(1− k)p(x∗, Sx∗) ≤ p(x∗, xn) + kp(xn−1, xn).

On taking limit as n→∞ and using inequality (3.5) we obtain

(1− k)p(x∗, Sx∗) ≤ 0

and x∗ = Sx∗. �
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Theorem 3.3. Let (X,�, p) be a complete ordered partial metric space, and S :

X → X be a mapping with all conditions of Theorem (3.2). Also for every pair of

elements x, y in B(x0, r) there exists a point z ∈ B(x0, r)such that z � x and z � y
and

p(x0, Sx0) + p(z, Sz) ≤ p(x0, z) + p(Sx0, Sz), (3.6)

then there exists a unique point x∗ in B(x0, r) such that x∗ = Sx∗ and p(x∗, x∗) = 0.

Proof. It is sufficient to prove x∗ is unique. Let y be another point in B(x0, r) such

that y = Sy. If x∗ and y are comparable then

p(x∗, y) ≤ k[p(x∗, x∗) + p(y, y)] = kp(y, y) ≤ p(y, y).

Using the fact that p(y, y) ≤ p(x∗, y), we have x∗ = y. Now if x∗ and y are not

comparable then there exists a point z ∈ B(x0, r) which is a lower bound of both x∗

and y. Now we will prove that Snz ∈ B(x0, r). Moreover by assumptions z � x∗ �
xn... � x0. Now by using inequality (3.1) , we have

p(Sx0, Sz) ≤ k[p(x0, x1) + p(z, Sz)]

≤ k[p(x0, z) + p(x1, Sz)], by using (3.6)

which further implies that

p(x1, Sz) ≤ θp(x0, z). (3.7)

Now,

p(x0, Sz) ≤ p(x0, x1) + p(x1, Sz)− p(x1, x1)
≤ p(x0, x1) + θp(x0, z), by using (3.7)

p(x0, Sz) ≤ (1− θ)[r + p(x0, x0)] + θ[r + p(x0, x0)]

= r + p(x0, x0).

It follows that Sz ∈ B(x0, r). Now,

p(Sz, S2z) ≤ k[p(z, Sz) + p(Sz, S2z)]

which implies that

p(Sz, S2z) ≤ θp(z, Sz). (3.8)

Also by using inequality (3.1), we have,

p(x2, S
2z) ≤ k[p(x1, x2) + p(Sz, S2z)]

≤ k[θp(x0, x1) + θp(z, Sz)], by using (3.8)

p(x2, S
2z) ≤ kθ[p(x0, z) + p(x1, Sz)], by using (3.6)

p(x2, S
2z) ≤ kθ[p(x0, z) + θp(x0, z)], by using (3.7)

p(x2, S
2z) ≤ k(

k

1− k
)(

1

1− k
)p(x0, z)

which imples that

p(x2, S
2z) ≤ θ2p(x0, z). (3.9)
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Now,

p(x0, S
2z) ≤ p(x0, x1) + p(x1, x2) + p(x2, S

2z)− p(x1, x1)− p(x2, x2)
≤ p(x0, x1) + θp(x0, x1) + θ2p(x0, z), by using (3.9)

p(x0, S
2z) ≤ (1− θ)[r + p(x0, x0)][1 + θ] + θ2[r + p(x0, x0)]

= r + p(x0, x0).

It follows that S2z ∈ B(x0, r). Hence Snz ∈ B(x0, r). As z � x∗ and z � y then

Snz � x∗ and Snz � y for all n ∈ {0} ∪N. As Sn+1z � Snz for all n ∈ {0} ∪N , we

have

p(Sn−1z, Snz) ≤ k[p(Sn−2z, Sn−1z) + p(Sn−1z, Snz)]

≤ θp(Sn−2z, Sn−1z) ≤ ...

p(Sn−1z, Snz) ≤ θn−1p(z, Sz) −→ 0 as n→∞. (3.10)

Now,

p(x∗, y) = p(Sx∗, Sy)

≤ p(Sx∗, Snz) + p(Snz, Sy)− p(Snz, Snz)

≤ k[p(x∗, Sx∗) + p(Sn−1z, Snz)] + k[p(Sn−1z, Snz) + p(y, Sy)]

≤ kp(x∗, x∗) + 2kp(Sn−1z, Snz) + kp(y, y).

Hence by using inequality (3.10), p(x∗, y) ≤ p(y, y) as n → ∞. A contradiction, so

x∗ = y. �

Theorem 3.4. Let (X,�, p) be a complete ordered partial metric space, S : X → X

be a dominated map and x0 be an arbitrary point in X. Suppose there exists k ∈ [0, 12)

with

p(Sx, Sy) ≤ k[p(x, Sx) + p(y, Sy)],

for all comparable elements x, y in X. If, for a nonincreasing sequence {xn}in X,

{xn} → u implies that u � xn and every pair of elements in X has a lower bound,

then there exists a unique point x∗ in X such that x∗ = Sx∗ and p(x∗, x∗) = 0.

Theorem 3.5. Let (X, p) be a complete partial metric space, S : X → X be a map

and x0 be an arbitrary point in X. Suppose there exists k ∈ [0, 12) with

p(Sx, Sy) ≤ k[p(x, Sx) + p(y, Sy)],

for all elements x, y in B(x0, r) and

p(x0, Sx0) ≤ (1− θ)[r + p(x0, x0)],

where θ = k
1−k . Then there exists a unique point x∗ in B(x0, r) such that x∗ = Sx∗

and p(x∗, x∗) = 0
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Example 3.1. Let X = R+ ∪ {0} and B(x0, r) = [0, 1] be endowed with the usual

ordering and let p be the complete partial metric on X defined by p(x, y) = max{x, y}
for all x, y ∈ X. Let S : X → X be defined by

Sx =


3x

70
if x ∈ [0, 12),

2x

70
if x ∈ [12 , 1]

x− 1
2 if x ∈ (1,∞)

Clearly, Sx ≤ x for all x ∈ X that is, S is dominating map. For all comparable

elements with k = 1
5 ∈ [0, 12), x0 = 1

2 , r = 1
2 , p(x0, x0) = max{12 ,

1
2} = 1

2 , θ = k
1−k = 1

4

(1− θ)[r + p(x0, x0)] = (1− 1

4
)[

1

2
+

1

2
] =

3

4

p(x0, Sx0) = p(
1

2
, S

1

2
) = p(

1

2
,

1

70
) = max{1

2
,

1

70
} =

1

2
<

3

4

Also if x, y ∈ (1,∞), p(Sx, Sy) = max{x− 1

2
, y − 1

2
}

≥ 1

5
[x+ y]

=
1

5
[max{x, x− 1

2
}+ max{y, y − 1

2
}]

p(Sx, Sy) ≥ k[p(x, Sx) + p(y, Sy)].

So the contractive condition does not hold on (1,∞). For the closed ball [0, 1] the

following cases arrises:

(i) If x, y ∈ [0, 12), we have

p(Sx, Sy) = max{3x

70
,
3y

70
} =

3

70
max{x, y}

≤ 1

5
[x+ y] =

1

5
[max{x, 3x

70
}+ max{y, 3y

70
}]

= k[p(x, Sx) + p(y, Sy)].

(ii) For x ∈ [0, 12), y ∈ [12 , 1], we have

p(Sx, Sy) = max{3x

70
,
2y

70
} =

1

70
max{3x, 2y}

≤ 1

5
[x+ y] =

1

5
[max{x, 3x

70
}+ max{y, 2y

70
}]

= k[p(x, Sx) + p(y, Sy)].

(iii) When y ∈ [0, 12), x ∈ [12 , 1], we have

p(Sx, Sy) = max{2x

70
,
3y

70
} =

1

70
max{2x, 3y}

≤ 1

5
[x+ y] =

1

5
[max{x, 2x

70
}+ max{y, 3y

70
}]

= k[p(x, Sx) + p(y, Sy)].
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(iv) And if x, y ∈ [12 , 1], we obtain

p(Sx, Sy) = max{2x

70
,
2y

70
} =

2

70
max{x, y}

≤ 1

5
[x+ y] =

1

5
[max{x, 2x

70
}+ max{y, 2y

70
}]

= k[p(x, Sx) + p(y, Sy)].

Therefore, all the conditions of above theorem satisfied to obtain unique fixed point

0 of S.

4. Fixed Points of Chatterjea Mappings

Chatterjea established the following fixed point theorem:

Theorem 4.1. Let (X, d) a complete metric space X. Let S : X −→ X be a mapping

satisfying contractive condition

d(Sx, Sy) 6 α[d(x, Sy) + d(y, Sx)],

for all α ∈ [0, 12). Then S has a fixed point.

Our extension of this theorem is as follows:

Theorem 4.2. Let (X,�, p) be a complete ordered partial metric space, S : X → X

be a dominated map and x0 be an arbitrary point in X. Suppose there exists k ∈ [0, 12)

with

p(Sx, Sy) ≤ k[p(x, Sy) + p(y, Sx)], (4.1)

for all comparable elements x, y in B(x0, r) and

p(x0, Sx0) ≤ (1− θ)[r + p(x0, x0)], (4.2)

where θ = k
1−k . If, for a nonincreasing sequence {xn}in B(x0, r), {xn} → u implies

that u � xn, then there exists a point x∗ in B(x0, r) such that x∗ = Sx∗ and p(x∗, x∗) =

0.

Proof. Choose x0 ∈ X and consider a sequence of point such that

xn+1 = Sxn, n ≥ 0

Then, xn+1 � xn for all n ∈ {0} ∪N and by using inequality (4.2), we have

p(x0, Sx0) ≤ r + p(x0, x0).

This implies that x1 ∈ B(x0, r), using inequality (4.1), we have

p(Sx0, Sx1) ≤ k[p(x0, Sx1) + p(x1, Sx0)]

≤ k[p(x0, x1) + p(x1, x2) + p(x1, x1)− p(x1, x1)]
≤ k(1− θ)r + k(1− θ)p(x0, x0) + kp(x1, x2)

≤ θ(1− θ)r + θ(1− θ)p(x0, x0).
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It implies that

p(x0, x2) ≤ p(x0, x1) + p(x1, x2)− p(x1, x1)
≤ (1− θ)r + (1− θ)p(x0, x0) + θ(1− θ)r + θ(1− θ)p(x0, x0)
≤ r + p(x0, x0).

That is x2 ∈ B(x0, r). Hence all points of a sequence {xn} are in the closed ball

B(x0, r), Now, by inequality (4.1), we have

p(xn+1, xn+2) = p(Sxn, Sxn+1)

≤ k[p(xn, xn+1) + p(xn+1, xn+2)],

which further implies,

p(xn+1, xn+2) ≤ θp(xn, xn+1)... ≤ θn+1p(x0, x1)

Moreover,

p(xn, xn) ≤ k[p(xn−1, xn) + p(xn−1, xn)]

≤ 2kθn−1p(x0, x1) −→ 0 as n→∞

Following similar arguments of Theorem (3.2), it can easily be seen that sequence

{xn} is a Cauchy sequence in B(x0, r) and there exists a point x∗ ∈ B(x0, r) with

p(x∗, x∗) = lim
n→∞

p(xn, x
∗) = lim

n→∞
p(xn, xn) = 0.

Moreover by assumptions x∗ � xn � xn−1 , therefore

p(x∗, Sx∗) ≤ p(x∗, xn) + p(xn, Sx
∗)− p(xn, xn)

≤ p(x∗, xn) + p(Sxn−1, Sx
∗)− p(xn, xn)

≤ p(x∗, xn) + k[p(xn−1, Sx
∗) + p(x∗, xn)].

On taking limit as n→∞, we have

p(x∗, Sx∗) ≤ kp(x∗, Sx∗)

and therefore x∗ = Sx∗. �

Remark 4.1. Since any metric is a partial metric, so above theorems holds in a

metric space.
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