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FIXED POINTS RESULTS OF DOMINATED MAPPINGS ON A
CLOSED BALL IN ORDERED PARTIAL METRIC SPACES
WITHOUT CONTINUITY

Muhammad Arshad', Akbar Azam', Mujahid Abbas?, Abdullah Shoaib?

Fized point results for mappings satisfying locally contractive condi-
tions on a closed ball in a complete ordered partial metric space have been es-
tablished without the assumption of continuity. Instead of monotone mapping,
the notion of dominated mappings of Economics, Finance, Trade and Industry
is also been applied to approximate the unique solution of non linear functional
equations. We have used weaker contractive conditions and weaker restrictions to
obtain unique fized points. An example is given which shows that how this result
can be used when the corresponding results can not. Qur results improve some
well-known,primary and conventional results.
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1. Introduction

In most of the fixed point results, contractive condition holds on a whole
space X. From the application point of view the situation is not yet completely
satisfactory because it frequently happens that a mapping T is a contraction not on
the entire space X but merely on a subset Y of X. However, if Y is closed then by
imposing a subtle restriction, one can establish the existence of a fixed point of 7.
Arshad et. al. [3] proved some results concerning the existence of fixed points of a
mapping satisfying a contractive conditions on closed ball in a complete dislocated
metric space. Other results on closed ball can be seen in [5, 4, 7]. These results are
very useful in the sense that they require the contraction of the mapping only on
the closed ball instead on the whole space.
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Ran and Reurings [10] proved an analogue of Banach’s fixed point theorem in
metric space endowed with a partial order and gave applications to matrix equations.
Subsequently, Nieto et. al. [9] extended the result in [10] for nondecreasing map-
pings and applied it to obtain a unique solution for a 1st order ordinary differential
equation with periodic boundary conditions.

Partial metric spaces have applications in theoretical computer science (see
[8]). [2] used the idea of partial metric space and partial order and gave some fixed
point theorems for contractive condition on ordered partial metric spaces. Consistent
with [2] and [8], the following definitions and results will be needed in the sequel.

Definition 1.1. Let p: X x X — R', where X is a nonempty set, is said to be a
partial metric on X if for any z,y, 2z € X:

(P1) p(z,x) = p(y,y) = p(x,y) if and only if x =y,
(P2) p(z,2) < p(z,y),

(P3) p(z,y) = p(y, z),

(Py) p(z,2) < p(z,y) +py, 2) — p(y,y)-

p
The pair (X,p) is then called a partial metric space. Each partial metric p
on X induces a Ty topology p on X which has as a base the family of open balls
{Bp(z,r) : 2 € X, r > 0}, where By(z,r) = {y € X : p(z,y) < p(z,z) + r} for all
r € X and r > 0.

It is clear that if p(x,y) = 0, then from P; and P, x = y. But if z = y,
p(z,y) may not be 0. A basic example of a partial metric space is the pair (R, p) ,
where p(z,y) = max{z,y} for all z,y € RT. If (X, p) is a partial metric space, then
ps(x,y) = 2p(x,y) — p(x,x) — p(y,y), z,y € X, is a metric on X.

Lemma 1.1. [8] Let (X, p) be a partial metric space.

(a) {z,} is a Cauchy sequence in (X, p) if and only if it is a Cauchy sequence in
the metric space (X, ps).

(b) A partial metric space (X,p) is complete if and only if the metric space
(X, ps) is complete. Furthermore, 7lli_)]frolops(xn,Z) = 0 if and only if p(z,z) =

lim p(zy,z) = Hm  p(zn, zm).
n—00 n,m—00

)

Definition 1.2. Let X be a nonempty set. Then (X, <,p) is called an ordered
partial metric space if: (i) p is a partial metric on X and (ii) < is a partial order on
X.

Definition 1.3. [2] Let (X, <) be a partial ordered set. Then z,y € X are called
comparable if x <y or y < x holds.
2. Fixed Points of Banach Mappings

Theorem 2.1. [6] Let (X, d) be a complete metric space, S : X — X be a mapping,
r >0 and zo be an arbitrary point in X. Suppose there ezists k € [0,1) with

d(Sz,Sy) < kd(z,y), for all z,y € Y = B(xo,r)
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and d(xg, Szo) < (1 — k)r then there exists a unique point =* in B(xg,r) such that
x* = Sz*.

In the proof [6], the author considers an iterative sequence x,, = Sx,—1,n >
0 and exploits the contraction condition on the points x,,’s to see

m
1—k
by using techniques of [6, Theorem 5.1.2] before proving that x,,’s lie in the closed
ball.

d(zpm, 1) < d(zg, 1),

Following theorem not only extend above theorem to ordered partial metric
spaces but also rectifies this mistake specially for those researchers who are utilizing
the style of the proof of [6, Theorem 5.1.4] to study more general results.

Theorem 2.2. Let (X, =,p) be a complete ordered partial metric space, S : X — X
be a dominated map and xo be an arbitrary point in X . Suppose there exists k € [0,1)
with

p(Sz,Sy) < kp(z,y), (2.1)
for all comparable elements x,y in B(xo,r) and
p(o, Sxo) < (1 — k)[r + p(zo, z0)]. (2.2)

If, for a nonincreasing sequence {xy}in B(xg,r), {xn} — u implies that u < x,,
then there exists a point x* in B(xo,r) such that * = Sx*. Further p(z*,xz*) = 0.

Proof. Consider a Picard sequence x,+1 = Sx, with initial guess zg. As z,11 =
Sz, = xy, for all n € {0} UN. Now by inequality (2.2)

p(xo, Sxo) < 1+ p(z0, 20)-
= x1 € B(xg,7). It follows that
p(x1,22) = p(Szo, Sx1) < kp(xo, 1) < k(1 — k)r + k(1 — k)p(z0, o).

Now,

IN

p(xo, z1) + p(21, 22) — p(21, 21)
(1 =k)r+ (1 —k)p(xo,zo) + k(1 — k)r + k(1 — k)p(xo, xo)
< 7+ p(zo, o)

P(xo, xz)

IN

= x9 € B(xg,r) and hence all points of a sequence {x,} are in the closed ball
B(xg,r). Now by inequality (2.1), we have

P(Tn, Tn) < kp(Xn—1,2n-1) < -+ < k"p(x0,20) — 0 as n — 0o (2.3)

Also
P(Tn; Tny1) < K"p(z0, 21). (2.4)
Therefore by inequality (2.4) and by using definition of py,

Ds(Tn, Tny1) < 2k"p(z0, x1). (2.5)
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It follows that

IN

Ps(Tns Tng1) + oo 4 Ds(Tngiz1, Tnyi)

2k"p(x0, 1) + ... + 2" T p(zg, 1), by (2.5)

2k™(1 — k)
1—k

ps(wn, anri)

IN

ps(xna$n+i) < p(ﬂ?o,l‘l) — 0 as n — 0.

Notice that the sequence {z,} is a Cauchy sequence in (B(xg,r),ps). By Lemma

1.1, {z,} is a Cauchy sequence in (B(xg,7),p). Therefore there exists a point z* €

B(xo,r) with lim ps(xy,,2*) = 0. Then by Lemma 1.1 and inequality (2.3), we have
n—o0

p(z*,z*) = lim p(x,,z") = lim p(x,,z,) =0. (2.6)

n—oo n—o0

Moreover by assumptions z* < x,, = x,—1 , therefore
p(z",5z%) < p(a”,zn) + p(an, S27) — p(zn, n)
< pla’,zn) + kp(en-1,27).
On taking limit as n — oo and by inequality (2.6), we obtain
p(z*, Sz*) <0
and hence z* = Sz*. O

In the above result the fixed point of S may not be unique, whereas with some
more restriction we can have unique fixed point of S which is proved now.

Theorem 2.3. Let (X,=,p) be a complete ordered partial metric space, and S :
X — X be a mapping with all conditions of Theorem 2.2. Also if for any two points
x,y in B(xo,r) there exists a point z € B(xo,r) such that z <= x and z < y that
is every pair of elements in B(xg,r) has a lower bound, then there exists a unique
point =* in B(xg,r) such that z* = Sx*. Also p(z*,xz*) = 0.

Proof. We prove uniqueness only. Let y be another point in B(zg,r) such that
y = Sy. If 2* and y are comparable then

p(z*,y) = p(Sz*, Sy) < kp(z*,y).

This shows that 2* = y. Now if 2* and y are not comparable then there exists
a point z € B(xzg,r) which is lower bound of both z* and y that is z < z* and
z = y. Moreover by assumptions z = z* =< x,... < xg. Now we will prove that Sz €
B(l’o,T’).

p(xo,S2z) < p(xo,z1) + p(x1,S2) — p(x1,21)
< (1 =k)r+ p(xo, z0)] + kp(zo, 2),
< (1= k)[r + p(wo, 0)] + k[r + p(zo, 70)]

= 74 p(xo,20)-
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It follows that Sz € B(xg,r). Now

p(xo, S*2) p(wo, 21) + p(x1,5%2) — p(w1,21)

<
< (1= K)[r+p(xo, z0)] + kp(zo, 52),

It follows that S?z € B(xo,r). Hence S"z € B(wo,r) for all n € N. Now as S is
dominated, it follows that S?" 1z < " 22 < ... < 2z < z* and S" 1z < y for all
n € N. Which further implies S" 1z < S"z* and S" 1z < S"y for all n € N as
S"x* = x* and S™y =y for all n € N.

p(z*,y) = p(S"z", S"y)

< p(S”x*,S”_lz) —i—p(Sn_lZ, S"y) —p(Sn_lz,Sn_lz)
< Ekp(S"Tla*, S"22) + kp(S™ 22, 8" )
< k"7 p(x*,Sz) + K" 2p(Sz,y) — Oasn — oo
Hence z* = y. O

3. Fixed Points of Kannan Mappings
In 1969 Kannan established the following fixed point theorem:

Theorem 3.1. Let (X,d) be a complete metric space. If a mapping S : X — X
satisfies,

d(Sz, Sy) < ald(z, Sx) + d(y, Sy)],
for all a € [0, %) Then S has a unique fized point in X.
Theorem 3.2. Let (X, =<,p) be a complete ordered partial metric space, S : X — X

be a dominated map and xo be an arbitrary point in X . Suppose there exists k € |0, %)
with

p(Sz,Sy) < k[p(z, Sz) + p(y, Sy), (3.1)
for all comparable elements x,y in B(xo,r) and
p(zo, Szo) < (1 —0)[r + p(xo, x0)], (3.2)

where 0 = ﬁ If for a nonincreasing sequence {x,} — u implies that u < x,, then
there exists a point x* in B(xg,r) such that x* = Sz* and p(x*,z*) = 0.

Proof. Consider a Picard sequence x,11 = Sx, with initial guess z¢. Then x,+1 =
Sxp = xy, for all n € {0} UN and by using inequality (3.2), we have

p(xo, Swo) < 7+ p(z0, 20)-
Therefore, 21 € B(xg, ). Thus, by using inequality (3.1), we have

p(x1,2) = p(Sxo,Sx1) < E[p(20, 1) + p(21, 22)]
S Qp(l‘o,:tl) S 9[?” +p(l‘0,$0)}
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Now

p(ro,x2) < p(xo, 1) + p(x1, 22) — p(o1, 1)
(1 = 0)[r + p(zo, z0)] + O[r + p(z0, 70)]

A

It implies that o € B(xp,r) and hence all points of a sequence {z,} are in the

closed ball B(zg,r). Now by using inequality (3.1), we have

p(anu Sajn—i—l) < k{p(ﬂfn, an) +P($n+17 an—s—l)]
k
ﬂp(xnaxn—kl) = Op(zy, Tni1)

p(xn-i—lyxn—l—Q) < 02p(xn—laxn) <..< 9”“]?(%07351)-

IN

Again by using inequality (3.1), we have
(@, zn) < k[p(Tn—1,2n) + p(Tn—1,7n)]
which implies that
(T, ) < 0" p(20,21) — 0 as n — oo. (3.3)

And by using definition of py,

Ps(Tnt1; Tni2) < 2p(Tni1, Tnra) < 20" p(ao, 21), (3.4)
Now, we have

Ps(Tns Tnti) < Ps(Tns Tnt1) + oo + Ps(Tnrim1, Tnti),

by using inequality (3.4), we have

Ps(@ns tnyi) < 207p(wo, 1) + .o + 20" p(o, 21)
< 20"p(zo, )14 ...+ 072+ 67
20"(1 — 6"
< ¥p($o,m1) — 0 as n — oo.

1-6
It follows that the sequence {z,} is a Cauchy sequence in (B(xq, ), ps). By Lemma
1.2, {zp} is a Cauchy sequence in (B(xg,r),p). Therefore there exists a point z* €
B(xp,r) with Jlrgops(xn,x*) = 0. Then by using Lemma 1.1 and inequality (3.3),
we have
p(z*,2*) = lim p(x,,z") = lim p(x,,z,) = 0. (3.5)
n—oo n—oo
Moreover, by assumptions z* < x, < x,_1 , therefore

p(z*, Sx™)

IN

p(x*, 2n) + p(n, ST*) — p(Tn, T0)
>~ p(x*,a:n)—{—k[p(mn_l,an_l)—|—p(x*,5$*)]

A

On taking limit as n — oo and using inequality (3.5) we obtain
(1 —FE)p(z*,Sz*) <0
and z* = Sx*. O
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Theorem 3.3. Let (X,=,p) be a complete ordered partial metric space, and S :
X — X be a mapping with all conditions of Theorem (3.2). Also for every pair of
elements x,y in B(xo,r) there exists a point z € B(xg,r)such that z < x and z <y
and

p(xo, Sxo) + p(z, Sz) < p(wo, 2) + p(Swo, S2), (3.6)
then there exists a unique point ©* in B(xo,r) such that * = Sz* and p(z*,z*) = 0.
Proof. Tt is sufficient to prove x* is unique. Let y be another point in B(xg,r) such
that y = Sy. If * and y are comparable then
p(x*,y) < klp(z®, %) + p(y, y)] = kp(y,y) < p(y,y).
Using the fact that p(y,y) < p(z*,y), we have 2* = y. Now if z* and y are not

comparable then there exists a point z € B(z, r) which is a lower bound of both z*
and y. Now we will prove that S"z € B(x,r). Moreover by assumptions z < x* <
Zp... 2 z9. Now by using inequality (3.1) , we have
p(Szo,Sz) < kl[p(zo,z1)+ p(z,S2)]
< k?[p(l‘o, Z) +p(m1, SZ)]? by using (36)

which further implies that

p(z1,Sz) < Op(xg, 2). (3.7)
Now,
p(xo,Sz) < p(wo, 1) + p(r1,S2) — p(o1, 1)
< p(zo,x1) + Op(xo,2), by using (3.7)
p(x0,52) < (1 =0)[r+ p(xo,v0)] + [ + p(xo, 70)]

7+ p(xo, o).
It follows that Sz € B(xo,r). Now,
p(S2,5%2) < klp(=, S2) + p(S=, §22)]

which implies that

p(Sz,8%2) < Op(z,Sz). (3.8)
Also by using inequality (3.1), we have,

P2, S%2) < klp(ar, 22) + p(Sz, 5%2)]

< k[0p(xo,21) + Op(z,Sz)], by using (3.8)
p(w% S2Z> < kG[p(xo, Z) +p($17 SZ)]? by using (36)
p(z2,5%2) < kO[p(zo,2) + Op(xo, 2)], by using (3.7)

k 1
2

< N

ps, §2) < k(o) (o, )

which imples that
p(z2, SQZ) < 92p(3:0, ). (3.9)
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Now,
p(wo,S%2) < p(xo,71) + p(1, 22) + P22, S?2) — p(1,21) — (22, T2)
< plzo, 1) + Op(z0, 21) + 0%p(0, 2), by using (3.9)
p(x0,8%2) < (1=0)[r + p(zo, x0)][1 + 0] + 0°[r + p(x0, z0)]

= 7+ p(zo,20).

It follows that S?z € B(zo,r). Hence S"z € B(z,7). As z < 2* and z < y then
Sz < z* and S"z <y for all n € {0} UN. As S"Flz < 8"z for alln € {0} UN, we
have

p(S"12,872) < K[p(S" 22, 8" 2) + p(S" 1z, 572)

<
< Op(S"2z,8" 1) < ..

p(S" 12, 8"2) < 0" p(2,82) — 0 as n — oo. (3.10)
Now,
p(z*,y) = p(Sz*, Sy)
p(Sz*,8"z) + p(S"z, Sy) — p(S"z,5"z)
klp(a”, Sz®) +p(S"™ 2, 8"2)] + k[p(S" "2, 8" 2) + ply, Sy)]
kp(z*, 2*) + 2kp(S™ 1z, 8"2) + kp(y, y).

INCIN TN

Hence by using inequality (3.10), p(z*,y) < p(y,y) as n — oco. A contradiction, so
¥ =u. O

Theorem 3.4. Let (X, =,p) be a complete ordered partial metric space, S : X — X
1

be a dominated map and xo be an arbitrary point in X . Suppose there exists k € [0, )
with

p(Sz, Sy) < k[p(z, Sz) + p(y, Sy)],
for all comparable elements z,y in X. If, for a nonincreasing sequence {x,}in X,
{zn} — w implies that u < x,, and every pair of elements in X has a lower bound,
then there exists a unique point x* in X such that x* = Sx* and p(z*,z*) = 0.

Theorem 3.5. Let (X,p) be a complete partial metric space, S : X — X be a map
and xo be an arbitrary point in X. Suppose there exists k € [0, %) with

p(Sz, Sy) < k[p(z, Sz) + p(y, Sy)l,

for all elements x,y in B(xg,r) and

p(xo, Szo) < (1 —6)[r + p(zo, z0)],

where 0 = 1fk. Then there exists a unique point x* in B(xg,r) such that z* = Sx

and p(z*,2*) =0

*
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Example 3.1. Let X = RT U {0} and B(xo,r) = [0,1] be endowed with the usual
ordering and let p be the complete partial metric on X defined by p(z,y) = max{z,y}
forallx,y € X. Let S: X — X be defined by

3z
7—Ozfx€[ ),
Se=1 Zifrelh)

z— 3 ifz € (1,00)

Clearly, Sx < x for all x € X that is, S is dominating map. For all compamble

elements with k = % € [O,%), To = é, r= %,p(xo,xo) maX{Q, 2} = l ,0 = —k = 1
1.1 1 3
1-— —(1=2)=+2]1=2
1 1 1 1 1 1 1 3
p(z0, Sz0) —p(§75§) —p(§, 70) = max{i, %} =5 < 1
. 1 1
Also fovy € (1700)5 p(Sx,S’y) = max{x - Qay - 5}
> Lot
Z 3 r-y
1

~[max{z, o — 3} + max{y,y ~ 3}

p(Sz,Sy) = klp(z, Sz) + p(y, Sy)].
So the contractive condition does not hold on (1,00). For the closed ball [0,1] the

following cases arrises:
(i) If z,y € |0, %), we have

B T VN
1 1
< = S
< lotal = plmax{z, o) + max(y, 22)]

= klp(z, Sz) +p(y, Sy)]-
(ii) For z € [0,1), y € [3,1], we have

3z 2y 1
= e 2
p(Sz, Sy) max{ -, - 70max{3:c y}
1
< o+ o] = Lmaxle, 20} 4 max(y, 2y

= klp(z, Sz) + p(y, Sy)]-
(iii) When y € [0,3), z € [3,1], we have

2 1
p(Sz,Sy) = max{%,%} - max{2z, 3y}
1 1
< o +y] = lmax{z, 20} + max(y, 2]

= klp(z,Sz) + p(y, Sy)]-
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(iv) And if z,y € [5,1], we obtain

2z 2 2
p(Se,Sy) = max{=s, =8} = = max{z, y)
1 1 2 2
< Zle+yl = plmaxfe, 5} + max{y, =2 }]

= klp(z,5z) + p(y, Sy)]-
Therefore, all the conditions of above theorem satisfied to obtain unique fized point
0 of S.
4. Fixed Points of Chatterjea Mappings

Chatterjea established the following fixed point theorem:

Theorem 4.1. Let (X, d) a complete metric space X. Let S : X — X be a mapping
satisfying contractive condition

d(Sz, Sy) < ald(z, Sy) + d(y, Sz)],
for all a € [0, %) Then S has a fized point.
Our extension of this theorem is as follows:

Theorem 4.2. Let (X, =,p) be a complete ordered partial metric space, S : X — X

be a dominated map and xo be an arbitrary point in X . Suppose there exists k € |0, %)

with

p(Sz, Sy) < k[p(z, Sy) + p(y, Sz)], (4.1)
for all comparable elements z,y in B(xo,r) and
p(zg, Szo) < (1 —0)[r + p(xo, 20)], (4.2)

where 0 = ﬁ If, for a nonincreasing sequence {xy}in B(xo,r), {xn} — u implies
that u < x,,, then there exists a point z* in B(xg,r) such that x* = Sx* and p(z*,z*) =

0.
Proof. Choose zg € X and consider a sequence of point such that
Tpy1 = Sxp, n >0
Then, z,4+1 <Xz, for all n € {0} UN and by using inequality (4.2), we have
p(zo, Szo) < 1+ p(xo, X0)-

This implies that x; € B(zg,r), using inequality (4.1), we have
p(Sxzg, Sz1)

—~

klp(zo, Sz1) + p(x1, Sz0)]

klp(wo, 1) + p(x1, 22) + p(z1,21) — p(21, 21)]
k(1 —=0)r + k(1 — 0)p(xo, x0) + kp(z1,22)

(1 —0)r 4+ 6(1 — 0)p(xo, zo).

IAINCIN A
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It implies that

p(xo,z2) < p(zo,21) + p(21,22) — p(T1, 21)
< (1-=0)r+(1—-0)p(xo,xo) +0(1 —0)r +6(1 — 0)p(xo, xo)

< 7+ p(xo, o).

That is x2 € B(zo,r). Hence all points of a sequence {z,} are in the closed ball
B(xp,r), Now, by inequality (4.1), we have

P(Tn+1,Tnt2) = p(STn, STpi1)
< k[p(Tn, Tnt1) + p(Tnt1, Tut2)l,
which further implies,
P(Zni1s Tnya) < Op(Tn, Togt)... < 0" p(zg, x1)

Moreover,

IN

k[p(ﬂ?n_l, xn) + p(xn—ly mn)]
2k0™ 1 p(xg, 1) — 0 as n — 0o

p(x’nu xn)

IN

Following similar arguments of Theorem (3.2), it can easily be seen that sequence
{z,} is a Cauchy sequence in B(zg,r) and there exists a point z* € B(xg,r) with

* * _ : * _ : _
p(z*,z*) = nl;rgop(xn,m ) = nlgrolop(a:n,xn) =0.

*

Moreover by assumptions z* < x,, < x,,_1 , therefore

p(z*,Sx™) < p(z*,xn) + p(xn, ST*) — p(X8, 1)
< p(@" zn) +p(STp-1, ST") — p(2n, Tn)
< pla’,zn) + klp(zn-1, S2%) + p(”, zn)].
On taking limit as n — oo, we have
p(a", Sa) < kp(a”, Sz)
and therefore z* = Sx*. g

Remark 4.1. Since any metric is a partial metric, so above theorems holds in a
metric space.
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