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ANALYSIS OF RING SOURCED DIFFRACTION WITH RIGID AND
IMPEDANCE BOUNDARY CONDITION

Burhan Tiryakioglu!

The diffraction of sound waves emanating from a ring source is investigated
rigorously by using the Wiener-Hopf technique. Two different geometry is considered
which are semi-lined and full-lined with different linings. An exact solution is obtained
based on the boundary condition. At the end of the analysis, the influence of the problem
parameters and comparison of geometries are presented graphically.
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1. Introduction

The diffraction of acoustic waves along duct systems is an important topic in diffrac-
tion theory and relevant to many applications including reduction of noise in exhaust sys-
tems, in modern aircraft jet and turbofan engines, etc. For this reason, a rigorous analysis
of such engineering problems is required.

The reduction of noise in duct systems is generally achieved by silencers. The most
well-known of such silencers is acoustically absorbent linings, which have been widely ana-
lyzed in literature [6], [11], [12], [14]. Rawlins proved the effectiveness of absorbing lining
who considered the radiation of sound from an unfanged rigid cylindrical duct with an
acoustically absorbing internal surface [12].

When analysing sound diffraction in a duct system with an absorbing lining, two
possible linings are commonly used which are classified as locally reacting lining or bulk
reacting lining. The more completely investigated case is that the liner may be treated as
locally reacting and this case results in a simplification of the analysis. In this case, the
liner is treated as though it may be characterised by a local impedance that is independent
of whatever occurs at any other part of the liner and the assumption is implicit that sound
propagation does not occur in the material in any other direction than normal to the surface
[2]. Bulk reacting liner is one where sound can propagate in all directions, and therefore
sound can propagate in the liner parallel to the axis of the duct. It is not easy to perform
acoustic analyses of this type of liner [5], [8]. This paper focuses on the local reacting lining.

The aim of this work is to consider the diffraction of acoustic waves emanating from
a ring source by an infinite semi-lined and full-lined duct. Duct walls are assumed to be
infinitely thin and rigid from inside. This geometry can be considered as a model of an
acoustic waveguide for use in noise reduction. The ring source provides the total field to
have angular symmetry which makes the problem simpler than the asymmetric case [3],
[15]. In this study, an analytical solution is obtained based on the Wiener-Hopf technique
[7]. By applying direct Fourier transform, the problem is reduced into the solution of
a Wiener-Hopf equation. Then, numerical solution is obtained for various values of the
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problem parameters such as frequency, impedance etc. The effect of these parameters on
the diffraction phenomenon is presented graphically by using the MATLAB programming.

2. Semi-Lined Duct

We consider the diffraction of sound waves by circular cylindrical duct. Duct walls are
assumed to be infinitely thin and they occupy the region {r = a, z € (—00,00)} illimunated
by a ring source located at {r =b > a,z = —c,c > 0} (see Fig. 1). The inner surface of
cylinder (z € (—00,00)) and the outer surface of cylinder (z < I) are assumed to be rigid,
while the outer surface for z > [ is assumed to be lined with acoustically absorbent material.
The liner impedance is characterized by Z. From the symmetry of the geometry of the
problem and of the ring source, the total field will be independent of azimuth 6 everywhere
in circular cylindrical coordinate system (r, 6, z). The velocity potential ¢ will be used to
obtain acoustic pressure p and velocity v via p = —po(9/0t) and o = grad ¢, where pq is
the density of the undisturbed medium.
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Fig. 1. Semi-lined geometry.

For analysis purposes, it is convenient to express the total field as follows:

[ i (rz2)exp(iwt) 5 r>b
wTW’”‘{w§<r,z>exp<z'wt> | acr<b 1)

where w = 27 f is the angular frequency. Time dependence is assumed to be e*! and
suppressed throughout this work.

2.1. Derivation of the Wiener-Hopf Equation

The unknown fields ¢4 (r, z) and 92 (1, z) satisfy the wave equation for z € (—o0, o)

19/ 9\ o .

with wave number k = w/cy and speed of the sound ¢y. By taking Fourier transform of
these two equations we obtain the following integral representations

Py (1, 2) = % / A (u) HS (Mer) e %= du (3)
k ' —iukz
$a(r7) = o / (B (u) Jo (Ner) + C () Yo (Mkr)] =% dy )
T

where 7" is a suitable inverse Fourier transform integration contour along or near the real
axis in the complex u-plane (see Fig. 2). Jy and Y are the Bessel and Neumann functions

of order zero, H((]Q) = Jo — 1Y) is the Hankel function of the second type. A is square root
function which is defined as A (u) = v1 —u?, Im(\) <0
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Fig. 2. Complex u plane.

Branch cuts for A is taken on the line from 1 to co and from —oo to —1. As usual in
this kind of Wiener-Hopf problem, we will assume that the surrounding medium is slightly
lossy and k has a small negative imaginary part. The lossless case can be obtained by letting
Imk — 0 at the end of the analysis. The spectral coefficients A (u) , B (u) and C (u) , which
are introduced in the solution of velocity potential function, are to be determined with the
aid of the following boundary and continuity relations valid along » = a and r = b.

D@ =0 =<l )

%wz (a,z) = %wz (a,z) , <z (6)

4 b 4 b,z) =46 7
Ewl(’z)—aw(,z)— (z+0) , —0 < z2< 0 (7)
P1(b, z) = a(b, 2) , —00 < z <00 (8)

A (u), B (u) and C (u) are related to each other by the definition of the ring source given in
(7,8), application of the boundary conditions on r = b yields

NeA () H® (Mkeb) = MeB (u) Ji (Akb) + AC (u) Yy (Akb) — e~ uke )
A(u) H® (Akb) = B (u) Jo (Akb) + C (u) Yo (AkD) (10)

From the relations (9) and (10), we obtain

B (u) = A(u) + e—l’“’“’%byo (\kb) (11)
C(u) = —iA (u) — e—i"’“%bjo (\kb) (12)
Applying the boundary conditions on r = a and taking Fourier transforms gives
—AEB (u) Jy (\ka) — MkC' (u) Y1 (Mka) = %ew“@f (u) (13)
k(B (u) J(Z,u)+ C (u) Y (Z,u)] = %ew%; (u) (14)
where
J(Z,u) = iJy (Mka) /Z + My (\ka) (15)

Y(Z,u) = iYy (Aka) /Z + AV; (Aka) (16)
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<I>1jE are a function analytic at the upper and lower half plane respectively, and defined as

o (u) = / P2 (a,z) ™Dz (17)
1
l

O (u) = /@/12 (a,z) ekE=D gy (18)

The substitution of B (u) and C (u) into (13), (14) yields
Au) = —ELM‘ET (u) — _einh [Yo (AkD) J1 (Mka) — Jo (AkD) Y1 (Mka)] (19)

Z \H® (\ka) 2H® (\ka)
i eiuk:l B efiukc,n.b
Au) = quﬁ (u) — H(Z, ) (Yo (AkD) J(Z, u) — Jo (AkD) Y (Z, u)] (20)
where

H(Z,u) = iH® (Mea) /Z + XH (Aka) (Aka) (21)

A (u) can be eliminated from equations (19) and (20), we get the following Wiener-Hopf
equation:

2
_ ée—iuk(c—f—l) H(() ) ()‘kb)

L (u) ®F (u) = =07 (u) - NeH? (Aka)

(22)
where
H(Z,u)

Llw)= AH? (\ka)

(23)

2.2. Solution of the Wiener-Hopf Equation

We consider equation (22). By using the classical factorization and decomposition
procedure, we get

LT (u) @f (u) = Qf (u) = =L~ (u) @1 (u) + Q7 (u) (24)
where the split functions L*(u) and L™ (u), result from the factorization of L(u) as,
L*(u)
L(u) = 2
() = =03 (25)

they are regular and free of zeros in the upper and lower half planes, respectively [13].
Decomposing Q1 (u) we obtain split functions Q7 (v) and Q7 (u) which are regular in the
upper and lower half planes, respectively.

©)
b HY (kb)

Q) =~ g ® gy £ W =@ @) (26)
1
and Q7 (u) is defined by
1
Qr ) = o [ L (27)
Ty

The explicit expression of the integral Qf is given in the appendix. Now both sides of (24)
are analytical functions on upper and lower regions, but they are equal to each other on
the strip Imk < Imwu < Im(—k). From analytical continuation principle and Liouville’s
theorem, we get the Wiener Hopf solution

L (u) @) (u) = Qf (u) (28)
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2.3. Far Field

The total field in the region r > b can be evaluated from (3)

P (ry2) = ﬁ/A (u) HO(Q) (Nkr) e= "R dy, (29)

21
T

Using (19) we may write the total field as follows
ik 1 o _
1 (r,z) = _2 7(21) (u) HéQ) (Akr) e~k GE=0 gy,
2 27TT AH? (Aka)
B @/Yg (AkD) J1 (Aka) — Jo (AkD) Y1 (Aka)
4) H? (\ka)

HE (Akr) e~k (=) gy (30)

Taking into account the asymptotic expression of the Hankel function HSQ) (Akr) for large
arguments (kr > 1) and applying the saddle point technique [9], we get,

ik i ®, (cosby) e~ R

Z T gin 91H1(2) (sinfyka) KR

_ikb Yo (sin62kb) Ji (sinfaka) — Jo (sin2kd) Y3 (sin Oaka) e ik

(31)
2 H1(2) (sin bka) kR
where Ry, 61 and R, 0> are spherical coordinates.
r = Risinf, , z—1=Rycosb (32)
and
r = Rosinfy , z4c= Rycosly (33)

3. Full-Lined Duct

We now consider the same geometry with different lining. The inner surface of cylinder
is assumed to be rigid, while the outer surface is assumed to be lined with acoustically
absorbent material. The liner impedances are characterized by Z; (z < 1) and Z (z > 1)
(see Fig.3).

Ring Source
\
\
7 7, / \
/' z=1,1>0
/
z=—c, c>0

Fig. 3. Different lined geometry.

Due to different linig, equation (5,6) have to be modified as
0

51/12 (a,2) = ;—klwg (a, 2) , z <l (34)

B ik
are (a,2) = Zzwz (a,2) R (35)
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Applying the boundary conditions on r = a and taking Fourier transforms gives

k1B (u) J(Z1,u) + C (w) Y (Zy,u)] = e"M0F (u)
k(B (u) J(Z2,u) + C (0) Y (Z2,u)] = €M@y (u)

where
J(Zjvu) =1iJy (/\ka) /Zj+>\J1 (/\ka) , 1=12
Y(Zjvu) =1Y) ()\ka) /Z] + A\ ()\ka) , ji=12

<I>2i are a function analytic at the upper and lower half plane and defined as

l

l

@y (u) = / [Z% (a,2) — %wg (a,Z)} SOl

— 00

Similarly, one can obtain the following spectral coefficients

elukl 7o M(Zy,u)
A _ 7(1)-&- A m\AEL R —iuke
Y RN A AW T A
eiukl wb M(Zy,u)
A S Y o YA M) —iuke
R RN R W T A

where

H(Zj,u) = iH? (Mka) /Z; + NH® (Aka) ,j = 1,2
M(Zj,u) = Yo (\kb) J(Z;,u) — Jo (kD) Y (Z;,u) ,j =1,2

A (u) can be eliminated from equations (42) and (43), we get the following Wiener-Hopf

equation:

_ b (i i\ suncenn HS2 (\eb
M ()8 (1) = @5 () - 7 (5 = ) eusern o R

where
H(Zy,u) M7 (u)

M (u) = H(Zi,u) M- (u)

The total field in the region r > b can be evaluated similarly

i O (coshy) e ikFa kb M(Zy, cos ) e ihRz
7TH(Z1,COS€1) le 2 H(Zl,COSGQ) k‘RQ

¢1 (7", Z) ~

where

oF (u) = QF (w)/M* (u)
. . (2)
) R (e — Qf )+ @3 ()

b
@) = - <21 " Z,) H(Zi,u)

a

(46)

(47)
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4. Results

In this section some graphics displaying the effects of the parameters of the problem
on the diffracted field are presented. Numerical results are produced for the total diffracted
field as

20log|v1 (Rq,01) |

with the observation angle 6; changing from 0 to w. Some parameter values remain un-
changed in all examples are given below [4]

Speed of Sound (co) =340.17 m/s
Far Radius (Ry) =46m
Duct Radius (@) =0.1191m
Ring Source Radius (b)) =0.1985m
Ring Source Axis (¢) =0.2000 m
Lining Length () =0.1191m

-50

Amplitude of the diffracted field (dB)

85 . . . . . . . .
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Observation angle in degrees

Fig. 4. Diffracted field for the frequency f1 = 1000 Hz.

Fig. 4 shows the variation of the amplitude of the diffracted field as a function of
the observation angle 6, for the frequency and surface impedance. The surface impedance
is taken differently for hard wall (Z1, Zs — 00) and soft wall (Z1, Zy ~ finite) cases. It is
observed that the diffracted field amplitude decreases with the lining impedance Z; and Z,.

In figure 5, it can be seen that, especially for the main diffracted region, the diffracted
field decreasing with lining for higher frequency.

From figure 6, one can see the effect of the acoustic impedance (Z;) of the outer
surface on the diffracted field amplitute. Diffracted field amplitude exhibits an oscillatory
behaviour with increasing value of I'm(Z;). The other result is that the diffracted field
amplitude is insensitive to the variations of the outer surface impedance Z5. So it can be
deduced that the diffracted field is affected merely by the variations in the outer surface
impedance Z;.

Fig. 7 and Fig. 8 depict an excellent agreement both semi-lined and full-lined condi-
tion between the Fig. 1 and Fig. 3.

5. Conclusions

In this work, a rigorous Wiener-Hopf solution is presented for the diffraction of sound
waves emanating from a ring source by a circular cylindrical duct whose exterior surface
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Amplitude of the diffracted field (dB)
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Fig. 5. Diffracted field for the frequency fi = 1500 Hz.
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Fig. 6. Diffracted field with different values of Z; for f= 1000 Hz,
Zy=1—17.27i.

is treated by an acoustically absorbing lining. An analytical solution is derived for this
problem by solving the Wiener-Hopf equation. Numerical solution is obtained for various
values of the problem parameters. In Fig.3, when the exterior surface is rigid for z < [, the
geometry same as Fig. 1 (see Fig. 7-8). This can be considered a good check for the analysis
made in this paper.

6. Appendix

In this section we give explicit expressions for the integrals. Consider the asymptotic
evaluation of Q7 (u) for k (c+1) > 1.

H} 2) —itk(c+1)
o= g el ()
a 27” MeH? (\ka) (T — u)




Analysis of Ring Sourced Diffraction with Rigid and Impedance Boundary Condition 339

-52

—B—2Z=1-7.27i
—*—Zy > 00,2Z,=1-727i

15
g
T

&
>

-58 1

-60

-62 1

-4

-66 [

Amplitude of the diffracted field (dB)
&
©

4y
o

&y
nN

0 20 40 60 80 100 120 140 160 180
Observation angle in degrees

Fig. 7. Comparison of the Fig.1 and Fig.3 for f = 1000 Hz.
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Fig. 8. Comparison of the Fig.1 and Fig.3 for f = 2500 Hz.

according to Jordan’s Lemma, the integration line 7 can be deformed onto the branch cut
711 + 15 through the branch point 7 = 1.

(2) - —itk(c+1) (2) - —itk(c+1)
Qf(u):éi /Ho (Akb) L™ (u) e dT+/HO (Akb) L™ (u) e dr

a 2i ARH® (Aka) (1 — u) ACH (Aka) (1 — u)
1
(A.2)
Using the properties [1]
HP (672) = HY (2) +2J0 (2), (=) HP (e72) = AHP) (2) + 20, (2) (A.3)
and making the following substitution
—1 47 =te /2 , t>0 (A.4)
the integral in (A.2) can be reduced to the following equation
oo
b _, L~ (1 —) _
+ - ik(c+1) Z AT pot tk(c+l)dt A
Qr (w) = e /l—it—u 1(B)e (A-5)

0
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_ i (Wka) HE (Akb) = Jo (Akb) Hy” (Aka)
AH? (Aka) (H{Q) (Mka) + 2J; ()\ka))

If k (¢ +1) is large, the main contribution to the integral in (A.5) comes from the end point
t=0/[10].

Py () (A.6)

b

+ _ Y k(e
Qf (w) = e ML (1) () (A7)
where -
P (t) e—tk(ct+l)
= | ——dt A8
& (u) / 1—it—u (A.8)
0
By proceeding similarly, we get the following approximate expressions for QQL (u)
b i i »
+ O —ik(c+l1) —
=2 (5 - 5 ) MM DaW (1.9)
where
OOP (t) eftk(chl)
2
= | ———dt A.10
O (A.10)
0
and

CHP (k) J (Z0,1 —it) — Jo (Akb) H (Z1,1 — it)
- H(Z1,1—it)[H (Z1,1 —it) +2J (Z1,1 — it)]

Py (t) (A.11)
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