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(3) (2013), 37-40], we proved a main theorem dealing with an application of quasi-f-

power increasing sequences to absolute Cesàro summability methods. In this paper, we
generalize this theorem for a general summability method. Some new results have also

been deduced.
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1. Introduction

A sequence (λn) is said to be of bounded variation, denote by (λn) ∈ BV , if∑∞
n=1 |∆λn| =

∑∞
n=1 | λn − λn+1 |< ∞. A positive sequence X = (Xn) is said to be a

quasi-f-power increasing sequence, if there exists a constant K = K(X, f) ≥ 1 such that
KfnXn ≥ fmXm, holds for n ≥ m ≥ 1, where f = (fn) = [nσ(log n)γ , γ ≥ 0, 0 < σ < 1]
(see [13]). If we take γ=0, then we obtain a quasi-σ-power increasing sequence (see [11]).
Let

∑
an be a given infinite series. We denote by tα,βn the nth Cesàro mean of order (α, β),

with α+ β > −1, of the sequence (nan), that is (see [7])

tα,βn =
1

Aα+β
n

n∑
v=1

Aα−1
n−vA

β
vvav, (1)

where

Aα+β
n = O(nα+β), Aα+β

0 = 1, and Aα+β
−n = 0 for n > 0. (2)

The series
∑
an is said to be summable | C,α, β; δ |k, k ≥ 1 and δ ≥ 0, if (see [4])

∞∑
n=1

nδk−1 | tα,βn |k<∞. (3)

If we take δ = 0, then | C,α, β; δ |k summability reduces to | C,α, β |k summability ( see
[8]). Also, if we take β = 0 and δ = 0, then | C,α, β; δ |k summability reduces to | C,α |k
summability (see [9]). Furthermore, if we take β = 0, then we get | C,α; δ |k summability
(see [10]).

2. Known results.

The following theorems are known dealing with the absolute Cesàro summability
factors of infinite series.
Theorem A ([2]). Let (λn) ∈ BV and (Xn) be a quasi-f-power increasing sequence for
some σ (0 < σ < 1) . Suppose also that there exist sequences (βn) and (λn), such that

| ∆λn |≤ βn (4)
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βn → 0 as n→∞ (5)

∞∑
n=1

n | ∆βn | Xn <∞ (6)

| λn | Xn = O(1) as n→∞. (7)

If the sequence (uαn) defined by (see [12])

uαn =

{
|tαn| , α = 1,

max1≤v≤n |tαv | , 0 < α < 1
(8)

satisfies the condition
m∑
n=1

nδk
(uαn)k

n
= O(Xm) as m→∞, (9)

then the series
∑
anλn is summable | C,α; δ |k, k ≥ 1 and 0 ≤ δ < α ≤ 1.

Theorem B ([6]). Let (Xn) be a quasi-f-power increasing sequence. If conditions from (4)
to (7) are satisfied and the sequence (uαn) defined by (8) satisfies the condition

m∑
n=1

nδk
(uαn)k

n Xk−1
n

= O(Xm) as m→∞, (10)

then the series
∑
anλn is summable | C,α; δ |k, k ≥ 1 and 0 ≤ δ < α ≤ 1.

3. The main result.

The aim of this paper is to generalize Theorem B for | C,α, β; δ |k summability
method. Now, we shall prove the following more general theorem.
Theorem. Let (Xn) be a quasi-f-power increasing sequence. If conditions from (4) to (7)
are satisfied and the sequence (uα,βn ) defined by (see [3])

uα,βn =

{ ∣∣tα,βn ∣∣ , α = 1, β > −1,
max1≤v≤n

∣∣tα,βv ∣∣ , 0 < α < 1, β > −1.
(11)

satisfies the condition
m∑
n=1

nδk
(uα,βn )k

n Xk−1
n

= O(Xm) as m→∞, (12)

then the series
∑
anλn is summable | C,α, β; δ |k, k ≥ 1 , β > −1, 0 ≤ δ < α ≤ 1, and

(α+ β − δ − 1)k > 0.
We need the following lemmas for the proof of our theorem.
Lemma 1([3]). If 0 < α ≤ 1, β > −1, and 1 ≤ v ≤ n, then

|
v∑
p=0

Aα−1
n−pA

β
pap |≤ max

1≤m≤v
|
m∑
p=0

Aα−1
m−pA

β
pap | . (13)

Lemma 2([5]). Under the conditions on (Xn), (βn) and (λn) as expressed in the
statement of the theorem, we have the following ;

∞∑
n=1

βnXn <∞. (14)

nXnβn = O(1), (15)
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4. Proof of the theorem. Let (Tα,βn ) be the nth (C,α, β) mean of the sequence (nanλn).
Then, by (1), we have Tα,βn = 1

Aα+β
n

∑n
v=1A

α−1
n−vA

β
vvavλv. Applying Abel’s transformation

first and then using Lemma 1, we have that

Tα,βn =
1

Aα+β
n

n−1∑
v=1

∆λv

v∑
p=1

Aα−1
n−pA

β
ppap +

λn

Aα+β
n

n∑
v=1

Aα−1
n−vA

β
vvav,

| Tα,βn | ≤ 1

Aα+β
n

n−1∑
v=1

| ∆λv ||
v∑
p=1

Aα−1
n−pA

β
ppap | +

| λn |
Aα+β
n

|
n∑
v=1

Aα−1
n−vA

β
vvav |

≤ 1

Aα+β
n

n−1∑
v=1

A(α+β)
v uα,βv | ∆λv | + | λn | uα,βn = Tα,βn,1 + Tα,βn,2 .

To complete the proof of the theorem, Minkowski’s inequality, it is enough to show that
∞∑
n=1

nδk−1 | Tα,βn,r |k<∞ for r = 1, 2. (16)

Whenever k > 1, we can apply Hölder’s inequality with indices k and k′, where 1
k + 1

k′ = 1,
we get that

m+1∑
n=2

nδk−1 | Tα,βn,1 |k ≤
m+1∑
n=2

nδk−1(Aα+β
n )−k{

n−1∑
v=1

(Aα+β
v )k(uα,βv )k | ∆λv |k}

× {
n−1∑
v=1

1}k−1

= O(1)

m+1∑
n=2

nδk−2+k−(α+β)k{
n−1∑
v=1

v(α+β)k(uα,βv )kβkv}

= O(1)

m∑
v=1

v(α+β)k(uα,βv )kβkv

m+1∑
n=v+1

1

n2+(α+β−δ−1)k

= O(1)

m∑
v=1

v(α+β)k(uα,βv )kβkv

∫ ∞
v

dx

x2+(α+β−δ−1)k

= O(1)

m∑
v=1

(uα,βv )kβvβ
k−1
v vδk+k−1

= O(1)

m∑
v=1

(uα,βv )kβv

(
1

vXv

)k−1

vδk+k−1

= O(1)

m∑
v=1

vβvv
δk (uα,βv )k

vXk−1
v

= O(1)

m−1∑
v=1

∆(vβv)

v∑
r=1

rδk
(uα,βr )k

rXk−1
r

+O(1)mβm

m∑
v=1

vδk
(uα,βv )k

vXk−1
v

= O(1)

m−1∑
v=1

| ∆(vβv) | Xv +O(1)mβmXm

= O(1)

m−1∑
v=1

| (v + 1)∆βv − βv | Xv +O(1)mβmXm
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= O(1)

m−1∑
v=1

v | ∆βv | Xv +O(1)

m−1∑
v=1

βvXv +O(1)mβmXm = O(1) as m→∞,

by the hypotheses of the theorem and Lemma 2. Finally, we have that
m∑
n=1

nδk−1 | Tα,βn,2 |k =

m∑
n=1

| λn |k−1| λn | nδk
(uα,βn )k

n

= O(1)

m∑
n=1

| λn | nδk
(uα,βn )k

nXk−1
n

= O(1)

m−1∑
n=1

∆ | λn |
n∑
v=1

vδk
(uα,βv )k

vXk−1
v

+ O(1) | λm |
m∑
n=1

nδk
(uα,βn )k

nXk−1
n

= O(1)

m−1∑
n=1

| ∆λn | Xn +O(1) | λm | Xm

= O(1)

m−1∑
n=1

βnXn +O(1) | λm | Xm = O(1) as m→∞,

by the hypotheses of the theorem and Lemma 2. This completes the proof of the theorem.
It should be noted that, if we take δ = 0 (resp. α = 1), then we get a new result for | C,α |k
(resp. | C, 1; δ |k) summability. If we set β = 0, then we obtain Theorem B. Also, if we take
γ = 0, then we have another new result.
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