

A NEW APPLICATION OF QUASI-F-POWER INCREASING SEQUENCES TO FACTORED INFINITE SERIES

Hüseyin BOR¹

In [Politehn. Univ. Bucharest Sci. Bull. Ser. A Appl. Math. Phys., 75 (3) (2013), 37-40], we proved a main theorem dealing with an application of quasi-f-power increasing sequences to absolute Cesàro summability methods. In this paper, we generalize this theorem for a general summability method. Some new results have also been deduced.

Keywords: Power increasing sequences, Cesàro mean, sequence spaces, infinite series.

MSC2010: 40D 15, 40F 05, 40G 05, 40G99, 46A 45.

1. Introduction

A sequence (λ_n) is said to be of bounded variation, denote by $(\lambda_n) \in BV$, if $\sum_{n=1}^{\infty} |\Delta\lambda_n| = \sum_{n=1}^{\infty} |\lambda_n - \lambda_{n+1}| < \infty$. A positive sequence $X = (X_n)$ is said to be a quasi-f-power increasing sequence, if there exists a constant $K = K(X, f) \geq 1$ such that $Kf_n X_n \geq f_m X_m$, holds for $n \geq m \geq 1$, where $f = (f_n) = [n^{\sigma}(\log n)^{\gamma}]$, $\gamma \geq 0$, $0 < \sigma < 1$ (see [13]). If we take $\gamma=0$, then we obtain a quasi- σ -power increasing sequence (see [11]). Let $\sum a_n$ be a given infinite series. We denote by $t_n^{\alpha, \beta}$ the n th Cesàro mean of order (α, β) , with $\alpha + \beta > -1$, of the sequence (na_n) , that is (see [7])

$$t_n^{\alpha, \beta} = \frac{1}{A_n^{\alpha+\beta}} \sum_{v=1}^n A_{n-v}^{\alpha-1} A_v^{\beta} v a_v, \quad (1)$$

where

$$A_n^{\alpha+\beta} = O(n^{\alpha+\beta}), \quad A_0^{\alpha+\beta} = 1, \quad \text{and} \quad A_{-n}^{\alpha+\beta} = 0 \quad \text{for } n > 0. \quad (2)$$

The series $\sum a_n$ is said to be summable $|C, \alpha, \beta; \delta|_k$, $k \geq 1$ and $\delta \geq 0$, if (see [4])

$$\sum_{n=1}^{\infty} n^{\delta k-1} |t_n^{\alpha, \beta}|^k < \infty. \quad (3)$$

If we take $\delta = 0$, then $|C, \alpha, \beta; \delta|_k$ summability reduces to $|C, \alpha, \beta|_k$ summability (see [8]). Also, if we take $\beta = 0$ and $\delta = 0$, then $|C, \alpha, \beta; \delta|_k$ summability reduces to $|C, \alpha|_k$ summability (see [9]). Furthermore, if we take $\beta = 0$, then we get $|C, \alpha; \delta|_k$ summability (see [10]).

2. Known results.

The following theorems are known dealing with the absolute Cesàro summability factors of infinite series.

Theorem A ([2]). Let $(\lambda_n) \in BV$ and (X_n) be a quasi-f-power increasing sequence for some σ ($0 < \sigma < 1$). Suppose also that there exist sequences (β_n) and (λ_n) , such that

$$|\Delta\lambda_n| \leq \beta_n \quad (4)$$

¹ P. O. Box 121, 06502 Bahçelievler, Ankara, Turkey, e-mail: hbor33@gmail.com

$$\beta_n \rightarrow 0 \quad \text{as} \quad n \rightarrow \infty \quad (5)$$

$$\sum_{n=1}^{\infty} n |\Delta \beta_n| X_n < \infty \quad (6)$$

$$|\lambda_n| X_n = O(1) \quad \text{as} \quad n \rightarrow \infty. \quad (7)$$

If the sequence (u_n^α) defined by (see [12])

$$u_n^\alpha = \begin{cases} |t_n^\alpha|, & \alpha = 1, \\ \max_{1 \leq v \leq n} |t_v^\alpha|, & 0 < \alpha < 1 \end{cases} \quad (8)$$

satisfies the condition

$$\sum_{n=1}^m n^{\delta k} \frac{(u_n^\alpha)^k}{n} = O(X_m) \quad \text{as} \quad m \rightarrow \infty, \quad (9)$$

then the series $\sum a_n \lambda_n$ is summable $|C, \alpha; \delta|_k$, $k \geq 1$ and $0 \leq \delta < \alpha \leq 1$.

Theorem B ([6]). Let (X_n) be a quasi-f-power increasing sequence. If conditions from (4) to (7) are satisfied and the sequence (u_n^α) defined by (8) satisfies the condition

$$\sum_{n=1}^m n^{\delta k} \frac{(u_n^\alpha)^k}{n X_n^{k-1}} = O(X_m) \quad \text{as} \quad m \rightarrow \infty, \quad (10)$$

then the series $\sum a_n \lambda_n$ is summable $|C, \alpha; \delta|_k$, $k \geq 1$ and $0 \leq \delta < \alpha \leq 1$.

3. The main result.

The aim of this paper is to generalize Theorem B for $|C, \alpha, \beta; \delta|_k$ summability method. Now, we shall prove the following more general theorem.

Theorem. Let (X_n) be a quasi-f-power increasing sequence. If conditions from (4) to (7) are satisfied and the sequence $(u_n^{\alpha, \beta})$ defined by (see [3])

$$u_n^{\alpha, \beta} = \begin{cases} |t_n^{\alpha, \beta}|, & \alpha = 1, \beta > -1, \\ \max_{1 \leq v \leq n} |t_v^{\alpha, \beta}|, & 0 < \alpha < 1, \beta > -1. \end{cases} \quad (11)$$

satisfies the condition

$$\sum_{n=1}^m n^{\delta k} \frac{(u_n^{\alpha, \beta})^k}{n X_n^{k-1}} = O(X_m) \quad \text{as} \quad m \rightarrow \infty, \quad (12)$$

then the series $\sum a_n \lambda_n$ is summable $|C, \alpha, \beta; \delta|_k$, $k \geq 1$, $\beta > -1$, $0 \leq \delta < \alpha \leq 1$, and $(\alpha + \beta - \delta - 1)k > 0$.

We need the following lemmas for the proof of our theorem.

Lemma 1([3]). If $0 < \alpha \leq 1$, $\beta > -1$, and $1 \leq v \leq n$, then

$$\left| \sum_{p=0}^v A_{n-p}^{\alpha-1} A_p^\beta a_p \right| \leq \max_{1 \leq m \leq v} \left| \sum_{p=0}^m A_{m-p}^{\alpha-1} A_p^\beta a_p \right|. \quad (13)$$

Lemma 2([5]). Under the conditions on (X_n) , (β_n) and (λ_n) as expressed in the statement of the theorem, we have the following ;

$$\sum_{n=1}^{\infty} \beta_n X_n < \infty. \quad (14)$$

$$n X_n \beta_n = O(1), \quad (15)$$

4. Proof of the theorem. Let $(T_n^{\alpha, \beta})$ be the n th (C, α, β) mean of the sequence $(na_n \lambda_n)$. Then, by (1), we have $T_n^{\alpha, \beta} = \frac{1}{A_n^{\alpha+\beta}} \sum_{v=1}^n A_{n-v}^{\alpha-1} A_v^\beta v a_v \lambda_v$. Applying Abel's transformation first and then using Lemma 1, we have that

$$\begin{aligned} T_n^{\alpha, \beta} &= \frac{1}{A_n^{\alpha+\beta}} \sum_{v=1}^{n-1} \Delta \lambda_v \sum_{p=1}^v A_{n-p}^{\alpha-1} A_p^\beta p a_p + \frac{\lambda_n}{A_n^{\alpha+\beta}} \sum_{v=1}^n A_{n-v}^{\alpha-1} A_v^\beta v a_v, \\ |T_n^{\alpha, \beta}| &\leq \frac{1}{A_n^{\alpha+\beta}} \sum_{v=1}^{n-1} |\Delta \lambda_v| \left| \sum_{p=1}^v A_{n-p}^{\alpha-1} A_p^\beta p a_p \right| + \frac{|\lambda_n|}{A_n^{\alpha+\beta}} \left| \sum_{v=1}^n A_{n-v}^{\alpha-1} A_v^\beta v a_v \right| \\ &\leq \frac{1}{A_n^{\alpha+\beta}} \sum_{v=1}^{n-1} A_v^{(\alpha+\beta)} u_v^{\alpha, \beta} |\Delta \lambda_v| + |\lambda_n| u_n^{\alpha, \beta} = T_{n,1}^{\alpha, \beta} + T_{n,2}^{\alpha, \beta}. \end{aligned}$$

To complete the proof of the theorem, Minkowski's inequality, it is enough to show that

$$\sum_{n=1}^{\infty} n^{\delta k-1} |T_{n,r}^{\alpha, \beta}|^k < \infty \quad \text{for } r = 1, 2. \quad (16)$$

Whenever $k > 1$, we can apply Hölder's inequality with indices k and k' , where $\frac{1}{k} + \frac{1}{k'} = 1$, we get that

$$\begin{aligned} \sum_{n=2}^{m+1} n^{\delta k-1} |T_{n,1}^{\alpha, \beta}|^k &\leq \sum_{n=2}^{m+1} n^{\delta k-1} (A_n^{\alpha+\beta})^{-k} \left\{ \sum_{v=1}^{n-1} (A_v^{\alpha+\beta})^k (u_v^{\alpha, \beta})^k |\Delta \lambda_v|^k \right\} \\ &\quad \times \left\{ \sum_{v=1}^{n-1} 1 \right\}^{k-1} \\ &= O(1) \sum_{n=2}^{m+1} n^{\delta k-2+k-(\alpha+\beta)k} \left\{ \sum_{v=1}^{n-1} v^{(\alpha+\beta)k} (u_v^{\alpha, \beta})^k \beta_v^k \right\} \\ &= O(1) \sum_{v=1}^m v^{(\alpha+\beta)k} (u_v^{\alpha, \beta})^k \beta_v^k \sum_{n=v+1}^{m+1} \frac{1}{n^{2+(\alpha+\beta-\delta-1)k}} \\ &= O(1) \sum_{v=1}^m v^{(\alpha+\beta)k} (u_v^{\alpha, \beta})^k \beta_v^k \int_v^{\infty} \frac{dx}{x^{2+(\alpha+\beta-\delta-1)k}} \\ &= O(1) \sum_{v=1}^m (u_v^{\alpha, \beta})^k \beta_v \beta_v^{k-1} v^{\delta k+k-1} \\ &= O(1) \sum_{v=1}^m (u_v^{\alpha, \beta})^k \beta_v \left(\frac{1}{v X_v} \right)^{k-1} v^{\delta k+k-1} \\ &= O(1) \sum_{v=1}^m v \beta_v v^{\delta k} \frac{(u_v^{\alpha, \beta})^k}{v X_v^{k-1}} \\ &= O(1) \sum_{v=1}^{m-1} \Delta(v \beta_v) \sum_{r=1}^v r^{\delta k} \frac{(u_r^{\alpha, \beta})^k}{r X_r^{k-1}} + O(1) m \beta_m \sum_{v=1}^m v^{\delta k} \frac{(u_v^{\alpha, \beta})^k}{v X_v^{k-1}} \\ &= O(1) \sum_{v=1}^{m-1} |\Delta(v \beta_v)| X_v + O(1) m \beta_m X_m \\ &= O(1) \sum_{v=1}^{m-1} |(v+1) \Delta \beta_v - \beta_v| X_v + O(1) m \beta_m X_m \end{aligned}$$

$$= O(1) \sum_{v=1}^{m-1} v |\Delta \beta_v| X_v + O(1) \sum_{v=1}^{m-1} \beta_v X_v + O(1)m \beta_m X_m = O(1) \quad \text{as } m \rightarrow \infty,$$

by the hypotheses of the theorem and Lemma 2. Finally, we have that

$$\begin{aligned} \sum_{n=1}^m n^{\delta k-1} |T_{n,2}^{\alpha,\beta}|^k &= \sum_{n=1}^m |\lambda_n|^{k-1} |\lambda_n| n^{\delta k} \frac{(u_n^{\alpha,\beta})^k}{n} \\ &= O(1) \sum_{n=1}^m |\lambda_n| n^{\delta k} \frac{(u_n^{\alpha,\beta})^k}{n X_n^{k-1}} \\ &= O(1) \sum_{n=1}^{m-1} \Delta |\lambda_n| \sum_{v=1}^n v^{\delta k} \frac{(u_v^{\alpha,\beta})^k}{v X_v^{k-1}} \\ &\quad + O(1) |\lambda_m| \sum_{n=1}^m n^{\delta k} \frac{(u_n^{\alpha,\beta})^k}{n X_n^{k-1}} \\ &= O(1) \sum_{n=1}^{m-1} |\Delta \lambda_n| X_n + O(1) |\lambda_m| X_m \\ &= O(1) \sum_{n=1}^{m-1} \beta_n X_n + O(1) |\lambda_m| X_m = O(1) \quad \text{as } m \rightarrow \infty, \end{aligned}$$

by the hypotheses of the theorem and Lemma 2. This completes the proof of the theorem. It should be noted that, if we take $\delta = 0$ (resp. $\alpha = 1$), then we get a new result for $|C, \alpha|_k$ (resp. $|C, 1; \delta|_k$) summability. If we set $\beta = 0$, then we obtain Theorem B. Also, if we take $\gamma = 0$, then we have another new result.

REFERENCES

- [1] *N.K. Bari and S.B. Stečkin*, Best approximation and differential properties of two conjugate functions, *Trudy Moskov. Mat. Obšč.*, **5** (1956) 483-522 (Russian).
- [2] *H. Bor*, An application of almost increasing sequences, *Math. Inequal. Appl.*, **5** (2002) 79-83.
- [3] *H. Bor*, On a new application of quasi power increasing sequences, *Proc. Est. Acad. Sci.*, **57** (2008), 205-209.
- [4] *H. Bor*, An application of almost increasing sequences, *Appl. Math. Lett.*, **24** (2011), 298-301.
- [5] *H. Bor*, A new application of generalized power increasing sequences, *Filomat*, **26** (2012), 631-635.
- [6] *H. Bor*, Quasi-f-power increasing sequences and their new applications, *Politehn. Univ. Bucharest Sci. Bull. Ser. A Appl. Math. Phys.*, **75** (2013), 37-40.
- [7] *D. Borwein*, Theorems on some methods of summability, *Quart. J. Math. Oxford Ser. (2)*, **9** (1958), 310-316.
- [8] *G. Das*, A Tauberian theorem for absolute summability, *Proc. Camb. Phil. Soc.*, **67** (1970), 32-326.
- [9] *T. M. Flett*, On an extension of absolute summability and some theorems of Littlewood and Paley, *Proc. London Math. Soc.*, **7** (1957), 113-141.
- [10] *T. M. Flett*, Some more theorems concerning the absolute summability of Fourier series, *Proc. London Math. Soc.*, **8** (1958) 357-387.
- [11] *L. Leindler*, A new application of quasi power increasing sequences, *Publ. Math. Debrecen*, **58** (2001), 791-796.
- [12] *T. Pati*, The summability factors of infinite series, *Duke Math. J.*, **21** (1954) 271-284.
- [13] *W. T. Sulaiman*, Extension on absolute summability factors of infinite series, *J. Math. Anal. Appl.*, **322** (2006) 1224-1230.