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CERTAIN TYPES OF VAGUE GRAPHS

Muhammad AKRaM?, Feng FENG®, Shahzad SARwWAR “and Youne Bae JuN :

In this article, we propose certain types of vague graphs such as neigh-
bourly irregular vague graphs, neighbourly total irregular vague graphs, highly ir-
reqular vague graphs and highly total drregular vague graphs. Some basic proper-
ties assoctated with these new vague graphs are tnvestigated, and a necessary and
sufficient condition under which neighbourly irreqular and highly irrequiar vague
graphs are equivalent is obtained.
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1. Introduction

In the clasgical set theory introduced by Cantor, values of elements in a set
are either 0 or 1. That is, for any element, there are only two possibilities; the
element ig either in the set or it is not. Therefore, Cantor’s set theory cannot handle
data with ambiguity and uncertainty. In 1965, Zadeh [25] proposed fuzzy theory
and introduced fuzzy set theory. The most important feature of a fuzzy set is that it
congists of a class of objects that satisfy a certain (or several) property. For example,
for a fuzzy set A, each object = has a membership degree of A, denoted as pa(z).
Thig membership function has the characteristics: The single degree contains the
evidences for both supporting and opposing x. It can not only repregent one of the
two evidences, but it can represent both at the same time too. In order to deal with
this problem, Gau and Buehrer [14] proposed the concept of vague set in 1993, by
replacing the value of an element in a set with a subinterval of [0,1]. Namely, a
true-membership function ¢,(x) and a false-membership function f,(z) are used to
describe the boundaries of the membership degree. These two boundaries form a
subinterval [¢,(z), 1 — f,(x)] of [0, 1]. The vague get theory improves the description
of the objective real world, becoming a promiging tool to deal with inexact, uncer-
tain or vague knowledge.
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Fuzzy graph theory is finding an increasing number of applications in modeling real
time systems where the level of information inherent in the system varies with dif-
ferent levels of precision. Fuzzy models are becoming useful because of their aim
in reducing the differences between the traditional numerical models used in engi-
neering and sciences and the symbolic models used in expert systems. Kaufmann’s
initial definition of a fuzzy graph [16] was based on Zadeh’s fuzzy relations [26].
Rosenfeld [20] introduced the fuzzy analogue of several basic graph-theoretic con-
cepts and Bhattacharya [8] gave some remarks on fuzzy graphs. Mordeson and Peng
[18] defined the concept of complement of fuzzy graph and studied some operations
on fuzzy graphs. In [22], the definition of complement of a fuzzy graph was modified
so that the complement of the complement is the original fuzzy graph, which agrees
with the crisp graph case. Atanassov [5] introduced the concept of intuitionistic
fuzzy relations and intuitionistic fuzzy graphs. Ramakrishna [19] introduced the
concept of vague graphs and studied some of their properties. Akram et al. [1-4]
introduced many new concepts, including bipolar fuzzy graphs, interval valued line
fuzzy graphs and strong intuitionistic fuzzy graphs. In this paper, we introduce
certain types of irregular vague graphs. Specifically, we introduce the concepts of
neighbourly irregular vague graphs, neighbourly total irregular vague graphs, highly
irregular vague graphs and highly total irregular vague graphs. We prove a neces-
sary and sufficient condition under which neighbourly irregular and highly irregular
vague graphs are equivalent.

2. Preliminaries

By a graph G* = (V, E), we mean a non-trivial, finite, connected and undi-
rected graph without loops or multiple edges. Formally, given a graph G* = (V, E),
two vertices x, y € V are said to be neighbors, or adjacent nodes, if vy € E. A path
in a graph G* is an alternating sequence of vertices and edges vy, e1, v1, €2, - -+ ,Un_1,
€én, Un. The path with n + 1 vertices is denoted by P,. A path is sometime denoted
by P, : vgv1 - v, (n > 0). A path P, : vovy - -+ v, in G* is called a cycle if vy = vy,
and n > 3. Note that path graph, P,, has n edges and can be obtained from cycle
graph, C,, by removing any edge. The neighbourhood of a vertex v in a graph G*
is the induced subgraph of G* consisting of all vertices adjacent to v and all edges
connecting two such vertices. The neighbourhood is often denoted N(v). The degree
deg(v) of vertex v is the number of edges incident on v. The set of neighbors, called
a (open) neighborhood N (v) for a vertex v in a graph G*, consists of all vertices
adjacent to v but not including v, that is, N(v) = {u € V | vu € E}. When v is
also included, it is called a closed neighborhood Nv], that is, N[v] = N(v) U {v}. A
regular graph is a graph where each vertex has the same number of neighbors, i.e.,
all the vertices have the same closed neighbourhood degree. An undirected graph
G* is connected if there is a path between each pair of distinct vertices. A connected
graph is highly irregular if each of its vertices is adjacent only to vertices with dis-
tinct degrees. Equivalently, a graph G* is highly irregular if every two vertices of
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G* connected by a path of length 2 have distinct degrees. A connected graph is said
to be neighbourly irreqular if no two adjacent vertices of G* have the same degree.
Equivalently, a connected graph G* is called neighbourly irregular if every two ad-
jacent vertices of G have distinct degree. For further information, the readers are
referred to [7, 9].

Definition 2.1. [25, 26] A fuzzy subset p on a set X is a map p: X — [0,1]. A
fuzzy binary relation on X is a fuzzy subset u on X x X. By a fuzzy relation we
mean a fuzzy binary relation given by p: X x X — [0, 1].

Definition 2.2. [5] An intuitionistic fuzzy set (IFS, for short) on a universe X is
an object of the form

A={<uz,pa(x),valz) > |z e X},

where pa(x)(€ [0,1]) is called degree of membership of x in A and v4(x)(€ [0,1]) is
called degree of nonmembership of x in A, and pa, va satisfy the following condition
forallx € X, pa(x) +va(x) <1.

Definition 2.3. [14] A vague set A in an ordinary finite nonempty set X is a pair
(ta, fa), where t4 : X — [0,1], fa : X — [0,1] are true and false membership
functions, respectively such that 0 <ta(x) + fa(z) <1 forallz € X.

In the above definition, t4(z) is considered as the lower bound for degree
of membership of z in A (based on evidence), and fa(x) is the lower bound for
negation of membership of x in A (based on evidence against). Therefore, the degree
of membership of = in the vague set A is characterized by the interval [t4(z),1 —
fa(x)]. So, a vague set is a special case of interval valued sets studied by many
mathematicians and applied in many branches of mathematics (see for example
[3, 23, 24]). Also vague sets have many applications (cf. [6, 11, 21]). The interval
[ta(z),1 — fa(z)] is called the vague value of x in A, and is denoted by V4(x). We
denote zero vague and unit vague value by 0 = [0,0] and 1 = [1, 1], respectively. It is
worth to mention here that interval-valued fuzzy sets are not vague sets. In interval-
valued fuzzy sets, an interval valued membership value is assigned to each element
of the universe considering the “evidence for z” only, without considering “evidence
against x”. In vague sets both are independently proposed by the decision maker.
This makes a major difference in the judgment about the grade of membership.

A vague relation is a generalization of a fuzzy relation.

Definition 2.4. Let X and Y be ordinary finite nonempty sets. We call a vague
relation to be a vague subset of X x Y, that is, an expression R defined by:

R = {< (xvy)atR(xvy)afR(x>y) > ‘J} S va € Y}
where tr : X xY — [0,1], fr : X xY — [0,1], which satisfies the condition
0 < tr(z,y) + fr(z,y) < 1, for all (x,y) € X xY. A vague relation R on X is
called reflexive if tg(x,z) = 1 and fr(z,x) = 0 for all z € X. A vague relation R
on X is symmetric if tr(x,y) = tr(y,x) and fr(z,y) = fr(y,x) for all x,y € X.
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A vague set, as well as an intuitionistic fuzzy set [5], is a further generalization
of a fuzzy set. In the literature, the notions of intuitionistic fuzzy sets and vague sets
are regarded as equivalent, in the sense that an intuitionistic fuzzy set is isomorphic
to a vague set [12].

3. Certain types of vague graphs

Throughout this paper, G* will be a crisp graph (V, E), and G a vague graph
(A, B). Since an edge xy € E is identified with an ordered pair (z,y) € V x V, a
vague relation on F can be identified with a vague set on E. This gives a possibility
to define a vague graph as a pair of vague sets.

Definition 3.1. [19] Let G* = (V, E) be a crisp graph. A pair G = (A, B) is called
a vague graph on a crisp graph G* = (V, E), where A = (ta, fa) is a vague set on
V and B = (tg, fB) is a vague set on E CV XV such that

tp(zy) < min(ta(z),ta(y)) and fp(zy) > max(fa(z), fa(y))
for each edge xy € E.
Definition 3.2. Let G be a vague graph on G*. If all the vertices have the same

neighbourhood degree m, then G is called a regular vague graph. The neighbourhood
degree of a vertex x in G is defined by deg(x) = (deg,(),degs(r)), where deg,(v) =

D yen() ta(y) and degy(x) = 3., c Ny fa(y)-

Example 3.1. Consider a vague graph G such that

V = {v1,v2,v3}, E = {viv2, vav3, 0103 }.
v1(0.4,0.1)

v3(0.4,0.1)  (0.3,0.6)  1,(0.4,0.1)

By routine computations, we have deg(vi) = deg(vy) = deg(vs) = (0.8,0.2). It is
clear that G is a regular vague graph.

Definition 3.3. Let G be a vague graph on G*. If there is a vertex which is adjacent
to vertices with distinct neighbourhood degrees, then G is called an irregular vague
graph. That is, deg(x) # m for allx € V.

Example 3.2. Consider a vague graph G such that

V = {v1,v2,v3}, E = {v1v2, 203, v103}.
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1(0.2,0.6)

v3(0.3,0.4)  (02,0.7)  1,(0.2,0.7)

By routine computations, we have deg(vi) = (0.5,1.1), deg(ve) = (0.5,1.0) and
deg(vs) = (0.4,1.3). It is clear that G is an irregular vague graph.

Definition 3.4. Let G be a vague graph. The closed neighbourhood degree of a
verter x is defined by deg|r] = (deg,[z], degs[z]), where

deg;[x] = deg, () +ta(),

deg[x] = degy(x) + fa(z).

If there is a vertex which is adjacent to vertices with distinct closed neighbourhood
degrees, then G s called a totally irreqular vague graph.

Example 3.3. Consider a vague graph G such that
V = {v1,v2,v3,04,05}, E = {v1v2, 0203, U204, V301, U3V4, V41, V4 V5 }.

v1(0.4,0.6) (0.2,0.7)  ©v2(0.3,0.5)

v(0.2,0.7)

(0.1,0.7)
(0.2,0.7)

01,0

v4(0.4,0.6) (03,0.7)  v3(0.3,0.7)

By routine computations, we have deglvi] = (1.4,2.4), deg[va] = (1.4,2.4), deg[vs] =
(1.4,2.4), deglvs] = (1.6,3.1) and deg[vs] = (0.6,1.3). It is clear from calculations
that G is a totally irregular vague graph.

Definition 3.5. A connected vague graph G is said to be a neighbourly irreqular
vague graph if every two adjacent vertices of G have distinct neighbourhood degree.

Example 3.4. Consider a vague graph G such that

V = {v1,v2,v3,v4}, E = {0102, 1203, U304, V401 }.
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v,(0.2,06) (0108 v{03,07)

(0.2,0.7) (0.1,0.7)

v(05,05) (03,06 Vy04,04)

By routine computations, we have deg(vi) = (0.8,1.2), deg(v2) = (0.6, 1.0), deg(v3) =
(0.8,1.2) and deg(vy) = (0.6,1.0). Hence G is neighbourly irreqular vague graph.

Definition 3.6. A connected vague graph G is said to be a neighbourly total irreqular
vague graph if if every two adjacent vertices of G have distinct closed neighbourhood

degree.

Example 3.5. Consider a vague graph G such that

V = {v1,v2,v3}, E = {viv2, vav3, 0103 }.

v,(0.3,06) (02,06 v(04,05)

(0.2,0.7) (0.2,0.7)

v(05,0.4) (03,06 V407,02

By routine computations, we have deglvi] = (1.2,1.5), deglva] = (1.4,1.3), deg[vs] =
(1.6,1.1) and deglvs] = (1.5,1.2). Hence G is neighbourly total irreqular vague graph.

Definition 3.7. Let G be a connected vague graph. G is called a highly irreqular
vague graph if every vertexr of G is adjacent to vertices with distinct neighbourhood

degrees.

Lemma 3.1. A highly irregular vague graph may not be a neighbourly irreqular
vague graph.

Lemma 3.13 follows from the following example.

Example 3.6. Consider a vague graph G such that

V = {v1,v2,v3,v4, 05}, E = {v102, V203, V20g, U304, U3Us5, V4Us, UsV1 }.
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v,(0.2,06) (02.07) v{04,0.1)

(0.2, 0.6)

v{0.3,0.

v (0.5, 0.6)

By routine computations, we have deg(v1) = (0.7,0.5), deg(vy) = (1.2,1.0), deg(vs) =
(1.2,1.0), deg(vsa) = (1.0,0.7), deg(vs) = (1.4,1.4) and deg(vs) = (0.4,0.1). Con-
sider a vertex vy € V which is adjacent to the vertices v, vs and vg with distinct
neighbourhood degrees. But deg(ve) = deg(vs). Hence G is highly irreqular vague
graph but it is not a neighborly irreqular vague graph.

Example 3.7. Consider a vague graph G such that

V = {v1,v2,v3,v4}, E = {0102, 1203, U304, V401 }.

v,(0.3,0.4) (02,07  v{0.2,0.9)

(0.1, 0.8) (0.1,0.7)

v(04,03) (0206) V{05,05)

By routine computations, we have deg(v1) = (0.6,0.8), deg(vy) = (0.8,0.9), deg(vs) =
(0.6,0.8), deg(vs) = (0.8,0.9). We see that every two adjacent vertices have distinct

neighbourhood degree. But consider a vertex ve which is adjacent to the vertices vy

and vs has same degree, that is, deg(vy) = deg(vs). Hence G is neighbourly irreqular
vague graph but not a highly irreqular vague graph.

Lemma 3.2. A neighbourly irregular vague graph may not be a highly irreqular
vague graph.

Theorem 3.1. Let G be a vague graph. Then G is highly irreqular vague graph and
neighbourly vague graph if and only if the neighbourhood degrees of all the vertices
of G are distinct.

Proof. Let G be a vague graph with n-vertices vi,vs,...,v,. Assume that G is
highly irregular vague graph and neighbourly vague graph.
Claim: The neighbourhood degrees of all vertices of G are distinct. Let deg(v;) =
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(ki,l;),i =1,2,...,n. Let the adjacent vertices of v; be vy, vs, ..., v, with neighbour-
hood degrees

(k27 lQ)v (k?)) l3)> R (kna ln)a
respectively. Then we've kg # k3 #£ - -+ # ky, and Iy # I3 # ... # 1, since G is highly
irregular. Also k1 # ko # ks # ... £ ky, and Iy # lo # I3 # ... # I, since G is
neighbourly irregular. Hence, the neighbourhood degree of all the vertices of G are
distinct.
Conversely, assume that the neighbourhood degrees of all the vertices of GG are dis-
tinct.
Claim: G is highly irregular and neighbourly irregular vague graph.
Let deg(v;) = (ki,l;),1 = 1,2,...,n. Given that ki # ko # ks # ... # k, and
Iy # 1y # I3 # ... # l,, which implies that every two adjacent vertices have dis-
tinct neighbourhood degrees and to every vertex, the adjacent vertices have distinct
neighbourhood degrees. H

Theorem 3.2. A vague graph G of G*, where G* is a cycle with vertices 3 is neigh-
bourly irreqular and highly irreqular vague graph if and only if the true membership
and false membership value of the wvertices between every pair of vertices are all
distinct.

Proof. Assume that true membership and false membership value of the vertices are
all distinct. Claim: G is neighbourly irregular and highly irregular vague graph.
Let v;,vj,vp € V. Given that, t4(v;) # ta(vj) # ta(ve) and fa(vi) # fa(vj) #
fa(vk), which implies that 3-,c n(,) ta(vi) # 2pen(z) tA(V)) # 2pen(z) ta(vr) and
2wen(a) fA(V) # Dpen@) Fa(0)) # Lsen(w) fa(vr). That is, deg(vi) # deg(v;) #
deg(vy). Hence G is neighbourly irregular and highly irregular vague graph.
Conversely, assume that G is neighbourly irregular and highly irregular.

Claim: true membership and false membership value of the vertices are all distinct.
Let deg(v;) = (k4,1;),i = 1,2,...,n. Suppose that true membership and false mem-
bership value of any two vertices are same. Let v1,vy € V. Let t4(v1) = ta(v2) and
fa(v1) = fa(ve). Then deg(v1) = deg(vy), since G* is cycle, which is a contradiction
to the fact that G is neighbourly irregular and highly irregular vague graph. Hence
true membership and false membership value of the vertices are all distinct. O

Definition 3.8. A vague graph G is called complete if

tp(zy) = min(ta(z),ta(y)) and fp(zy) = max(fa(z), fa(y))

for each edge xy € F.

Proposition 3.1. A complete vague graph needed not be neighbourly irregular vague
graph.

Example 3.8. Consider a vague graph G such that

V = {v1,v2,v3}, E = {v1v2, 203, v103}.
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v,(0.4,0.6) (0.2,07) Vv 0.4, 0.6)

v(0.2,0.7)

By routine computations, we have deg(vi) = (0.6,1.3), deg(v2) = (0.6,1.3) and
deg(vs) = (0.8,1.2). We see that neighbourhood degree of vi and va are not distinct.
Hence G is not neighbourly irreqular vague graph but complete vague graph.

Proposition 3.2. A neighbourly irregular vague graph needed not be a neighbourly
total irregular vague graph

Example 3.9. Consider a vague graph G such that
V= {vlv V2, VU3, '04}, E = {'Ul'UQ, V2V3, V34, 'U4'Ul}.

v(0.4,0.6)(0.1,0.7) v 0.3,0.4)

(0.2,0.6 (0.1, 0.8)

v{0.4,05)(01,0.7)  v,[04,05)

By routine computations, we have deg(v1) = (0.7,0.9), deg(vy) = (0.8,1.1), deg(vs) =
(0.7,0.9), deg(vq) = (0.8,1.1) and degv;] = (1.1,1.5), deg[va] = (1.1,1.5), deg[vs] =
(1.1,1.4), deg[v4] = (1.2,1.6). We see that deg[vi] = deg|va]. Hence G is neighbourly
wrreqular vague graph but not a neighbourly total vague graph.

Proposition 3.3. A neighbourly total irregular vague graph need not be a neigh-
bourly irreqular vague graph.

Example 3.10. Consider a vague graph G such that

V = {v1,v2,v3,v4}, E = {0102, 1203, U304, V401 }.
v,(03,0.6) (01,07)  v{0.4,05)

(0.03,0.8) (0.1,0.8)

v{05,0.4) (02,07) V406,03

(1 2 1.5), deg[ve] = (1.3,1.4), deglvs] =
= deg(ve) = deg(va2) = (0.9,0.9). Hence

By routine computations, we have deglvi] =
(1.5,1.2), deg[vs] = (1.4,1.3). But deg(v1)
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G is neighbourly total irregular vague graph but not a neighbourly irregular vague
graph.

Proposition 3.4. Let G be a vague graph. If G is neighbourly irreqular vague
graph and (ta, fa) is a constant function, then G is a neighbourly total irregular
vague graph.

Proof. Assume that G is a neighbourly irregular vague graph. That is the neigh-
bourhood degrees of every two adjacent vertices are distinct. Let v;,v; € V, where v;
and v; are adjacent vertices with distinct neighbourhood degrees (k1,1;) and (kz,l2)
respectively. That is deg(v;) = (ki1,01) and deg(vj) = (ko,l2), where ki # ko ,
ll 75 12. Let us assume that (tl(vi),fl(vi)) = (tl(vj),fl(vj)) = (01,62), where C1,C9
are constant and ¢y, ce € [0, 1]. Therefore, deg,[v;] = deg,(v;) + t1(v;) = k1 + ¢1 and
degy[vi] = degy(vi) + fi(vi) = l1 + c2 deg[vj] = deg,(vj) + t1(vj) = k2 + 1 and
degy[v;] = degy(v;) + f1(v;) =12 + 2

Claim: deg,[v;] # deg;[v;] and deg¢[v;] # degs[v;]. Suppose that, deg,[v;] = deg,[v;]
and deg¢[v;] = deg¢[v;]. Consider

deg;[vi] = deg;[v;]
ki+ca =k +a
k‘l—k‘gzcl—clzo

k1 = ko, which is a contradiction to ki # ko.
Therefore, deg,[v;] # deg;[v;]. Similarly, we consider

deg ¢[vi] = deg¢[vy]
ll +co = lz + Co
ll—lQICQ—CQIO

l1 = ls, which is a contradiction to 1 # ls.

Therefore, degs[v;] # degs[v;]. Hence G is a neighbourly total irregular vague
graph. O

Proposition 3.5. Let G be a vague graph. If G is a neighbourly total irregular and
(ta, fa) is a constant function, then G is a neighbourly irreqular vague graph.

Proof. Assume that G is a neighbourly total irregular vague graph. That is the closed
neighbourhood degree of every two adjacent vertices are distinct. Let v;,v; € V and
deglvi] = (k1,01), deglv;] = (k2,l2), where ky # kg and 1 # ly. Assume that,
(t1(vi), fi(vi)) = (c1,¢2) and (t1(vj), fi1(vj)) = (c1,c2), where ¢1,¢2 € [0,1] are con-
stant and degv;] # deg[v;].

Claim: deg(v;) # deg(v;)

Given that deg[v;] # deg[v;] which implies deg,[v;] # deg;[v;] and degylvi] #
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deg¢[v;]. Now, we consider
deg,[v;] # deg,[v;]
kl +c 75 kg +c
k1 # ko.
‘We now consider
deg f[v;] # deg ¢[vy]
li+co#la+c

I # lo.
that is, the neighbourhood degrees of adjacent vertices of G are distinct. Hence
neighbourhood degree of every pair of adjacent vertices is distinct in G. g

From propositions 3.26 and 3.27, we conclude that:

Theorem 3.3. Let G be a vague graph such that (ta, fa) is a constant vague set.
Then G is a neighbourly total irregular vague graph if and only if G is a neighbourly
wrregular vague graph.

Remark 3.1. Let G be a vague graph. If G is both neighbourly irregular and neigh-
bourly total irreqular vague graph, then (ta, fa) may not be a constant function.

Example 3.11. Consider a vague graph G such that

V = {v1,v2,v3}, E = {v1v2, 0203, v103}.

v,(0.2,06) (01,08 v(03,0.7)

(0.1,0.7) (0.2,0.7)

v{0.7,0.3) (02,07) V404,05

Clearly, G is neighbourly irregular and neighbourly total irreqular vague graph, but
membership and non-membership value of the vertices are not a constant function.

Remark 3.2. If G is neighbourly irreqular vague graph, then vague subgraph H =
(A’, B") of G may not be neighbourly irreqular vague graph.

Example 3.12. Consider a vague graph G such that
V = {v1,v2,v3,v4, 05}, B = {v102, V203, U301, U304, V401, V4 Vs, V5V }-

Consider H = (A', B')such that V' = {v1,v9,v3}, E' = {v1v9,v203, v301 }.
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v,(0.6,0.2)

v,{0.6,0.1)

v{06,0.4) (02,07) V,07,02)

(1)For G: by routine computations, we have deg(vy) = (2.0,1.4), deg(vs) = (0.7,0.8),
deg(vs) = (1.9,0.6), deg(vg) = (1.3,1.2) and deg(vs) = (1.3,0.4).

(2) For H: by routine computations, we have deg(vi) = (0.7,0.8), deg(ve) =
(0.7,0.8) and deg(vs) = (1.2,0.4). 1t is easy to see that vi and ve are adjacent
vertices with same neighbourhood degree in H. Hence H is not a neighbourly irreg-
ular vague graph but G is neighbourly irreqular vague graph.

Proposition 3.6. If G is total irreqular vague graph, then vague subgraph H =
(A’, B") of G may not be total irregular vague graph.

Example 3.13. Consider a vague graph G such that V = {v1,va,v3,v4},
E = {v1v9,v9v3, 0904, 304, 0301, 0401 }.  Consider H = (A',B’), such that V' =
{’Ul,’Ug,’Ug}, E/ = {Ulvg,vgv3,vg’£}1}.

V1(0'4’ 0.6) (01,07 v/03,0.5) v1(0.4, 0.6) (01,08 v(0.3,05)

(0.1,0.7) (0.02,0.8) (0.1,0.6)

v(0.4,06) (02,06) V{0307 v{0.3,0.7)

(1) G: By routine computations, we have deg[vi] = (1.4,2.4), deglva] = (1.0,1.8),
deglvs] = (1.4,2.4), deglva] = (1.1,1.9). Here there is a vertex vs which is adjacent
to vi,ve and vy, where deglvy]| # deglva] # deg[vy].

(2) H: By routine computations, we have deg[vi] = (1.0,1.8), deglva] = (1.0,1.8)
and deg[vs] = (1.0,1.8). Here, there is a vertex vy which is adjacent to the vertices
vy and vs with same closed neighbourhood degree. Also, v which is adjacent to the
vertices v1 and vy with same closed neighbourhood degree and vy which is adjacent
to the vertices vi and v with same closed neighbourhood degree. Hence H is not a
total irreqular vague graph but G is total irreqular vague graph.

4. Conclusions

In the real world there are vaguely specified data values in many applications.
Fuzzy set theory has been proposed to handle such vagueness by generalizing the
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notion of membership in a set. Essentially, in a fuzzy set each element is associ-
ated with a point-value selected from the unit interval [0, 1], which is termed the
grade of membership in the set. Instead of using point-based membership as in
fuzzy sets, interval-based membership is used in a vague set. The interval-based
membership in vague sets is more expressive in capturing vagueness of data. There
are some interesting features for handling vague data that are unique to vague sets,
such as vague sets allow for a more intuitive graphical representation of vague data,
which facilitates significantly better analysis in data relationships, incompleteness,
and similarity measures. The notion of vague sets was initially incorporated into
relations. Based on vague relations, we have introduced the certain types of vague
graphs in this paper. The natural extension of this research work is application of
vague graphs in the area of computing including neural networks, expert systems,
database theory, and geographical information systems.
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