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Fuzzy graph theory is finding an increasing number of applications in modeling real

time systems where the level of information inherent in the system varies with dif-

ferent levels of precision. Fuzzy models are becoming useful because of their aim

in reducing the differences between the traditional numerical models used in engi-

neering and sciences and the symbolic models used in expert systems. Kaufmann’s

initial definition of a fuzzy graph [16] was based on Zadeh’s fuzzy relations [26].

Rosenfeld [20] introduced the fuzzy analogue of several basic graph-theoretic con-

cepts and Bhattacharya [8] gave some remarks on fuzzy graphs. Mordeson and Peng

[18] defined the concept of complement of fuzzy graph and studied some operations

on fuzzy graphs. In [22], the definition of complement of a fuzzy graph was modified

so that the complement of the complement is the original fuzzy graph, which agrees

with the crisp graph case. Atanassov [5] introduced the concept of intuitionistic

fuzzy relations and intuitionistic fuzzy graphs. Ramakrishna [19] introduced the

concept of vague graphs and studied some of their properties. Akram et al. [1-4]

introduced many new concepts, including bipolar fuzzy graphs, interval valued line

fuzzy graphs and strong intuitionistic fuzzy graphs. In this paper, we introduce

certain types of irregular vague graphs. Specifically, we introduce the concepts of

neighbourly irregular vague graphs, neighbourly total irregular vague graphs, highly

irregular vague graphs and highly total irregular vague graphs. We prove a neces-

sary and sufficient condition under which neighbourly irregular and highly irregular

vague graphs are equivalent.

2. Preliminaries

By a graph G∗ = (V,E), we mean a non-trivial, finite, connected and undi-

rected graph without loops or multiple edges. Formally, given a graph G∗ = (V,E),

two vertices x, y ∈ V are said to be neighbors, or adjacent nodes, if xy ∈ E. A path

in a graph G∗ is an alternating sequence of vertices and edges v0, e1, v1, e2, · · · ,vn−1,

en, vn. The path with n+1 vertices is denoted by Pn. A path is sometime denoted

by Pn : v0v1 · · · vn (n > 0). A path Pn : v0v1 · · · vn in G∗ is called a cycle if v0 = vn
and n ≥ 3. Note that path graph, Pn, has n edges and can be obtained from cycle

graph, Cn, by removing any edge. The neighbourhood of a vertex v in a graph G∗

is the induced subgraph of G∗ consisting of all vertices adjacent to v and all edges

connecting two such vertices. The neighbourhood is often denoted N(v). The degree

deg(v) of vertex v is the number of edges incident on v. The set of neighbors, called

a (open) neighborhood N(v) for a vertex v in a graph G∗, consists of all vertices

adjacent to v but not including v, that is, N(v) = {u ∈ V | vu ∈ E}. When v is

also included, it is called a closed neighborhood N [v], that is, N [v] = N(v) ∪ {v}. A

regular graph is a graph where each vertex has the same number of neighbors, i.e.,

all the vertices have the same closed neighbourhood degree. An undirected graph

G∗ is connected if there is a path between each pair of distinct vertices. A connected

graph is highly irregular if each of its vertices is adjacent only to vertices with dis-

tinct degrees. Equivalently, a graph G∗ is highly irregular if every two vertices of
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G∗ connected by a path of length 2 have distinct degrees. A connected graph is said

to be neighbourly irregular if no two adjacent vertices of G∗ have the same degree.

Equivalently, a connected graph G∗ is called neighbourly irregular if every two ad-

jacent vertices of G have distinct degree. For further information, the readers are

referred to [7, 9].

Definition 2.1. [25, 26] A fuzzy subset µ on a set X is a map µ : X → [0, 1]. A

fuzzy binary relation on X is a fuzzy subset µ on X × X. By a fuzzy relation we

mean a fuzzy binary relation given by µ : X ×X → [0, 1].

Definition 2.2. [5] An intuitionistic fuzzy set (IFS, for short) on a universe X is

an object of the form

A = {< x, µA(x), νA(x) > |x ∈ X},

where µA(x)(∈ [0, 1]) is called degree of membership of x in A and νA(x)(∈ [0, 1]) is

called degree of nonmembership of x in A, and µA, νA satisfy the following condition

for all x ∈ X, µA(x) + νA(x) ≤ 1.

Definition 2.3. [14] A vague set A in an ordinary finite nonempty set X is a pair

(tA, fA), where tA : X → [0, 1], fA : X → [0, 1] are true and false membership

functions, respectively such that 0 ≤ tA(x) + fA(x) ≤ 1 for all x ∈ X.

In the above definition, tA(x) is considered as the lower bound for degree

of membership of x in A (based on evidence), and fA(x) is the lower bound for

negation of membership of x in A (based on evidence against). Therefore, the degree

of membership of x in the vague set A is characterized by the interval [tA(x), 1 −

fA(x)]. So, a vague set is a special case of interval valued sets studied by many

mathematicians and applied in many branches of mathematics (see for example

[3, 23, 24]). Also vague sets have many applications (cf. [6, 11, 21]). The interval

[tA(x), 1 − fA(x)] is called the vague value of x in A, and is denoted by VA(x). We

denote zero vague and unit vague value by 0 = [0, 0] and 1 = [1, 1], respectively. It is

worth to mention here that interval-valued fuzzy sets are not vague sets. In interval-

valued fuzzy sets, an interval valued membership value is assigned to each element

of the universe considering the “evidence for x” only, without considering “evidence

against x”. In vague sets both are independently proposed by the decision maker.

This makes a major difference in the judgment about the grade of membership.

A vague relation is a generalization of a fuzzy relation.

Definition 2.4. Let X and Y be ordinary finite nonempty sets. We call a vague

relation to be a vague subset of X × Y , that is, an expression R defined by:

R = {< (x, y), tR(x, y), fR(x, y) > |x ∈ X, y ∈ Y }

where tR : X × Y → [0, 1], fR : X × Y → [0, 1], which satisfies the condition

0 ≤ tR(x, y) + fR(x, y) ≤ 1, for all (x, y) ∈ X × Y . A vague relation R on X is

called reflexive if tR(x, x) = 1 and fR(x, x) = 0 for all x ∈ X. A vague relation R

on X is symmetric if tR(x, y) = tR(y, x) and fR(x, y) = fR(y, x) for all x, y ∈ X.
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A vague set, as well as an intuitionistic fuzzy set [5], is a further generalization

of a fuzzy set. In the literature, the notions of intuitionistic fuzzy sets and vague sets

are regarded as equivalent, in the sense that an intuitionistic fuzzy set is isomorphic

to a vague set [12].

3. Certain types of vague graphs

Throughout this paper, G∗ will be a crisp graph (V,E), and G a vague graph

(A,B). Since an edge xy ∈ E is identified with an ordered pair (x, y) ∈ V × V, a

vague relation on E can be identified with a vague set on E. This gives a possibility

to define a vague graph as a pair of vague sets.

Definition 3.1. [19] Let G∗ = (V,E) be a crisp graph. A pair G = (A,B) is called

a vague graph on a crisp graph G∗ = (V,E), where A = (tA, fA) is a vague set on

V and B = (tB , fB) is a vague set on E ⊆ V × V such that

tB(xy) ≤ min(tA(x), tA(y)) and fB(xy) ≥ max(fA(x), fA(y))

for each edge xy ∈ E.

Definition 3.2. Let G be a vague graph on G∗. If all the vertices have the same

neighbourhood degree m, then G is called a regular vague graph. The neighbourhood

degree of a vertex x in G is defined by deg(x) = (degt(x),degf (x)), where degt(x) =∑
y∈N(x) tA(y) and degf (x) =

∑
y∈N(x) fA(y).

Example 3.1. Consider a vague graph G such that

V = {v1, v2, v3}, E = {v1v2, v2v3, v1v3}.

v2(0.4, 0.1)

v1(0.4, 0.1)

v3(0.4, 0.1)

(0.3, 0.6)

b

bb
(0.3, 0.6)

(0.3, 0.6)

By routine computations, we have deg(v1) = deg(v2) = deg(v3) = (0.8, 0.2). It is

clear that G is a regular vague graph.

Definition 3.3. Let G be a vague graph on G∗. If there is a vertex which is adjacent

to vertices with distinct neighbourhood degrees, then G is called an irregular vague

graph. That is, deg(x) 6= m for all x ∈ V .

Example 3.2. Consider a vague graph G such that

V = {v1, v2, v3}, E = {v1v2, v2v3, v1v3}.
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v2(0.2, 0.7)

v1(0.2, 0.6)

v3(0.3, 0.4)

(0.1, 0.7)

b

bb
(0.2, 0.7)

(0.1, 0.8)

By routine computations, we have deg(v1) = (0.5, 1.1), deg(v2) = (0.5, 1.0) and

deg(v3) = (0.4, 1.3). It is clear that G is an irregular vague graph.

Definition 3.4. Let G be a vague graph. The closed neighbourhood degree of a

vertex x is defined by deg[x] = (degt[x],degf [x]), where

degt[x] = degt(x) + tA(x),

degf [x] = degf (x) + fA(x).

If there is a vertex which is adjacent to vertices with distinct closed neighbourhood

degrees, then G is called a totally irregular vague graph.

Example 3.3. Consider a vague graph G such that

V = {v1, v2, v3, v4, v5}, E = {v1v2, v2v3, v2v4, v3v1, v3v4, v4v1, v4v5}.

b

b b

b
v2(0.3, 0.5)v1(0.4, 0.6)

v4(0.4, 0.6) v3(0.3, 0.7)(0.3, 0.7)

(0
.1

,0
.7

)

(0.2, 0.7)

(0.1, 0.8)

(0.2, 0.7)

(0
.2

,0
.7

)

b
v (0.2, 0.7)

5

(0.1, 0.8)

By routine computations, we have deg[v1] = (1.4, 2.4), deg[v2] = (1.4, 2.4), deg[v3] =

(1.4, 2.4), deg[v4] = (1.6, 3.1) and deg[v5] = (0.6, 1.3). It is clear from calculations

that G is a totally irregular vague graph.

Definition 3.5. A connected vague graph G is said to be a neighbourly irregular

vague graph if every two adjacent vertices of G have distinct neighbourhood degree.

Example 3.4. Consider a vague graph G such that

V = {v1, v2, v3, v4}, E = {v1v2, v2v3, v3v4, v4v1}.
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b

b b

b
v (0.3, 0.7)v (0.2, 0.6)

v (0.5, 0.5) v (0.4, 0.4)(0.3, 0.6)

1 2

34

(0.2, 0.7)

(0.1, 0.8)

(0.1, 0.7)

By routine computations, we have deg(v1) = (0.8, 1.2), deg(v2) = (0.6, 1.0), deg(v3) =

(0.8, 1.2) and deg(v4) = (0.6, 1.0). Hence G is neighbourly irregular vague graph.

Definition 3.6. A connected vague graph G is said to be a neighbourly total irregular

vague graph if if every two adjacent vertices of G have distinct closed neighbourhood

degree.

Example 3.5. Consider a vague graph G such that

V = {v1, v2, v3}, E = {v1v2, v2v3, v1v3}.

b

b b

b
v (0.4, 0.5)v (0.3, 0.6)

v (0.5, 0.4) v (0.7, 0.2)(0.3, 0.6)

1 2

34

(0.2, 0.7)

(0.2, 0.6)

(0.2,0.7)

By routine computations, we have deg[v1] = (1.2, 1.5), deg[v2] = (1.4, 1.3), deg[v3] =

(1.6, 1.1) and deg[v4] = (1.5, 1.2). Hence G is neighbourly total irregular vague graph.

Definition 3.7. Let G be a connected vague graph. G is called a highly irregular

vague graph if every vertex of G is adjacent to vertices with distinct neighbourhood

degrees.

Lemma 3.1. A highly irregular vague graph may not be a neighbourly irregular

vague graph.

Lemma 3.13 follows from the following example.

Example 3.6. Consider a vague graph G such that

V = {v1, v2, v3, v4, v5}, E = {v1v2, v2v3, v2v6, v3v4, v3v5, v4v5, v5v1}.
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b

b b

b
v (0.4, 0.1)v (0.2, 0.6)

v (0.3, 0.4) v (0.7, 0.3)(0.3, 0.6)

1 2

35

(0.2, 0.6)

(0.2, 0.7)

(0.1, 0.8)b (0
.1, 0.8)

(0.2, 0.7)

v (0.3, 0.1)6

b

(0.1, 0.7)

v (0.5, 0.6)
4

By routine computations, we have deg(v1) = (0.7, 0.5), deg(v2) = (1.2, 1.0), deg(v3) =

(1.2, 1.0), deg(v4) = (1.0, 0.7), deg(v5) = (1.4, 1.4) and deg(v6) = (0.4, 0.1). Con-

sider a vertex v2 ∈ V which is adjacent to the vertices v1, v3 and v6 with distinct

neighbourhood degrees. But deg(v2) = deg(v3). Hence G is highly irregular vague

graph but it is not a neighborly irregular vague graph.

Example 3.7. Consider a vague graph G such that

V = {v1, v2, v3, v4}, E = {v1v2, v2v3, v3v4, v4v1}.

b

b b

b
v (0.2, 0.5)v (0.3, 0.4)

v (0.4, 0.3) v (0.5, 0.5)(0.2,0.6)

1 2

34

(0.1, 0.8)

(0.2, 0.7)

(0.1, 0.7)

By routine computations, we have deg(v1) = (0.6, 0.8), deg(v2) = (0.8, 0.9), deg(v3) =

(0.6, 0.8), deg(v4) = (0.8, 0.9). We see that every two adjacent vertices have distinct

neighbourhood degree. But consider a vertex v2 which is adjacent to the vertices v1
and v3 has same degree, that is, deg(v1) = deg(v3). Hence G is neighbourly irregular

vague graph but not a highly irregular vague graph.

Lemma 3.2. A neighbourly irregular vague graph may not be a highly irregular

vague graph.

Theorem 3.1. Let G be a vague graph. Then G is highly irregular vague graph and

neighbourly vague graph if and only if the neighbourhood degrees of all the vertices

of G are distinct.

Proof. Let G be a vague graph with n-vertices v1, v2, . . . , vn. Assume that G is

highly irregular vague graph and neighbourly vague graph.

Claim: The neighbourhood degrees of all vertices of G are distinct. Let deg(vi) =



148 Muhammad Akram, Feng Feng, Shahzad Sarwar, Youne Bae Jun

(ki, li), i = 1, 2, ..., n. Let the adjacent vertices of v1 be v2, v3, . . . , vn with neighbour-

hood degrees

(k2, l2), (k3, l3), . . . , (kn, ln),

respectively. Then we’ve k2 6= k3 6= · · · 6= kn and l2 6= l3 6= ... 6= ln, since G is highly

irregular. Also k1 6= k2 6= k3 6= . . . 6= kn and l1 6= l2 6= l3 6= . . . 6= ln, since G is

neighbourly irregular. Hence, the neighbourhood degree of all the vertices of G are

distinct.

Conversely, assume that the neighbourhood degrees of all the vertices of G are dis-

tinct.

Claim: G is highly irregular and neighbourly irregular vague graph.

Let deg(vi) = (ki, li), i = 1, 2, . . . , n. Given that k1 6= k2 6= k3 6= ... 6= kn and

l1 6= l2 6= l3 6= ... 6= ln, which implies that every two adjacent vertices have dis-

tinct neighbourhood degrees and to every vertex, the adjacent vertices have distinct

neighbourhood degrees. �

Theorem 3.2. A vague graph G of G∗, where G∗ is a cycle with vertices 3 is neigh-

bourly irregular and highly irregular vague graph if and only if the true membership

and false membership value of the vertices between every pair of vertices are all

distinct.

Proof. Assume that true membership and false membership value of the vertices are

all distinct. Claim: G is neighbourly irregular and highly irregular vague graph.

Let vi, vj , vk ∈ V . Given that, tA(vi) 6= tA(vj) 6= tA(vk) and fA(vi) 6= fA(vj) 6=

fA(vk), which implies that
∑

x∈N(x) tA(vi) 6=
∑

x∈N(x) tA(vj) 6=
∑

x∈N(x) tA(vk) and∑
x∈N(x) fA(vi) 6=

∑
x∈N(x) fA(vj) 6=

∑
x∈N(x) fA(vk). That is, deg(vi) 6= deg(vj) 6=

deg(vk). Hence G is neighbourly irregular and highly irregular vague graph.

Conversely, assume that G is neighbourly irregular and highly irregular.

Claim: true membership and false membership value of the vertices are all distinct.

Let deg(vi) = (ki, li), i = 1, 2, . . . , n. Suppose that true membership and false mem-

bership value of any two vertices are same. Let v1, v2 ∈ V . Let tA(v1) = tA(v2) and

fA(v1) = fA(v2). Then deg(v1) = deg(v2), since G
∗ is cycle, which is a contradiction

to the fact that G is neighbourly irregular and highly irregular vague graph. Hence

true membership and false membership value of the vertices are all distinct. �

Definition 3.8. A vague graph G is called complete if

tB(xy) = min(tA(x), tA(y)) and fB(xy) = max(fA(x), fA(y))

for each edge xy ∈ E.

Proposition 3.1. A complete vague graph needed not be neighbourly irregular vague

graph.

Example 3.8. Consider a vague graph G such that

V = {v1, v2, v3}, E = {v1v2, v2v3, v1v3}.
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b

b

bv (0.4, 0.6)

v (0.2, 0.7)

v (0.4, 0.6)(0.2, 0.7)

(0.1, 0.8) (0.2, 0.7)

1

3

2

By routine computations, we have deg(v1) = (0.6, 1.3), deg(v2) = (0.6, 1.3) and

deg(v3) = (0.8, 1.2). We see that neighbourhood degree of v1 and v2 are not distinct.

Hence G is not neighbourly irregular vague graph but complete vague graph.

Proposition 3.2. A neighbourly irregular vague graph needed not be a neighbourly

total irregular vague graph

Example 3.9. Consider a vague graph G such that

V = {v1, v2, v3, v4}, E = {v1v2, v2v3, v3v4, v4v1}.

b

b b

bv (0.4, 0.6)

v (0.4, 0.5) v (0.4, 0.5)

v (0.3, 0.4)

4 3

2
1 (0.1, 0.7)

(0.1, 0.8)(0.2, 0.6)

(0.1, 0.7)

By routine computations, we have deg(v1) = (0.7, 0.9), deg(v2) = (0.8, 1.1), deg(v3) =

(0.7, 0.9), deg(v4) = (0.8, 1.1) and deg[v1] = (1.1, 1.5), deg[v2] = (1.1, 1.5), deg[v3] =

(1.1, 1.4), deg[v4] = (1.2, 1.6). We see that deg[v1] = deg[v2]. Hence G is neighbourly

irregular vague graph but not a neighbourly total vague graph.

Proposition 3.3. A neighbourly total irregular vague graph need not be a neigh-

bourly irregular vague graph.

Example 3.10. Consider a vague graph G such that

V = {v1, v2, v3, v4}, E = {v1v2, v2v3, v3v4, v4v1}.

b

b b

b
v (0.4, 0.5)v (0.3, 0.6)

v (0.5, 0.4) v (0.6, 0.3)(0.2, 0.7)

1 2

34

(0.03,0.8)

(0.1, 0.7)

(0.1, 0.8)

By routine computations, we have deg[v1] = (1.2, 1.5), deg[v2] = (1.3, 1.4), deg[v3] =

(1.5, 1.2), deg[v4] = (1.4, 1.3). But deg(v1) = deg(v2) = deg(v2) = (0.9, 0.9). Hence
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G is neighbourly total irregular vague graph but not a neighbourly irregular vague

graph.

Proposition 3.4. Let G be a vague graph. If G is neighbourly irregular vague

graph and (tA, fA) is a constant function, then G is a neighbourly total irregular

vague graph.

Proof. Assume that G is a neighbourly irregular vague graph. That is the neigh-

bourhood degrees of every two adjacent vertices are distinct. Let vi, vj ∈ V , where vi
and vj are adjacent vertices with distinct neighbourhood degrees (k1, l1) and (k2, l2)

respectively. That is deg(vi) = (k1, l1) and deg(vj) = (k2, l2), where k1 6= k2 ,

l1 6= 12. Let us assume that (t1(vi), f1(vi)) = (t1(vj), f1(vj)) = (c1, c2), where c1, c2
are constant and c1, c2 ∈ [0, 1]. Therefore, degt[vi] = degt(vi) + t1(vi) = k1 + c1 and

degf [vi] = degf (vi) + f1(vi) = l1 + c2 degt[vj ] = degt(vj) + t1(vj) = k2 + c1 and

degf [vj ] = degf (vj) + f1(vj) = l2 + c2
Claim: degt[vi] 6= degt[vj ] and degf [vi] 6= degf [vj ]. Suppose that, degt[vi] = degt[vj ]

and degf [vi] = degf [vj]. Consider

degt[vi] = degt[vj ]

k1 + c1 = k2 + c1

k1 − k2 = c1 − c1 = 0

k1 = k2, which is a contradiction to k1 6= k2.

Therefore, degt[vi] 6= degt[vj]. Similarly, we consider

degf [vi] = degf [vj ]

l1 + c2 = l2 + c2

l1 − l2 = c2 − c2 = 0

l1 = l2, which is a contradiction to l1 6= l2.

Therefore, degf [vi] 6= degf [vj]. Hence G is a neighbourly total irregular vague

graph. �

Proposition 3.5. Let G be a vague graph. If G is a neighbourly total irregular and

(tA, fA) is a constant function, then G is a neighbourly irregular vague graph.

Proof. Assume thatG is a neighbourly total irregular vague graph. That is the closed

neighbourhood degree of every two adjacent vertices are distinct. Let vi, vj ∈ V and

deg[vi] = (k1, l1), deg[vj] = (k2, l2), where k1 6= k2 and l1 6= l2. Assume that,

(t1(vi), f1(vi)) = (c1, c2) and (t1(vj), f1(vj)) = (c1, c2), where c1, c2 ∈ [0, 1] are con-

stant and deg[vi] 6= deg[vj ].

Claim: deg(vi) 6= deg(vj)

Given that deg[vi] 6= deg[vj ] which implies degt[vi] 6= degt[vj ] and degf [vi] 6=
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degf [vj ]. Now, we consider

degt[vi] 6= degt[vj]

k1 + c1 6= k2 + c1

k1 6= k2.

We now consider

degf [vi] 6= degf [vj ]

l1 + c2 6= l2 + c2

l1 6= l2.

that is, the neighbourhood degrees of adjacent vertices of G are distinct. Hence

neighbourhood degree of every pair of adjacent vertices is distinct in G. �

From propositions 3.26 and 3.27, we conclude that:

Theorem 3.3. Let G be a vague graph such that (tA, fA) is a constant vague set.

Then G is a neighbourly total irregular vague graph if and only if G is a neighbourly

irregular vague graph.

Remark 3.1. Let G be a vague graph. If G is both neighbourly irregular and neigh-

bourly total irregular vague graph, then (tA, fA) may not be a constant function.

Example 3.11. Consider a vague graph G such that

V = {v1, v2, v3}, E = {v1v2, v2v3, v1v3}.

b

b b

b
v (0.3, 0.7)v (0.2, 0.6)

v (0.7, 0.3) v (0.4, 0.5)(0.2, 0.7)

1 2

34

(0.1, 0.7)

(0.1, 0.8)

(0.2,0.7)

Clearly, G is neighbourly irregular and neighbourly total irregular vague graph, but

membership and non-membership value of the vertices are not a constant function.

Remark 3.2. If G is neighbourly irregular vague graph, then vague subgraph H =

(A′, B′) of G may not be neighbourly irregular vague graph.

Example 3.12. Consider a vague graph G such that

V = {v1, v2, v3, v4, v5}, E = {v1v2, v2v3, v3v1, v3v4, v4v1, v4v5, v5v1}.

Consider H = (A′, B′)such that V ′ = {v1, v2, v3}, E
′ = {v1v2, v2v3, v3v1}.
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b

b b

b v (0.1, 0.6)v (0.6, 0.2)

v (0.6, 0.4) v (0.7, 0.2)(0.2, 0.7)

1 3

45

(0.1, 0.7)

(0.1, 0.8)
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(1)For G: by routine computations, we have deg(v1) = (2.0, 1.4), deg(v2) = (0.7, 0.8),

deg(v3) = (1.9, 0.6), deg(v4) = (1.3, 1.2) and deg(v5) = (1.3, 0.4).

(2) For H: by routine computations, we have deg(v1) = (0.7, 0.8), deg(v2) =

(0.7, 0.8) and deg(v3) = (1.2, 0.4). It is easy to see that v1 and v2 are adjacent

vertices with same neighbourhood degree in H. Hence H is not a neighbourly irreg-

ular vague graph but G is neighbourly irregular vague graph.

Proposition 3.6. If G is total irregular vague graph, then vague subgraph H =

(A′, B′) of G may not be total irregular vague graph.

Example 3.13. Consider a vague graph G such that V = {v1, v2, v3, v4},

E = {v1v2, v2v3, v2v4, v3v4, v3v1, v4v1}. Consider H = (A′, B′), such that V ′ =

{v1, v2, v3}, E
′ = {v1v2, v2v3, v3v1}.
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(1) G: By routine computations, we have deg[v1] = (1.4, 2.4), deg[v2] = (1.0, 1.8),

deg[v3] = (1.4, 2.4), deg[v4] = (1.1, 1.9). Here there is a vertex v3 which is adjacent

to v1, v2 and v4, where deg[v1] 6= deg[v2] 6= deg[v4].

(2) H: By routine computations, we have deg[v1] = (1.0, 1.8), deg[v2] = (1.0, 1.8)

and deg[v3] = (1.0, 1.8). Here, there is a vertex v1 which is adjacent to the vertices

v2 and v3 with same closed neighbourhood degree. Also, v2 which is adjacent to the

vertices v1 and v3 with same closed neighbourhood degree and v3 which is adjacent

to the vertices v1 and v2 with same closed neighbourhood degree. Hence H is not a

total irregular vague graph but G is total irregular vague graph.

4. Conclusions

In the real world there are vaguely specified data values in many applications.

Fuzzy set theory has been proposed to handle such vagueness by generalizing the
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notion of membership in a set. Essentially, in a fuzzy set each element is associ-

ated with a point-value selected from the unit interval [0, 1], which is termed the

grade of membership in the set. Instead of using point-based membership as in

fuzzy sets, interval-based membership is used in a vague set. The interval-based

membership in vague sets is more expressive in capturing vagueness of data. There

are some interesting features for handling vague data that are unique to vague sets,

such as vague sets allow for a more intuitive graphical representation of vague data,

which facilitates significantly better analysis in data relationships, incompleteness,

and similarity measures. The notion of vague sets was initially incorporated into

relations. Based on vague relations, we have introduced the certain types of vague

graphs in this paper. The natural extension of this research work is application of

vague graphs in the area of computing including neural networks, expert systems,

database theory, and geographical information systems.
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