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1. Introduction

The notion of entropy, as a measure of information content, was first intro-
duced in 1948 by Shannon. The roots of this issue can be traced back to statistical
mechanics, which is originated in the work of Boltzmann who studied the relation
between entropy and probability in physical systems in 1870’s. Entropy has also
generalized around 1932 to quantum mechanics by von Neumann.

Topological entropy is a nonnegative real number that measures the complexity
of systems on topological spaces and it is the greatest type of entropy of a system.
Topological entropy is introduced in 1965 by Adler, Konheim and McAndrew [1],
and subsequently studied by many researchers, see for instance [7]. For a system
given by an iterated function, the topological entropy represents the exponential
growth rate of the number of distinguishable orbits of the iterates. To be more
precise, let (X, d) be a compact metric space and T : X → X be a homeomorphism.
Let dn(x, y) = max0≤i≤n−1 d(T

i(x), T i(y)) for all n ∈ N. Each dn is a metric on
X and the dn’s are all equivalent metrics in the sense that they induce the same
topology on X. Fix ϵ > 0 and let n ∈ N. A set F in X is (n, ϵ)-spanning if for every
point x ∈ X there exists a point y ∈ F such that dn(x, y) < ϵ. By compactness,
there are finite (n, ϵ)-spanning sets. Let rn(ϵ, T ) be the minimum cardinality of the
(n, ϵ)-spanning sets. A set E ⊂ X is (n, ϵ)-separated if the dn-distance between any
two distinct points in E is at least ϵ. Let sn(ϵ, T ) be the maximum cardinality of
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(n, ϵ)-separated sets. Then

htop(T ) = lim
ϵ→0

lim
n→∞

1

n
log sn(ϵ, T ) = lim

ϵ→0
lim
n→∞

1

n
log rn(ϵ, T )

is called the topological entropy of T , see [2].
We intend to study the topological entropy of a dynamical system (X,T )

whose underlying space X is a dynamical space, that is, a space on which some
topological group G acts continuously. In this case, the triple (X,G, θ) is called a
metric G-space, in which θ : G×X → X is a continuous action, see [6]. If Y ⊆ X,
then Y is G-invariant if gY = Y for all g ∈ G. Given a subset A of X, the G-orbit
of A is defined by

G(A) = GA = {ga | g ∈ G, a ∈ A}.

If x ∈ X, then Gx is the G-orbit passing through x. Clearly, each G-orbit is a
G-invariant subset of X. The orbit space for the action of G on X is the quotient
topological space X/G. In particular, if G is compact, then the quotient map π : x ∈
X 7→ Gx ∈ X/G is an open, closed and proper (the inverse image of each compact
set is compact) map and X/G is a Hausdorff space. Moreover, X/G equipped with
the metric defined by

d(Gx,Gy) = inf{d(u, v) : u ∈ Gx, v ∈ Gy} ; Gx,Gy ∈ X/G

is a compact metric space, see [4]. The isotropy subgroup at a point x ∈ X is the
set Gx = {g ∈ G | gx = x}, which is a closed subgroup of G. The action of G on X
is called

(1) trivial when Gx = G, or equivalently, Gx = {x} for all x ∈ X;
(2) transitive provided that Gx = X for all x ∈ X;
(3) minimal if Gx = X for all x ∈ X.

Given two metric G-spaces X and Y , a map T : X → Y is called G-equivariant if
T (gx) = gT (x) for all x ∈ X and g ∈ G, and it is called G-pseudo equivariant if
T (Gx) = G(Tx) for all x ∈ X.

Let T : X → X and S : Y → Y be two homeomorphisms of compact G-spaces
X and Y , respectively. We say that T is topologically G-conjugate to S if there
exists a G-equivariant homeomorphism ϕ : X → Y such that ϕ ◦ T = S ◦ ϕ. The
homeomorphism ϕ is called a G-conjugacy.

2. Topological G-Entropy of a Homeomorphism

Thomas [9, 10] introduced a measure theoretic entropy for transformations of
G-spaces. On the other hand, the notion of topological entropy has been extended
from different viewpoints, which can be found in [8], where Malziri and Molaei
presented the notion of base for a dynamical system on a non compact metric space,
and used this notion to define a new kind of entropy. Here, we present a new
extension of topological entropy using compact G-spaces. Throughout this paper,
X denotes a compact metric G-space in which G a compact group and T : X → X
denotes a homeomorphism of X.
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Definition 2.1. Let X be a compact metric G-space. For each positive integer n
we define a metric d̄n : X/G×X/G → [0,∞) by

d̄n(Gx,Gy) = inf{dn(u, v) : u ∈ Gx, v ∈ Gy}, Gx,Gy ∈ X/G,

where dn is defined as in section 1.

Since G is compact, (X/G, d̄n) is a compact metric space. By Bn(δ,Gx) we
mean an open ball with d̄n-diameter less than δ in X/G.

Definition 2.2. Let cn(ϵ,G, T ) be the minimum number of coverings of X/G by the
sets of d̄n-diameter less than ϵ. Then the limit

hG(T, ϵ) = lim
n→∞

1

n
log cn(ϵ,G, T )

exists and is monotonically increasing as ϵ → 0. So hG(T ) = limϵ→0+ hG(T, ϵ) is
well defined and we call it the topological G-entropy of T .

A subset F of X/G is said to be (n, ϵ,G)-spanning if for each Gx ∈ X/G there
exists Gy ∈ F such that d̄n(Gx,Gy) < ϵ. Since X/G is compact, there exist (n, ϵ,G)-
spanning sets with finite cardinality. Let rn(ϵ,G, T ) be the minimum cardinality of
(n, ϵ,G)-spanning sets of T .

A subset E of X/G is said to be an (n, ϵ,G)-separated set if Gx,Gy ∈ E

and G(x) ̸= G(y) implies that d̄n(Gx,Gy) ≥ ϵ. Let sn(ϵ,G, T ) be the maximum
cardinality of (n, ϵ,G)-separated sets for T .

Lemma 2.1. If X is a compact metric G-space and T : X → X is a homeomor-
phism, then the following results hold.

(1) cn(2ϵ,G, T ) ≤ rn(ϵ,G, T ) ≤ sn(ϵ,G, T ) ≤ cn(
ϵ
2 , G, T );

(2) For any subgroup H of G, sn(ϵ,H, T ) ≥ sn(ϵ,G, T ) and rn(ϵ,H, T ) ≥ rn(ϵ,G, T ).

Proof. (1) If E is an (n, ϵ,G)-separated set of maximum cardinality, then it is an
(n, ϵ,G)-spanning set and hence rn(ϵ,G, T ) ≤ sn(ϵ,G, T ).

Now, suppose that F is an (n, ϵ,G)-spanning set of minimum cardinality. The
family

{Bn(ϵ,Gx) : Gx ∈ F}
is an open cover for X/G. By compactness of X/G we can choose ϵ′ < ϵ so that the
family {Bn(ϵ

′, Gx) : Gx ∈ F} covers X/G. Since the diameter of this family is less
than 2ϵ, we have cn(2ϵ,G, T ) ≤ rn(ϵ,G, T ).

To prove the last inequality, let E be an (n, ϵ,G)-separated set with cardinality
sn(ϵ,G, T ) and let C be an open cover with d̄n-diameter less than ϵ/2. Then no
member of C contains two elements of E. Therefore sn(ϵ,G, T ) ≤ cn(ϵ/2, G, T ).

(2) This part follows from the fact that d̄n(Gx,Gy) ≤ d̄n(Hx,Hy) for each
x, y ∈ X. �

Proposition 2.1. Let X be a compact metric G-space and T : X → X be a home-
omorphism. Then the following results hold.

(1) hG(T ) = limϵ→0+ limn→∞
1
n log sn(ϵ,G, T );

(2) hG(T ) = limϵ→0+ limn→∞
1
n log rn(ϵ,G, T );
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(3) hH(T ) ≥ hG(T ) for each subgroup H of G;
(4) 0 ≤ hG(T ) ≤ htop(T );

(5) If there is a point x ∈ X such that Gx = X, then hG(T ) = 0;
(6) If the action is minimal, then hG(T ) = 0;
(7) If the action is transitive, then hG(T ) = 0;
(8) If the action is trivial, then hG(T ) = htop(T ).
(9) If G is a finite group, then hG(T ) = htop(T ).

Proof. The parts (1) and (2) follow immediately from Lemma 2.1(1). Also, the part
(3) is a direct result of Lemma 2.1(2). The part (4) follows from Lemma 2.1(2) with
H = {e}.

To prove part (5), let ϵ > 0 be given and n ∈ N. Then there exists δ > 0
such that d(x, y) < δ implies dn(x, y) < ϵ. We show that F = {Gx} is an (n, ϵ,G)-
spanning set. To end this, notice that if Gy ∈ X/G and g1 ∈ G, then there exists
g2 ∈ G such that d(g1y, g2x) < δ. Thus dn(g1y, g2x) < ϵ, so that dn(Gx,Gy) < ϵ.

The parts (6) and (7) follow from (5), and part (8) is obvious.
(9) Suppose that G = {g1, g2, . . . , gk}. Choose ϵ > 0 small enough such that

s0(ϵ, T ) ≥ k2 and let n ∈ N. Then, there exists δ ∈ (0, ϵ) such that d(x, y) < δ
implies that maxg∈G dn(gx, gy) < ϵ. Hence, there exist a number m ∈ N and
0 ≤ r ≤ K2−1 such that sn(ϵ, T ) = mk2+r. We show that sn(δ,G, T ) ≥ m. Suppose
that E = {x1, x2, . . . , xmk2+r} and sn(δ,G, T ) = l < m. Let E = {Gx1, . . . , Gxl}
be an (n,G, δ/2)-separated set, hence dn(Gxi, Gxj) ≥ δ/2 for each i, j ∈ {1, . . . l},
and that for each i ∈ {l + 1, . . . ,mk2 + r} there exists j ∈ {1, . . . l} in such a way
that dn(Gxi, Gxj) < δ/2. By invoking pigeonhole principle, there exists an index
j0 ∈ {1, . . . , l} such that the number of indeces i ∈ {l + 1, . . . ,mk2 + r} for which
dn(Gxi, Gxj0) < δ/2 is at least ⌊(mk2 + r − l)l−1⌋. The total number of possible
selections of disjoint pairs in G is k(k − 1) and it is less than ⌊(mk2 + r − l)l−1⌋.
Thus there are an index i and an element g ∈ G such that dn(gxi, gxj0) < δ. Then
dn(xi, xj0) < ϵ, which is a contradiction. Therefore

hG(T ) = lim
ϵ→0

lim
n→∞

1

n
log sn(δ,G, T )

≥ lim
ϵ→0

lim
n→∞

1

n
log

sn(ϵ, T )− r

k2
= lim

ϵ→0
lim
n→∞

1

n
log sn(ϵ, T ) = htop(T ),

as required. �

3. Some properties of topological G-entropy

Definition 3.1. A homeomorphism T : X → X on a metric G-space X is said to be
weak G-expansive if there exists δ > 0 such that for every x, y ∈ X with Gx = Gy,
u ∈ Gx and v ∈ Gy, it follows that

d(Tn(u), Tn(v)) > δ

for some n = n(u, v) ∈ Z. The constant δ is called a weak G-expansive constant for
T .

Weak G-expansivity is a generalization of both expansivity and G-expansivity, see
[5].
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Theorem 3.1. Let T be a pseudo-equivariant homeomorphism on a compact metric
G-space (X, d). If T is weak G-expansive with constant δ, then hG(T ) = hG(T, ϵ)
for any ϵ ∈ (0, δ).

Proof. Fix γ and ϵ with 0 < 2γ < ϵ < δ. It is enough to show that hG(T, 2γ) =
hG(T, ϵ). Since T is weak G-expansive, for two elements x and y not in the same
G-orbit, there exists a number n = n(x, y) such that d(Tn(x), Tn(y)) ≥ δ > ϵ. The
set {(x, y) : d(Gx,Gy) ≥ γ} is compact and

{(x, y) : d(Gx,Gy) ≥ γ} ⊂
∪
i∈Z

{(x, y) : d(T i(x), T i(y)) > ϵ}.

Then, by compactness, there is a number k ∈ N such that if d(Gx,Gy) > γ then
d(T i(x), T i(y)) > ϵ for some |i| ≤ k.

Let E be an (n,G, γ)-separated set for T and Ẽ = T̃−kE. We show that

Ẽ is an (n + 2k, ϵ,G)-separated set for T . Suppose that Gx and Gy are distinct

G-orbits in Ẽ, u ∈ Gx and v ∈ Gy. Then GT k(u) and GT k(v) are distinct G-
orbits in E. Therefore, dn(GT k(u), GT k(v)) ≥ γ. So, there is a number i with
|i| ≤ k such that dn(T

i+k(u), T i+k(v)) > ϵ, and this shows that dn+2k(Gx,Gy) > ϵ.
Hence, cn(2γ, g, T ) ≤ sn(γ,G, T ) ≤ sn+2k(ϵ,G, T ) and so we obtain hG(T, 2γ) ≤
hG(T, ϵ). On the other hand, by monotonicity, we have hG(T, 2γ) ≥ hG(ϵ, T ), giving
hG(T, 2γ) = hG(T, ϵ). �

Theorem 3.2. For each m ∈ N, hG(Tm) = mhG(T ).

Proof. Let F be an (mn, ϵ,G)-spanning set for T of maximal cardinality. Then for
each Gx ∈ X/G there exists Gy ∈ F such that d̄mn(Gx,Gy) < ϵ, which implies that
dmn(gx, g

′y) < ϵ for some g, g′ ∈ G. Hence, d(T igx, T ig′y) < ϵ for all 0 ≤ i ≤ mn−1
and so

d(Tmigx, Tmig′y) < ϵ, for all 0 ≤ i ≤ n− 1.

Therefore, F is an (n, ϵ,G)-spanning set for Tm and accordingly

rn(ϵ,G, Tm) ≤ rmn(ϵ,G, T ),

which implies that hG(T ) ≤ mhG(T ). Since T is uniformly continuous, for each
ϵ > 0 there exists a number δ > 0 such that max0≤i≤m−1 d(T

ix, T iy) < ϵ whenever
d(x, y) < δ. So, every (n, ϵ,G)-spanning set for Tm is an (n, ϵ,G)-spanning set for
T , too. Thus rn(δ,G, Tm) ≥ rmn(ϵ,G, T ) and consequently hG(T

m) ≥ mhG(T ). �

Let (X, d) and (Y, ρ) be metric G- and H-spaces, respectively. We define a
metric d on X × Y by D((x, y), (x′, y′)) = max{d(x, x′), ρ(y, y′)}. Obviously, X × Y
is a metric (G×H)-space with the action

(G×H)× (X × Y ) → X × Y
((g, h), (x, y)) 7→ (gx, hy).

Utilizing the above action, we have the following result.

Theorem 3.3. Let T and S be homeomorphisms of G-space X and H-space Y ,
respectively. Then hG×H(T × S) = hG(T ) + hH(S).
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Proof. Let F be an (n, ϵ,G)-spanning set with minimal cardinality for T and let
F′ be an (n, ϵ,H)-spanning set with minimal cardinality for S. Then F × F′ is an
(n, ϵ,G×H)-spanning set for T × S. Hence

rn(ϵ,G×H,T × S) ≤ rn(ϵ,G, T ).rn(ϵ,H, S)

so that hG×H(T × S) ≤ hG(T ) + hH(S).
Now, let E be an (n, ϵ,G)-separated set with maximal cardinality for T and

E′ be an (n, ϵ,H)-separated set with maximal cardinality for S. Then E × E′ is an
(n, ϵ,G×H)-separated set for T × S. Hence

sn(ϵ,G, T ).sn(ϵ,H, S) ≤ sn(ϵ,G×H,T × S)

and consequently hG(T ) + hH(S) ≤ hG×H(T × S). �

4. Topological G-entropy and conjugacy

In this section, we show that the topological G-entropy is an invariant of
topological G-conjugacy.

Theorem 4.1. Let T : X → X and S : Y → Y be homeomorphisms of compact
metric G-spaces. If T is topologically G-conjugate to S, then hG(T ) = hG(S).

Proof. Let ϕ be a topological G-conjugacy satisfying ϕ ◦ T = S ◦ ϕ and assume
that ϵ > 0. Then there exists a number δ > 0 such that the inequality d(x, y) < δ
implies d(ϕ(x), ϕ(y)) < ϵ for all x, y ∈ X. Let E be an (n, ϵ,G)-separated set
with maximal cardinality for S. We show that ϕ−1E = {ϕ−1(Gx); Gx ∈ E} is an
(n, δ,G)-separated set for T . To end this, let Gϕ−1(x) and Gϕ−1(y) be distinct
points in ϕ−1E. If dn(Gϕ−1(x), Gϕ−1(y)) < δ, then

max
0≤i≤n−1

d(ϕ−1SiGx, ϕ−1SiGy) = max
0≤i≤n−1

d(T iϕ−1Gx, T iϕ−1Gy) < δ.

Therefore,

d̄n(Gx,Gy) = max
0≤i≤n−1

d(SiG(x), SiG(y)) < ϵ,

which is a contradiction for Gx and Gy are distinct points of E. This contradiction
shows that dn(Gϕ−1(x), Gϕ−1(y)) ≥ δ, that is, ϕ−1E is an (n, δ,G)-separated set.
Thus sn(ϵ,G, S) ≤ rn(δ,G, T ), giving hG(S) ≤ hG(T ). Similarly, we have hG(T ) ≤
hG(S), hence the result follows. �

5. Topological G-pressure

The well-known notion of topological pressure for additive potentials was in-
troduced by Ruelle [3] in 1973 for expansive maps acting on compact metric spaces.

Definition 5.1. Let X be a compact metric G-space and T : X → X be a homeo-
morphism. Denote by C(X,R) the space of all real valued functions of X. Let n ∈ N.
For each f ∈ C(X,R) define Snf =

∑n−1
i=0 f ◦ T i and

Pn(ϵ,G, T, f) = inf

{ ∑
Gx∈F

inf
u∈Gx

eSnf(u)| F is an (n, ϵ,G)− spanning set

}
.
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Clearly, Pn(ϵ,G, T, 0) = rn(ϵ,G, T ) and

0 ≤ Pn(ϵ,G, T, f) ≤ ∥eSnf∥rn(ϵ,G, T ).

Definition 5.2. Let X be a compact metric G-space and T : X → X be a homeo-
morphism. For f ∈ C(X,R) we define

P (ϵ,G, T, f) = lim sup
1

n
logPn(ϵ,G, T, f).

If ϵ1 < ϵ2 then we have Pn(ϵ1, G, T, f) ≥ Pn(ϵ2, G, T, f). Thus Pn(ϵ,G, T, f) (and
hence P (ϵ,G, T, f)) is decressing in terms of ϵ. Therefore, the following limit exists

lim
ϵ→0+

P (ϵ,G, T, f).

Definition 5.3. Let X be a compact metric G-space and let T : X → X be a
homeomorphism. The topological G-pressure of T is the map PG(T, .) : C(X,R) →
R ∪ {∞} defined via

PG(T, f) = lim
ϵ→0

P (ϵ,G, T, f).

Remark 5.1. Let X be a compact metric G-space and T : X → X be a homeomor-
phism. If f, g ∈ C(X,R), then
(1) PG(T, 0) = hG(T ),
(2) if f ≤ g then PG(T, f) ≤ PG(T, g), and
(3) If H is a subgroup of G, then PG(T, f) ≤ PH(T, f).

Theorem 5.1. Let (X, d) and (Y, ρ) be two G-spaces. If T : X → X and S : Y → Y
are two countinuous maps and ϕ : X → Y is a G-pseudoequivariant homeomorphism
such that ϕ ◦ T = S ◦ ϕ, then PG(S, f) = PG(T, f ◦ ϕ) for each f ∈ C(Y,R).
Proof. Given ϵ > 0; there exists a number δ > 0 such that d(ϕ(x), ϕ(y)) < ϵ for each
x, y ∈ X satisfying d(x, y) < δ. Let F = {Gx1, . . . , Gxk} be an (n, δ,G)-spanning
set for T . We show that F′ = {Gϕ(x1), . . . , Gϕ(xk)} is an (n, ϵ,G)-spanning set for
S. For each Gy ∈ Y/G there exists a point x ∈ X such that Gy = Gϕ(x). Since
Gx ∈ X/G, there exists Gxi ∈ F with d̄n(Gx,Gxi) < δ. Hence, dn(gx, gxi) < δ for
some g, g′ ∈ G. Thereofre, max0≤i≤n−1 d(T

igx, T ig′xi) < δ and so

max
0≤i≤n−1

d(Siϕ(gx), Siϕ(g′xi)) = max
0≤i≤n−1

d(ϕ(T igx), ϕ(T ig′xi)) < ϵ.

Hence, max0≤i≤n−1 d(S
i(hϕ(x), Si(h′ϕ(xi)) < ϵ for some h, h′ ∈ G. So

d̄n(Gy,Gϕ(xi)) = d̄n(Gϕ(x), Gϕ(xi)) < ϵ.

Therefore F is an (n, ϵ,G)-spanning set for S. Also we have

k∑
i=1

inf
u∈Gxi

ef(ϕ(u))+f(ϕ(Tu))+···+f(ϕ(Tn−1u))

=

k∑
i=1

inf
u∈Gxi

ef(ϕ(u))+f(Sϕ(u))+···+f(Sn−1ϕ(u))

=

k∑
i=1

inf
u∈Gϕ(xi)

ef(y)+f(Sy)+···+f(Sn−1y)



38 M. Erfanian Omidvar, S.A. Ahmadi, N. Darban Maghami

Thus Pn(ϵ,G, S, f) ≤ Pn(δ,G, T, f ◦ ϕ) so that PG(S, f) ≤ PG(T, f ◦ ϕ). Since ϕ is
a homeomorphism, we have

PG(T, f ◦ ϕ) ≤ PG(S, f ◦ ϕ ◦ ϕ−1) = PG(S, f),

as required. �

Theorem 5.2. Let (X, d) and (Y, ρ) be a G-space and a H-space, respective ly. If
T : X → X and S : Y → Y are two countinuous maps, f ∈ C(X,R) and g ∈ C(Y,R).
Then

PG×H(T × S, f × g) = PG(T, f) + PH(S, g).

Proof. Let F be an (n, ϵ,G)-spanning set with minimal cardinality for T and let
F′ be an (n, ϵ,H)-spanning set with minimal cardinality for S. Then F × F′ is an
(n, ϵ,G×H)-spanning set for T × S. Also, we have∑

(Gx,Hy)∈F×F′

inf
(u,v)∈(Gx,Gy)

e
∑n−1

i=0 (f×g)((T×S)i(u,v))

=
∑

(Gx,Hy)∈F×F′

inf
(u,v)∈(Gx,Gy)

e
∑n−1

i=0 f(T iu)e
∑n−1

i=0 g(Siu)

=
∑

(Gx,Hy)∈F×F′

inf
u∈Gx

e
∑n−1

i=0 f(T iu) inf
v∈Gy

e
∑n−1

i=0 g(Siu)

Therefore,

Pn(ϵ,G×H,T × S, f × g) ≤ Pn(ϵ,G, T, f).Pn(ϵ,H, S, g),

which implies that PG×H(T × S, f × g) ≤ PG(T, f) + PH(S, g).
Now consider the quotient map π : X → X/G defined by π(x) = Gx. For any

map T : X → X, the induced map T̃ : X/G → X/G satisfies T̃ ◦ π = π ◦ T . Let X
be a set and B(X) denote the group of all bijections on X. We have an action of
B(X) on X defined by

B(X)×X → X
(g, x) 7→ g(x).

Let (X, d) be a compact metric space and Iso(X) ⊂ B(X) denote the group of
isometries of X. Let ρ be a metric on Iso(X) defined via

ρ(f, g) = sup
x∈X

d(f(x), g(x))

. The group operations of multiplication and inversion are continuous with respect
to ρ and Iso(X) has the structure of a topological group. The associated action
Iso(X)×X → X of Iso(X) on X is continuous. If G is a subgroup of Iso(X), then
X/G equipped with the metric

d̃(Gx,Gy) = inf{d(u, v) : u ∈ Gx, v ∈ Gy}

is a compact metric space. If f ∈ C(X,R) is constant on G-orbits (f(gx) = f(x)

for g ∈ G and x ∈ X), then f induces a map f̃ ∈ C(X/G,R) satisfying f̃(Gx) =
f(x). �
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Theorem 5.3. If T is a homeomorphism on the metric G-space X and f ∈ C(X,R),
then P (T̃ , f̃) ≤ PG(T, f).

Proof. Given ϵ > 0. There is δ > 0 such that d̃(π(x), π(y)) < ϵ whenever d(x, y) < δ.
Suppose that F is an (n, δ,G)-spanning set for T of maximum cardinality. We show

that F is an (n, ϵ)-spanning set for T̃ . If Gx ∈ X/G then there exists Gy ∈ F such
that d̄n(Gx,Gy) < ϵ. Hence, there are elements g1, g2 ∈ G with

max
0≤i≤n−1

d(T i(g1x), T
i(g2y)) < δ.

Thus,

d̃n(Gx,Gy) = max
0≤i≤n−1

d̃(T̃ i(Gx), T̃ i(Gy))

= max
0≤i≤n−1

d̃(T̃ i ◦ π(g1x), T̃ i ◦ π(g2y))

= max
0≤i≤n−1

d̃(π ◦ T i(g1x), π ◦ T i(g2y)) < ϵ.

Therefore, F is an (n, ϵ)-spanning set for T̃ . On the other hand, we have

S̃nf̃(Gx) = f̃(Gx) + f̃(T̃ (Gx)) + · · ·+ f̃(T̃n−1(Gx))

= f̃(Gx) + f̃(GTx) + · · ·+ f̃(GTn−1x)

= f(x) + f(Tx) + · · ·+ f(Tn−1x)

= Snf(x).

Hence, ∑
Gx∈F

inf
u∈Gx

eSnf(u) =
∑
Gx∈F

eSnf(x) =
∑
Gx∈F

eS̃nf̃(Gx).

Therefore, Pn(ϵ, T̃ , f̃) ≤ Pn(ϵ,G, T, f), from which the result follows. �

Corollary 5.1. If T is a homeomorphism on the metric G-space X, then htop(T̃ ) ≤
hG(T ).

6. Examples

First we compute the topological G-entropy for the most common action in
dynamical systems.

Example 6.1. Let X be a compact metric space and T : X → X be a homeomor-
phism. The group Z acts continuously on X as follows

Z × X → X
(n, x) 7→ Tn(x).

Thus X is a compact metric Z-space. In this case, we have Zx = OT (x) and

d̄n(Zx,Zy) = d̃(Zx,Zy) for each n ≥ 1 and x, y ∈ X. Hence, hZ(T ) = 0.

Example 6.2. Consider the linear ordinary differential equation

Ẋ =

(
0 β

−β 0

)
X.
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(a) (b)

Solution to this linear system is given by{
x(t) = x0 cos(βt)− y0 sin(βt)

y(t) = x0 sin(βt) + y0 cos(βt)
,

where (x0, y0) = (x(0), y(0)) and the trajectories of this system lie on circles as
shown in Figure (A). Hence the flow of this linear system is given by

φt(x0, y0) = (x0 cos(βt)− y0 sin(βt), x0 sin(βt) + y0 cos(βt)) .

Consider the unit disc D = {(x, y) ∈ R2 : x2 + y2 ≤ 1} and define an equivalence
relation on D as follows:

X ∼ Y ⇔ ∥X − Y ∥ ∈ Z.

Then X = D/ ∼ with the metric

d(X,Y ) = min{∥X − Y ∥, 1− ∥X − Y ∥}

is a compact metric space called a quotient metric space [4]. We know that the group
G = R acts continuously on the space X as follows:

(t, (x0, y0)) 7→ φt(x0, y0).

Now, we compute the topological G-entropy of the map T : (X, d) → (X, d) with
T (x0, y0) = (2x0, 2y0), mod 1 (note that for any (x0, y0) ∈ X with x0 ̸= 0, the
point T (x0, y0) is the intersection of the line y = y0

x0
x and the circle x2 + y2 =

(2
√

x20 + y20 − [2
√

x20 + y20])
2 ).

For each k ∈ N we define

Fk =
{
(
m

2k
, 0) : m = 0, 1, . . . , 2k−1

}
⊂ B.

Let ϵ > 0 and choose k ∈ N such that 1
2k

≤ ϵ < 1
2k−1 . We show that the set Fn+k−2

is an (n, ϵ,G)-separated set for each n ∈ N. Suppose that ( m1

2n+k−2 , 0) and ( m2

2n+k−2 , 0)
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are two distinct points in Fn+k−2. Then,

d

(
Tn−1(

m1 cos(βt)

2n+k−2
,
m1 sin(βt)

2n+k−2
), Tn−1(

m2 cos(βs)

2n+k−2
,
m2 sin(βs)

2n+k−2
)

)
=d

(
(
m1

2k−1
cos(βt),

m1

2k−1
sin(βt)), (

m2

2k−1
cos(βs),

m2

2k−1
sin(βs))

)
≥d

(
(
m1

2k−1
cos(βt),

m1

2k−1
sin(βt)), (

m2

2k−1
cos(βt),

m2

2k−1
sin(βt))

)
=

√(
m1 −m2

2k−1

)2

=

∣∣∣∣m1 −m2

2k−1

∣∣∣∣ ≥ 1

2k−1
> ϵ

for all s, t ∈ G. Hence, dn
(
G( m1

2n+k−2 , 0), G( m2

2n+k−2 , 0))
)
> ϵ so that s(n, ϵ,G) ≥

2n+k−2 and hence hG(T ) ≥ log(2).
Now we show that the set Fn+k−1 is an (n, ϵ,G)-spanning set. Suppose that

(x1, x2) ∈ B. Then, we can choose ( m
2n+k−1 , 0) ∈ Fn+k−1 such that∣∣∣∣ m

2n+k−1
−

√
x21 + y21

∣∣∣∣ < 1

2n+k−1
.

Therefore,

dn

(
G(x1, y1), G(

m

2n+k−1
, 0)

)
≤ inf{ max

0≤i≤n−1
d
(
T i(φt(x1, y1)), T

i(φt+τ (
m

2n+k−1
, 0))

)
: t ∈ G} <

1

2k
≤ ϵ,

where τ = tan−1( y1x1
) (see Figure (B)). Thus rn(n, ϵ,G) ≤ 2n+k−1. This im-

plies that hG(T ) ≤ log(2). Therefore, hG(T ) = log(2).

7. Conclusion

In this paper, we introduced an extension of the notion of topological entropy.
Our approach opens a door to a method for developing a meaningful notion of
topological entropy for dynamical systems, which are defined on the solutions of
some differential equations. Computation of the topological entropy of such systems
will be a topic for future research.
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