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THE IN-SILICO OPTIMIZATION OF A BATCH REACTOR IN
THE 2™° STEP OF CETUS PROCESS FOR D-FRUCTOSE
PRODUCTION

Daniela GHEORGHE!, Gheorghe MARIA*2, Cristiana Luminita GIJTU 3,
Laura RENEA*

Cetus technology is a well-known two steps enzymatic conversion of D-
glucose to D-fructose with a high yield and selectivity. In the first step, a
commercial pyranose 2-oxidase (P20x) is used to catalyze the oxidation of beta-D-
glucose to keto-glucose (kDG). To avoid the fast P20x inactivation by the in-situ
produced H>0>, catalase is added to decompose the continuously produced
hydrogen peroxide. In the second Cetus step, kDG is reduced to D-fructose by using
a commercial (recombinant human) aldose reductase (ALR) as biocatalyst, and
NADPH as a donor of protons. A kinetic model of this 2-nd enzymatic step, adopted
from literature, allowed optimization of the used batch reactor (BR). The BR
optimal initial load is determined by using a nonlinear programming (NLP)
procedure seeking for the D-fructose production maximization. Application of the
Pareto optimal front technique (with considering multiple opposed objectives),
proved to also offer a promising optimal operation of the analysed BR.

Keywords: keto-glucose reduction to fructose; aldose reductase; kinetic model;
NADPH; batch reactor; production maximization; Pareto optimal
front

1. Introduction

Recent advances in obtaining genetically modified enzymes allowed
developing a lot of biosynthesis of industrial interest, which tend to replace the
classical fine chemical synthesis processes, due to the advantages of the
enzymatic processes: a) produce fewer by-products; b) consume less energy; c)
generate less environmental pollution; d) use smaller catalyst concentrations and
much moderate reaction conditions [1].
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However, to optimally solve the associated engineering problems (process
design, operation, control, and optimization) it is essential to know an adequate
mathematical (kinetic) model of the process. This model should preferably be
based on the process mechanism, to ensure interpretable predictions of the process
behavior under variable running conditions, easy to be compared with the
literature data [2-4].

Despite their larger volumes, enzymatic reactors operated in BR (batch),
or FBR (fed-batch) modes, are the most used because they ensure a high diffusion
rate of compounds in the liquid phase, and an easy control of temperature/pH.

Concerning the reactor, an essential engineering problem refers to the
development of optimal operating policies seeking for production maximization,
raw-material consumption minimization, with obtaining a product of high quality
(less by-products). This problem depends on the 1) adopted technology (chemical,
biochemical, or biological catalysis), but 2) also on the used of engineering
analysis to optimize the reactor operation (this paper).

In the BR case, its optimal operation problem can be in-silico solved in
two alternatives: (a) off-line (‘run-to-run’), the optimal operating policy being
determined by using an adequate deterministic kinetic model previously identified
based on experimental data (this paper; [5-12]); (b) en-line, by using a simplified,
often empirical mathematical model to obtain a state-parameter estimator based
on the on-line recorded data (such as the classical Kalman filter) [9,13-20].

Even if the enzymatic process kinetic model is known, in-silico solving
this off-line engineering problem is not an easy task, due to multiple contrary
objectives, and a significant degree of uncertainty of the model/constraints
[13,21]. The reactor optimal operating policy is usually determined by using an
effective optimization rule [10,14,22-24]. In the deterministic alternative (this
paper), single-/multi-objective criteria, including the product selectivity / yield
maximization, (raw-)materials consumption minimization, are usually used to get
feasible optimal operating strategies for the analyzed reactor [21] by using
specific numerical algorithms [11,15,20,25].

Typical optimization objective functions were reviewed by [26,27]. The a-
priori in-silico analysis allows comparing performances of various bioreactor
constructive / operating alternatives, as follows [23].

BRs are commonly used for slow processes, because they are highly
flexible and easy to operate in various alternatives [23]: (i).- simple BR, when
substrate(s), biocatalyst, and additives initially loaded in recommended amounts
[28-30]. Usually, a single- or multi-objective BR optimization is off-line
performed to determine the best batch time, and substrate/biocatalyst initial load
[13,16,22,30,31-35]; (ii).- a batch-to-batch (BR-to-BR) optimization, by including
a model updating step based on acquired information from the past batches to
determine the optimal load of the next BR [6-8,14,25,36-38]; (iii).- a sequence of
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BRs of equal volumes linked in a series (SeqBR) [38]. For every BR, its content
is transferred to the next one, with adjusting the reactants and biocatalyst
concentrations of the latter, at off-line determined levels, to ensure its optimal
operation [8,25]. (iv).- The Semi-Batch Reactor (SBR) or fed-batch reactor
(FBR), with an optimally varied feeding policy of biocatalyst/substrate(s) is not
discussed here [21,23,37,39]. Despite the FBRs better performances, they are
difficult to operate, because they need previously prepared stocks of biocatalyst,
and substrate(s), of different concentrations (a-priori in-silico determined), to be
fed for every ‘time-arc’ of the batch (that is a batch-time equal division in which
the feeding composition is constant) [23,24,40,41]. The time-step-wise variable
optimal feeding policy of the FBR are determined off-line [23], or on-line [19].

D-fructose is a sweetener of high value in the food industry and medicine.
As other polyols largely used as sweeteners (e.g. sorbitol, mannitol, xylitol,
erythritol), it is produced on a large scale by using chemical or biochemical
catalysis [42,43]. However, the chemical catalysis (that is hydrogenation of
glucose on Ni, Fe, or Fe-Ni alloy catalysts) presents the critical disadvantage of
significant energy consumption, occurring at high pressures (30 bar) and
temperatures (140°C). One alternative is the beta-D-glucose isomerization to D-
fructose on Fe/CarbonBlack catalyst [43]. Similarly, starting from the high-
fructose syrup (HFCS) obtained from starch [44], after rough/fine filtration, ion
exchange, and evaporation, a beta-D-glucose isomerization step leads to a high
fructose syrup (HFS, of 42-55% D-fructose) [44-47].
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By far, the biocatalytic route to produce D-fructose is more convenient due
to a large number of advantages: it consumes less energy; by occurring at
ambiental conditions, it produces less waste due to its high yield and selectivity,
the product being free of allergenic compounds.

The two-step Cetus process for production of high purity D-fructose with
high yields, are the followings [51,52]:

STEP 1).- Beta-D-glucose is firstly converted to kDG in the presence of pyranose
2-oxidase (P20x) at 25-30°C and pH=6-7, with a high conversion and selectivity
[48,49]. Catalase is added to decompose the resulted H>O; (Fig. 1), thus avoiding
the quick P20x inactivation. More details are given by [49,53,54].

STEP 2).- The kDG (D-glucosone) is then reduced to D-fructose by using a
commercial (recombinant human) aldose reductase (ALR) (EC 1.1.1.21), and
NAD(P)H as co-factor (proton donor), at 25°C and pH=7 [50]. The resulted
NAD(P)" will be continuously regenerated (in-situ or externally) and re-used [55-
57] (Fig. 2). According to our results, the use of NADH instead of NADPH is
preferable because NADPH deactivates very quickly, and it is more expensive
than NADH [55]. The co-factor (NADPH or NADH) regeneration can be done in
several ways [29,55,58-61]. For instance, Gijiu et al. [62] took this step, using the
in-situ version, at the expense of the enzymatic degradation of ammonium formate
[62]. More details about this process are given by [50].

This paper is aiming at optimizing the STEP-2 of the Cetus process, which
is the kDG reduction to D-fructose (Fig. 2).

Thus, by adopting an adequate kinetic model from the literature the in-
silico analysis will evaluate and compare the performances of several optimal
operating policies of a BR. The BR optimal initial load will be determined by
using a nonlinear programming (NLP) procedure seeking for the D-fructose
production maximization in the presence of various technological constraints to
limit de raw-materials consumption. Alternatively, the derived Pareto-optimal
fronts (by considering multiple opposed objectives), proved to also offer a
promising optimal operation policy of the analyzed BR.

The paper presents a significant number of novelty aspects, as following:
(i) The engineering evaluation of this process is a premiere in the literature. (ii)
The way by which this difficult multi-objective optimization problem was
successfully solved is a model that can be followed to solve similar enzymatic
processes. (iii) The present engineering analysis can be easily exploited in the
development of this process (reactor design, control). (iv) The in silico (model-
based) engineering analysis of a complex enzymatic process, leading to obtain a
Pareto-optimal operating policy of the approached BR is an approach seldom used
in the literature. (v) Confirmation that the Pareto-front ‘break-point’ choice
proposed technique reported “fairly good” performances for a BR, from a multi-
objectives’ perspective. (vi) Before this paper, there are very few enzymatic
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processes analyzed in the literature from the engineering point of view by also
accounting the cofactor during the optimization procedure. (vii) The scientific
value of this paper is not virtual, as long as the numerical analysis is based on the
kinetic model of Maria and Ene [50] constructed and validated by using the
extensive experimental data sets of (Fig. 7). (viii) The in-silico analysis suggests
that an optimally operated BR with a policy determined from applying a NLP
procedure, or the Pareto-optimal ‘break-point’ technique of [63-67] can lead to
high performances.

2. The experimental enzymatic reactor

The analyzed BR here is those used by Maria [48,49] to derive the kinetic
model of the Cetus first-step-process, and by Maria and Ene [50] to derive the
kinetic model of the Cetus second-step process. The BR characteristics are
presented in Table 1 [68]. The reactor operation is completely automated, with a
tight control of the dissolved oxygen (DO) concentration (for the oxidative
processes, or for biological ones), of the pH, temperature, and of the mixing
intensity [69].

In the BR operation mode, an optimal initial load will be determined by
solving an optimization problem (product maximization here) in the presence of
multiple technological constraints.

3. Bioprocess kinetics and bioreactor dynamic model

To model the dynamics of the key-species in the BR, a classical simple
model was adopted, of ideal type [70], developed with the following main
hypotheses: (i) Isothermal, iso-pH; (i) The liquid phase is perfectly mixed (with
no concentration gradients), by using continuous mechanical mixing. (iii) The
liquid volume is quasi-constant, its increase due to the pH controlling additives
being negligible.

Table 1.
Nominal (not-optimal) operating conditions (SPBR) of the experimental BR with
suspended ALR and NADPH used to investigate the kDG conversion to D-fructose, by
Maria and Ene [50]. DSn = data set number “n”. Notations: [S = substrate (kDG); P =
product (D-fructose); A = NADPH; A(+) = NADP*; E = ENZ= ALR]

Parameter Nominal initial value Remarks
DS1, DS2, and DS3 (35
[S]o = [kDG]o mM);

DS4 (15 mM) To be optimized within imposed limits
DS1, DS2, and DS4 (35 (this paper)
[A]o=[NADPH]o mM);
DS3 (6 mM)
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DS1 (0.0048 U/mL), DS3
_ (0.0055 U/mL)
[E]o =[ALR]o DS2 (0.00257 U/mL)
DS4 (0.006 U/mL)
[P]o (D-fructose) 0 Final [P] is to be maximized
[A()]o = 0
[NADP(+)]o
[EA]Jo 0
Temperature, pH o
(bufter) 25
Optimization tight [S]o € [5-50]; [NADPH]o € [5-50];
limits (OTL), (mM) [E]o € [0.003-0.1] [50]
Optimization wide [S]o € [5-100]; [NADPH]o € [5-80];
limits (OWL), (mM) [E]o € [0.003-0.1] [50]
1L
Reactor volume (i 8 L enpesiiy)
Batch time (tf) 24-76 h DS1, DS2, DS4 (24 h); DS3 (24-76 h)
Beta-D-glucose (or
kDG) solution Solubility 5-7M (25-30°C) [71]
solubility
Ca. 1-3 cps (for up to 300
Beta-D-glucose (or mM) [72]
kDG) solution 1000 cps (4.5M, 30°C), o
viscosity Vs. 1094 cps (molasses, Nisigetin (relbss), A0
38°C)

The enzymatic BR dynamic model is presented in Eq.(1) with including the mass
balances of 6 key-species of the process, that is (Fig. 2): [S = substrate (kDG); P =
product (D-fructose); A = NADPH; A(+) = NADP'; E = ENZ= ALR, E 4], most of
them being observable, with a measurable concentration.

dCi(t) _
d
Where Co is the vector of initial concentrations; k = rate constants vector. Species
index “i” = [kDG, P, NADPH, NADP(+), ALR, E*A].
The process kinetic model is that proposed by Maria and Ene [50], based
on the adopted reaction pathway of Fig. 2. The overall main reaction of Table 2,
that is rp, follows a successive Bi-Bi mechanism. The reaction rate expressions,
and the associated 9 rate constants are those identified by Maria and Ene [50].

+11(Co, k t) ; Cip=C;(t=0) @
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Table 2.
The overall reactions considered by the kinetic model of Maria and Ene [50] (with the
reaction scheme of Fig. 2) for (kDG) reduction to D-fructose by using commercial
recombinant ALR (obtained by expressing human 1-316aa plasmids in E. coli; enzyme
source: ATGEN, Cat. no. ALR-0901).
Overall reactions:

CeH10Og (S)+ NADPH (4)+ H™

AIR(E), rp
(phosphate buffer)

CgH[204 (P)+NADP " (4")
kd

yNADPH + ALR > (ALR ¢ NADPH )

k—d
ALR (E) ", inactive ALR (Ein)
Rate expressions (see also the reaction scheme of Fig. 2).  Successive Bi-Bi mechanism.
*
rg =kg[AJ[E] r—q=k_g[E A] r=k;[E]

_[EJ[A] _kea (o _[EAJ[S] _kyp o _[EAJ[P] _kp
[EA] Kk, : R [EAS] k.. Y [EAS] k.

_[EJ[AT] _ ke

[EAT]  k_gp

Kyp

An extensive and reasoned/documented discussion regarding derivation of
this complex kinetic model starting from the reaction pathway of (Fig. 2) is given
by Maria and Ene [50], and it is not repeated here.

The overall reduction reaction rp of Table 2 is thus obtained, being
accompanied by a reversible binding of ALR to the NADPH to form an inactive
complex (E*Ay), and by the enzyme ALR deactivation. To estimate the 9 rate
constants of this kinetic model (not given here), Maria and Ene [50] conducted a
set of four batch experiments, presented in_Fig. 3. To maximize the obtained
kinetic information, these runs were carried out for large batch times of 24-76 h,
and by varying the enzyme/reactant/cofactor initial ratios, in the range of: kDG €
[15-35] mM; NADPH e [6-35] mM; ALR € [0.0026-0.006] U/mL.

The model rate constants have been estimated from using these four sets of
experimental kinetic curves (Fig. 3). A weighted least square criterion has been
used as statistical estimator, because the standard measurement error of species
are very different [73]. The obtained kinetic model by Maria and Ene [50] was
proved to be very adequate, the model predictions being in a fair agreement with
the experimental data (Fig. 3). More details about the estimation step, and on the
estimate statistical quality tests are given by Maria and Ene [50].
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Fig. 3. Comparison of the kinetic model predictions (continuous line), vs.- the eperimental kinetic
data (circles). Species dynamics concerns the observable species concentrations, that is for kDG(S),
NADPH, D-fructose (P), and the enzyme E (suspended ALR). The initial conditions are the followings

(phosphate buffer, pH = 7; 25°C):

Data set #1 - 35 mM kDG, 35 mM NADPH, 0.0048 U/mL ALR;
Data set #2 - 35 mM kDG, 35 mM NADPH, 0.00257 U/mL ALR,;
Dataset#3 - 35 mM kDG, 6 mM NADPH, 0.0055 U/mL ALR;
Dataset#4 - 15 mM kDG, 35 mM NADPH, 0.006 U/mL ALR.

4. BR optimization problem

4.1. Control variables selection

By analyzing the process main reactions of Table 2, Fig.2, the chosen

control variables are those related to the reactor initial load.

4.2. Single objective function optimization (NLP)
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Optimization of the BR operation translates in finding its initial load with the key-
species [S]o = [KDG]Jo, [A]o = [NADPH]o, [E]o = [ALR]o (that is 3 unknowns
here). In the present case, for a single objective function, this optimization
problem can be referring to maximization of the [P] (D-fructose) production, that
is:

Find [KDG]o, [NADPH]o, [ALR]o, such that: @)
Max Q, where: Q = [P(C(¢),Co,k)(1)]

The problem Eq. (2) can be solved by using a common nonlinear programming
(NLP) optimization rule [3,73,74], seeking to determine the extreme of the
objective function in the presence of multiple constraints.

In Eq. (2), the time-varying P(¢) is in fact a multi-variable function P(C(¢),
Co.k)(t), evaluated by using the process/reactor model Eq. (1) over the whole
batch time (¢) € [0, # ], with the initial condition of Cjo = Cj(t=0) searched during
optimization iterative numerical rule.

Because the enzymatic process kinetic model Eq. (1), the optimization
objective Eq. (2), and the problem constraints Eq. (4) are all highly nonlinear, the
formulated problem Eq. (2) translates into a difficult NLP with a multimodal
objective function and a non-convex searching domain. To obtain the global
feasible solution with enough precision, the multi-modal optimization solver
MMA of Maria [73-75] has been used, being proved to be very effective for
solving such difficult NLP problems.

4.3. Multi-objective optimization by using the Pareto optimal front

When more than one objective function are simultaneously considered, the
optimization problem is more difficult to be solved. For multi-objective
optimization, several alternatives can be followed [76,77]. One elegant option is
to obtain a set of Pareto-optimal solutions, called Pareto-optimal front for the case
of at least two adverse objectives [78]. A Pareto solution is one where any
improvement in one objective can only take place at the cost of the other
objective. For the present case study of BR optimization, several opposite
objectives can be considered, such as: Max. P(D-fructose) production; Min.
substrates [kDG] consumption; Min. co-factor [NADPH] consumption; Min.
enzyme E (ALR) consumption. Of course, the Pareto-optimal fronts can be
obtained by using any pair of these opposite objective functions. In the present
paper, the following three Pareto-optimal fronts have been considered, by taking
the above objectives two-by-two:

Max. P production —vs.- Min. substrate (kDG) consumption (initially added);
Max. P production —vs.- Min. minimum NADPH consumption (initially added);

(©))
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Max. P production —vs.- Min. minimum enzyme E (ALR) consumption (initially
added).

The rough Pareto-optimal fronts have been generated by using the
dedicated algorithm (GAMULTIOBJ) of the MATLAB computational package.
To be better interpreted, these rough Pareto-curves have been smoothed with
using the cubic smoothing spline procedure CSAPS of Matlab.

4.4. Optimization problem constraints

The above formulated nonlinear optimization problem (NLP) Eq. (2), or
the Pareto-optimal front problem Eq.(3), must account for the followings
constraints:

(a).- The BR model Eq.(1);

(b).- To limit the excessive consumption of raw-materials, feasible searching
limits are imposed to the control/decision variable, in two alternatives:

(b1).- Large search intervals (OWL in Table 1).

(b2).- Tight search intervals (OTL in Table 1).

These feasible limits were based on the unpublished experimental information of

Maria and Ene [50].

In a general form, the constraint (b) translates in the following relationships:

Ci,o,min < Ci,o < Ci,o,max; 1= S, NADPH, E “)

5. Optimization results and their discussion

The BR optimization problem results are the following:

-.- The Pareto optimal fronts for several opposite objectives (Figs. 4-6);

-.- The NLP optimal operating policy comparatively displayed vs. experimental
data set #1 in (Fig. 7);

-.- A comparison of all BR operating alternatives in terms of P production and
raw-materials consumption (based on the initial load) in Table 3.

By analyzing these results, and the operating alternatives of Table 3, several

conclusions can be derived, as follows:

(1).- In the Pareto optimal front case, four opposite objectives have been
considered, according to Eq.(3). The most important Pareto-front is that indicating
the dependence of the [maximum D-fructose production vs.- minimum substrate
(kDG) consumption (initially added)] (Fig. 4). According to the suggestions of
Maria [78-82], the slope “breakpoint” in the exponential-like increasing Pareto-
curve can be considered as being the preferred solution of the optimization
problem. However, the irregular increasing curve makes this option difficult. The
chosen optimal set-point (SP) displayed in Table 3 , at one of the “breakpoints” of
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the curve of (Fig. 4) is that realizing a high P-productivity, with the same
consumption of kDG and NADPH, as in the optimal NLP policy case. However,
despite the “fairly good” performances of this Pareto-optimal SP, the enzyme
consumption is 10x higher than in the optimal NLP case, making the NLP optimal
policy to be preferred.

(2).- The nominal, not-optimal BR operation SPBR reported very poor
performances in Table 3. The species dynamics trajectories during the batch time
for the best NLP optimal operating policy of BR is given in Fig. 7. Compared to
the experimental curves of the nominal, not-optimal BR operation (data set #1)
the NLP optimal operation reported superior performances: 3x higher P-
productivity, with 2x-3x higher consumption of (kDG, NADPH), but with a 60%
less consumption of ALR.

Thus, the in-silico, off-line BR optimization of this paper appears to be fully
justified by the obtained better operating policies.

(3).- By analyzing the NLP optimal operating policies of the BR, with using
OWL vs. OTL search intervals for the control variables, and also the Fig. 7 with
the species dynamics in the best NLP operating case, some conclusions can be
derived: a) the P-productivity increases with the initial substrates [kDG, NADPH]
concentrations, if enough ALR is present, and if ALR does not deactivate too fast.
To better fulfill such a condition, the best alternative appears to be the use of a
more stable enzyme, that is immobilized on a suitable porous support [78-80]; b)
The NLP optimally operated BR with large searching intervals (OWL) for the
control variables reported much better performances (2x more in terms of
produced P, and 2x less in terms of consumed kDG, NADPH) compared to the
optimal BR by using tight searching intervals (OTL) in Table 3.

(4).- For a enough stable (immobilized) enzyme, the P(D-fructose) production
maximization, clearly depends on the available amount of substrate (kDG) and
cofactor (NADPH). As the kDG results from the step 1 of the Cetus process
[48,49], a more realistic optimization must consider concomitantly the both linked
Cetus process.
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Fig. 5. The Pareto-optimal front in terms of
Min. NADPH consumption (initially added)-
vs.- Max. P(D-fructose), for OWL limits
(Table 1) of control variables. The marked SP
is the same as the one chosen in Fig. 4. The
blue line is the smoothed Pareto-optimal front.
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Fig. 7 [Black line] The in-silico determined NLP best optimal operating policy of the BR
given in Table 3, in terms of the key-species dynamics over the batch time, with imposing the
(OWL) optimization wide limits of Table 1. [Blue line, and blue points] The not-optimal
operation of BR by Maria and Ene [50] in terms of experimental kinetic curves and data
points for the same key-species of the enzymatic process, for the data set # 1 case.

6. Conclusions

To conclude, the in-silico, off-line optimized BR operation, even simple,
can offer a significantly improved effectiveness, due to its high flexibility in using
an easily adaptable process model [81], and due to the applied effective
optimization rules (single objective NLP, and the multi-objective Pareto-fronts
techniques).

The nominal, not-optimal BR operation SPBR reported very poor
performances. Compared to this BR poor operation, the single/multi-objective
optimal BR operation reported superior performances: 3x higher product-
productivity, even if at the cost of a 2x higher consumption of raw-materials
(kDG, NADPH, ALR). Thus, the in-silico BR optimization of this paper appears
to be fully justified by the obtained better operating policies.
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Table 3

BR productivity and raw-materials consumption when operated in various modes. The BR
optimal policy compared to the experimental data set #1 is given in Fig. 7. The main
characteristics of the BR are given in Table 1. The reactor volume is of 1 L in all cases.

. . D-fructose
. . Raw-material consumption .
Bioreactor operation (a,b) production,
’ (b)
ER Obs kDA, NADPIL | E (ALR) (mmoles)
policy : mmoles | mmoles U) ()
BR . Not- Nominal initial load
Expert | imal SPBR (d.g)
mental, data set - 35 35 43 11.05
Maria a#al s [KDGJo 35 ' (poor)
and Ene Fi ’ 7 [NADPH]o 35
[50] e [ALR]o 0.0048
BR Optimal load wide limits
NLP (OWL)
optimal [KDGJo 100
initial (e) 29.54
) [NADPH]o 80 100 80 3.0
load Fig. 7 (best)
(this
paper) [ALR]o 0.003
(OWL)
BR Optimal load tight limits
NLP (OTL)
. 48.
optimal 8.73 48.75 3.1
mitial ® [KDGlo 48.73 151
(‘t’l?is [NADPH]o 48.75 (poor)
paper) ALR 0.0031
(OTL) [ALRJo '
BR Optimal load wide
Pareto- Limits (OWL)
optimal [KDGlo 100
it . 29.54
nitial | (e-h) I DA 80 100 80 33 .
load (fairly good)
(this Y
paper) [ALR]O 0.033
(OWL)
Footnotes:

(a) Referring to the reactor liquid initial volume of 1 L (Table 1).

(b) The displayed digits come from the numerical simulations.

(d) The BR experimental nominal set-point #1 (Table 1, Fig.3) of Maria and Ene [54]. Notation:
SPBR = the BR nominal set-point; SP = set point.

(e). BR optimal policy (initial load) was obtained using larger search intervals (OWL, Table 1)
(f) BR optimal policy (initial load) was obtained using tight search intervals (OTL, Table 1)

(g) The units are: [kDG], mM; [NADPH], mM; [ALR], (U/mL).

(h) Search intervals used to obtain the optimal SP are those from (e).



The in-silico optimization of a batch reactor in the 2nd step of Cetus process for D-fructose... 49

c .

Abbreviations and notations

Species j concentration, M

J

k i K,y Rate constants (M, s, U/L units)

rj Reaction rate of species “j”” (M/s, U/L.s)

t Time (s)

Index

0,0 Initial

AAT NADPH, NADP"

ALR Aldose reductase

E, ENZ Enzyme, that is the aldose reductase (ALR)

kDG, D-glucosone 2-keto-D-glucose

NAD(P)H Nicotinamide adenine dinucleotide (phosphate)
reduced form

OTL, OWL Optimization tight / wide limits respectively

P - Product (fructose)

P20x - Pyranose 2-oxidase

P20xox - Inactive form of P20x

S - Substrate (kDG here)

SP - Set point (BR running conditions)
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