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SOME THEOREMS ON FUZZY HILBERT SPACES

Bayaz Daraby1, Zahra Solimani2, Asghar Rahimi3

In this note, our aim is to present some properties of Felbin-type fuzzy

inner product spaces and fuzzy bounded linear operators on the same spaces with some
operator norm. At the first, fuzzy closed linear operators are considered briefly, latter
the notion of fuzzy orthonormality is introduced. Finally, we establish Bessel’s inequality
in the sense of Felbin’s norm.
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1. Introduction

An idea of fuzzy norm on a linear space introduced by Katsaras [11] in 1984. He
studied fuzzy topological vector spaces. Following his pioneering work, Felbin [6] offered
in 1992 an alternative definition of a fuzzy norm linear space (FNLS). With this definition
of fuzzy normed linear space, it has been possible to introduce a notion of fuzzy bounded
linear operator over fuzzy normed linear spaces to define “fuzzy norm” for such an operator.
In [6], Felbin introduced an idea of fuzzy bounded operators and defined a fuzzy norm for
such an operator which was erroneous as it shown in Example 3.1 of [3]. Xiao and Zhu
([14], [15]) studied various properties of Felbin-type fuzzy normed linear spaces. They gave
a new definition for the norm of the bounded operators. A different definition of a fuzzy
bounded linear operator and a “fuzzy norm” for such an operator was introduced by Bag and
Samanta [3]. Finally, we note that the definition of the fuzzy norm of an operator was given
in [3] and [14], does not satisfy the basic properties ∥Tx∥ ≤ ∥T∥∥x∥ and ∥TS∥ ≤ ∥T∥∥S∥
for operators T, S and vector x in general. The dual of a fuzzy normed space for fuzzy
strongly bounded linear functional was introduced in [4]. Recently many authors studied
Felbin-type fuzzy normed linear spaces and established some results (for references please see
([8], [9])). Actually after that, the research in fuzzy functional analysis has become a highly
potential field of research in fuzzy mathematics. In this paper, we study the properties of
fuzzy Hilbert spaces and fuzzy bounded linear operators on it with some operator norms.
The organization of this paper is as follows:
In Section 1, unbounded linear operators are investigated and it is shown that a special fuzzy
unbounded linear operator T can not be defined on all of H. In Section 2, we consider fuzzy
closed linear operators using formulations which are convenient for fuzzy Hilbert spaces. In
Section 3, we establish Bessel’s inequality in the sense of Felbin’s norm.
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2. Preliminaries

Let η be a fuzzy subset on R, i.e. a mapping η : R → [0, 1] associating with each real number
t its grade of membership η(t).
In this paper, we consider the concept of fuzzy real numbers (fuzzy intervals) in the sense
of Xiao and Zhu which is defined below:

Definition 2.1. [15] A fuzzy subset η on R is called a fuzzy real number, whose α-level set
is denoted by [η]α, i.e., [η]α = {t : η(t) ≥ α}, if it satisfies two axioms:
(N1) There exists t0 ∈ R such that η(t0) = 1.
(N2) For each α ∈ (0, 1], there exist real numbers −∞ < η−α ≤ η+α < +∞ such that [η]α is

equal to the closed interval [η−α , η
+
α ].

The set of all fuzzy real numbers (fuzzy intervals) is denoted by F (R). If η ∈ F (R)
and η(t) = 0 whenever t < 0, then η is called a non-negative fuzzy real number and F ∗(R)
denotes the set of all non-negative fuzzy real numbers. The real number η−α is positive for
all η ∈ F ∗(R) and all α ∈ (0, 1] (see [15]).
Since each r ∈ R can be considered as the fuzzy real number r̃ ∈ F (R) defined by

r̃(t) =

{
1, t = r,

0, t ̸= r,

it follows that R can be embedded in F (R), that is if r ∈ (−∞,∞), then r̃ ∈ F (R) satisfies
r̃(t) = 0̃(t− r). Also, the α-level of r̃ is given by [r̃]α = [r, r], 0 < α ≤ 1 (see [3]).

According to Mizumoto and Tanaka [12], fuzzy arithmetic operations ⊕,⊖,⊗ and ⊘
on F (R)× F (R) can be defined as:

(η ⊕ δ)(t) = ∨t=x+y(min(η(x), δ(y)))

= sup
s∈R

{η(s) ∧ δ(t− s)}, t ∈ R

(η ⊖ δ)(t) = ∨t=x−y(min(η(x), δ(y)))

= sup
s∈R

{η(s) ∧ δ(s− t)}, t ∈ R

(η ⊗ δ)(t) = ∨t=xy(min(η(x), δ(y)))

= sup
s∈R,s ̸=0

{η(s) ∧ δ(t/s)}, t ∈ R

(η ⊘ δ)(t) = ∨t= x
y
(min(η(x), δ(y)))

= sup
s∈R

{η(st) ∧ δ(s)}, t ∈ R,

which are special cases of Zadeh’s extension principle. The additive and multiplicative
identities in F (R) are 0̃ and 1̃, respectively. Let ⊖η be defined as 0̃ ⊖ η. It is clear that
η ⊖ δ = η ⊕ (⊖δ).

Lemma 2.1. [6] Let η, δ ∈ F (R) and [η]α = [η−α , η
+
α ], [δ]α = [δ−α , δ+α ]. Then for all α ∈ (0, 1],

[η ⊕ δ]α = [η−α + δ−α , η+α + δ+α ]

[η ⊖ δ]α = [η−α − δ+α , η
+
α − δ−α ]

[η ⊗ δ]α = [η−α δ
−
α , η+α δ

+
α ]

[|η|]α = [max(0, η−α ,−η+α ),max(|η−α |, |η+α |)].

Theorem 2.1. [2] Let [aα, bα], 0 < α ≤ 1, be a family of non-empty intervals. If
a) for all 0 < α1 ≤ α2, [aα1 , bα1 ] ⊃ [aα2 , bα2 ],
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b) [limk→−∞ aαk
, limk→∞ bαk

] = [aα, bα] whenever {αk} is an increasing sequence in (0, 1]
converging to α,

then the family [aα, bα] represents the α-level sets of a fuzzy real number η ∈ F (R) such that
η(t) = sup{α ∈ (0, 1] : t ∈ [aα, bα]} and [η]α = [η−α , η

+
α ] = [aα, bα].

Definition 2.2. [15] Let η, γ ∈ F (R) and [η]α = [η−α , η
+
α ], [γ]α = [γ−

α , γ+
α ], for all α ∈ (0, 1].

Define a partial ordering by η ≼ γ in F (R) if and only if η−α ≤ γ−
α and η+α ≤ γ+

α , for all
α ∈ (0, 1]. The strict inequality in F (R) is defined by η ≺ γ if and only if η−α < γ−

α and
η+α < γ+

α , for all α ∈ (0, 1].

Lemma 2.2. [13] Let η, δ be fuzzy real numbers. Then

η(t) = δ(t), ∀t ∈ R ⇔ [η]α = [δ]α, ∀α ∈ (0, 1].

Definition 2.3. [10] The absolute value |η| of η ∈ F (R) is defined by

|η|(t) =

{
max(η(t), η(−t)), t ≥ 0,

0, t < 0.

Proposition 2.1. [3] Let {[aα, bα] : α ∈ (0, 1]}, be a family of nested bounded closed intervals
and η : R → [0, 1] be a function defined by η(t) =

∨
{α ∈ (0, 1] : t ∈ [aα, bβ ]}. Then η is a

fuzzy real number (fuzzy interval).

Definition 2.4. (Bag and Samanta [3] ) Let X be a real linear space, L and R (respectively,
left norm and right norm) be symmetric and non-decreasing mappings from [0, 1]× [0, 1] into
[0, 1] satisfying L(0, 0) = 0, R(1, 1) = 1. Then ∥ · ∥ is called a fuzzy norm and (X, ∥ · ∥, L,R)
is a fuzzy normed linear space (abbreviated to FNLS) if the mapping ∥ ·∥ from X into F ∗(R)
satisfies the following axioms, where [∥x∥]α = [∥x∥−α , ∥x∥+α ] for x ∈ X and α ∈ (0, 1] :
(A1) x = 0 if and only if ∥x∥ = 0,
(A2) ∥rx∥ = r̃ ⊙ ∥x∥ for all x ∈ X and r ∈ (−∞,∞),
(A3) for all x, y ∈ X :

(A3R) if s ≥ ∥x∥−1 , t ≥ ∥y∥−1 and s+ t ≥ ∥x+ y∥−1 , then
∥x+ y∥(s+ t) ≤ R(∥x∥(s), ∥y∥(t)),

(A3L) if s ≤ ∥x∥−1 , t ≤ ∥y∥−1 and s+ t ≤ ∥x+ y∥−1 , then
∥x+ y∥(s+ t) ≥ L(∥x∥(s), ∥y∥(t)).

In the rest of this paper, we use this definition of fuzzy norm. We note that ∥x∥sα, s =
−,+, are crisp norms on X where [∥x∥]α = [∥x∥−α , ∥x∥+α ].

Proposition 2.2. (Bag and Samanta [3] ) Let {aα} and {bα} be two, respectively, non-
decreasing and non-increasing families of real numbers such that −∞ < aα ≤ bα < +∞, 0 <
α ≤ 1 and η be the fuzzy real number (fuzzy interval) generated by the families of closed
intervals {[aα, bα];α ∈ (0, 1]}. Then
(A) supβ<α η−β = η−α ,

(B) infβ<α η+β = η+α , where [η]α = [η−α , η
+
α ] = [aα, bα].

Corollary 2.1. (Bag and Samanta [3] ) Let (X, ∥ · ∥) be a fuzzy normed linear space. If for
x ∈ X, [∥x∥]α = [∥x∥−α , ∥x∥+α ], 0 < α ≤ 1, then
(A) ∥x∥−α = supβ<α ∥x∥−β ,
(B) ∥x∥+α = infβ<α ∥x∥+β .

Definition 2.5. [7] Two fuzzy normed linear spaces (X, ∥ · ∥) and (X∗, ∥ · ∥∗) are called
congruent if there exists an isometry of (X, ∥ · ∥) onto (X∗, ∥ · ∥∗).

Definition 2.6. [7] A complete fuzzy normed linear space (X∗, ∥ · ∥∗) is a completion of a
fuzzy normed linear space (X, ∥ · ∥) if
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(i) (X, ∥ · ∥) is congruent to a subspace (X0, ∥ · ∥∗) of (X∗, ∥ · ∥∗) and
(ii) the closure X0 of X0, is all of X∗; i.e., X0 = X∗.

Definition 2.7. [15] Let (X, ∥ · ∥) be a fuzzy normed linear space.
(i) A sequence {xn} ⊆ X converge to x ∈ X (limn→∞ xn = x), if limn→∞ ∥xn − x∥+α = 0,

for all α ∈ (0, 1].
(ii) A sequence {xn} ⊆ X is said to be a Cauchy sequence if limm,n→∞ ∥xn − xm∥+α = 0,

for all α ∈ (0, 1].

Definition 2.8. [15] Let (X, ∥ · ∥) be a fuzzy normed linear space. A subset A of X is said
to be complete, if every Cauchy sequence in A converges in A.

In [8], the authors introduced a definition of fuzzy inner product space.

Definition 2.9. [8] Let X be a vector space over R. A fuzzy inner product on X is a
mapping ⟨·, ·⟩ : X ×X → F (R) such that for all vectors x, y, z ∈ X and r ∈ R, we have

(IP1) ⟨x+ y, z⟩ = ⟨x, z⟩ ⊕ ⟨y, z⟩,
(IP2) ⟨rx, y⟩ = r̃⟨x, y⟩,
(IP3) ⟨x, y⟩ = ⟨y, x⟩,
(IP4) ⟨x, x⟩ ≽ 0̃,
(IP5) infα∈(0,1]⟨x, x⟩−α > 0 if x ̸= 0,

(IP6) ⟨x, x⟩ = 0̃ if and only if x = 0.

The vector spaceX equipped with a fuzzy inner product is called a fuzzy inner product
space. A fuzzy inner product on X defines a fuzzy number

∥x∥ =
√
⟨x, x⟩, ∀x ∈ X. (1)

A fuzzy Hilbert space is a complete fuzzy inner product space with the fuzzy norm defined
by (1). Therefore by the above definition, any fuzzy inner product space with origin 0 is a
subspace of a fuzzy normed linear space.

In [8] the authors, clarified the fuzzy inner product spaces by Definition 2.10 and
Lemma 2.3.

Definition 2.10. [8] Let (X∗, ∥·∥∗) be a completion of a fuzzy normed linear space (X, ∥·∥)
and x∗, y∗ ∈ X∗ with representatives {xn} and {yn}, respectively. Suppose α ∈ (0, 1] and
{αk} is a strictly increasing sequence converging to α. Define

[⟨x∗, y∗⟩]α = [ lim
n,k→∞

⟨xn, yn⟩−αk
, lim
n,k→∞

⟨xn, yn⟩+αk
].

Lemma 2.3. [8] The function ⟨·, ·⟩ defined in Definition 2.10, is a fuzzy inner product on
X∗.

Example 2.1. [5] The linear space C(Ω) ( the vector space of all complex valued continuous
functions on Ω), is a fuzzy Hilbert space, for any open subset Ω ⊆ Rn with the fuzzy inner
product

⟨f, g⟩(t) = sup{α ∈ (0, 1]|t ∈ [f−
α g−α , f

+
α g+α ]} (2)

for f, g ∈ C(Ω). For α ∈ (0, 1], there exists an n ∈ N such that 1
n+1 < α ≤ 1

n . Also Ω is

a countable union of sets Kn ̸= ∅ which can be chosen so that Kn lies in the interior of
Kn+1(n = 1, 2, 3, · · · ). Let for an arbitrary function f ∈ C(Ω) have

f−
α = sup{|f(x)|;x ∈ K1} and f+

α = sup{|f(x)|;x ∈ Kn+1},

so {[f−
α , f+

α ];α ∈ (0, 1]} is a family of nested bounded closed intervals. Similarly for g and
so on holds. With the above discussion, (C(Ω), ⟨·, ·⟩) is a fuzzy Hilbert space.
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Definition 2.11. [6] Let (X, ∥·∥) and (Y, ∥·∥∼) be fuzzy normed linear spaces. Furthermore,
let T : X → Y be a linear operator. The operator T is said to be fuzzy bounded ( F-bounded),
if there is a fuzzy real number η ≽ 0̃, such that

∥Tx∥∼ ≼ η ⊙ ∥x∥, ∀x ∈ X.

The set of all fuzzy bounded linear operators T : X → Y is denoted by B(X,Y ).
Now we introduce the notion of fuzzy norm of linear operators. At the first, we prove a
memorable result for B(X,Y ), which has a famous analogous in functional analysis. A
similar result on B(X,C) is defined in [3].

Definition 2.12. [3] Let (X, ∥ · ∥) and (Y, ∥ · ∥∼) be fuzzy normed linear spaces. The linear
operator T : X → Y is said to be strongly fuzzy bounded if there exists a real number k > 0
such that

∥Tx∥∼ ⊘ ∥x∥ ≼ k̃, ∀x ∈ X,x ̸= 0

i.e. by [3],

∥Tx∥∼α
− ≤ k∥x∥+α and ∥Tx∥∼α

+ ≤ k∥x∥−α .

Definition 2.13. [3] Let (X, ∥ · ∥) and (Y, ∥ · ∥∼) be fuzzy normed linear spaces. A linear
operator T : X → Y is said to be weakly fuzzy bounded if there exists a fuzzy interval
0̃ ≺ η ∈ F ∗ such that

∥Tx∥∼ ⊘ ∥x∥ ≼ η, ∀x(̸= 0) ∈ X.

The following result of Bag and Samanta [3] is essential in this paper.

Proposition 2.3. [3] Let (X, ∥ · ∥) and (Y, ∥ · ∥∼) be fuzzy normed linear spaces and T ∈
B(X,Y ) (i.e., T : X → Y is a fuzzy bounded linear operator). There exists 0̃ ≺ η ∈ F ∗ such
that for all x( ̸= 0) ∈ X, ∥Tx∥∼ ⊘ ∥x∥ ≼ η. If [η]α = [η−α , η

+
α ], 0 < α ≤ 1, then we get

∥Tx∥∼α
− ≤ η−α · ∥x∥+α and ∥Tx∥∼α

+ ≤ η+α · ∥x∥−α .
Define

∥T∥∗α
−
= sup

0̸=x∈X

∥Tx∥∼α
−

∥x∥+α
≤ η−α , (3)

∥T∥∗α
+
= sup

0 ̸=x∈X

∥Tx∥∼α
+

∥x∥−α
≤ η+α . (4)

Then {∥ · ∥∗α
+
, α ∈ (0, 1]} and {∥ · ∥∗α

−
, α ∈ (0, 1]} are descending and ascending family of

norms, respectively. Thus {[∥T∥∗α
−
, ∥T∥∗α

+
] : α ∈ (0, 1]} is a family of nested bounded closed

intervals in R. Define the function ∥T∥∗ : R → [0, 1] by

∥T∥∗(t) =
∨

{α ∈ (0, 1] : t ∈ [∥T∥∗α
−
, ∥T∥∗α

+
]}.

(B(X,Y ), ∥ · ∥∗) is a fuzzy normed space.

In spite of our expectation, Example 3.2 in [9] shows that for S, T ∈ B(X) (B(X,X)),
the relations ∥SoT∥∗ ≼ ∥S∥∗ ⊙ ∥T∥∗, ∥SoT∥∗ ⊘ ∥S∥∗ ≼ ∥T∥∗ and ∥SoT∥∗ ⊘ ∥T∥∗ ≼ ∥S∥∗
are not valid.

Definition 2.14. [8] Let (X, ∥ · ∥) and (Y, ∥ · ∥) be fuzzy normed linear spaces and let
T : X → Y be a fuzzy bounded linear operator. We define ∥T∥ by,

[∥T∥]α = [sup
β<α

sup
∥x∥−

β ≤1

∥Tx∥−β , inf{η
+
α : ∥Tx∥ ≼ η∥x∥}], ∀α ∈ (0, 1].

Then ∥T∥ is called the fuzzy norm of the operator T .
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Remark 2.1. ∥T∥−α = supβ<α sup∥x∥−
β ≤1 ∥Tx∥

−
β and ∥T∥+α = inf{η+α : ∥Tx∥ ≼ η∥x∥}, i.e.

[∥T∥]α = [∥T∥−α , ∥T∥+α ], ∀α ∈ (0, 1].

Lemma 2.4. (Schwarz inequality)[8] A fuzzy inner product space X together with its cor-
responding norm ∥ · ∥ satisfy the Schwarz inequality

|⟨x, y⟩| ≼ ∥x∥∥y∥, ∀x, y ∈ X.

Theorem 2.2. [8] Let T : X → Y be a fuzzy bounded linear operator. If (X, ∥ · ∥) and
(Y, ∥ · ∥) are fuzzy normed linear spaces. Then ∥T∥ is a fuzzy real number.

Lemma 2.5. [8] Let T : X → Y be a fuzzy bounded linear operator. If (X, ∥·∥) and (Y, ∥·∥)
are fuzzy normed linear spaces, then ∥Tx∥ ≼ ∥T∥∥x∥, ∀x ∈ X.

Theorem 2.3. [8] Let (X, ∥ · ∥), (Y, ∥ · ∥) and (Z, ∥ · ∥) be fuzzy normed linear spaces.
Furthermore, let T ∈B(X,Y ) and S ∈B(Y,Z). Then ST ∈B(X,Z) and ∥ST∥ ≼ ∥S∥∥T∥.
Theorem 2.4. [8] Let X be a fuzzy inner product space. For all x, y ∈ X, if xn → x and
yn → y, then ⟨xn, yn⟩ → ⟨x, y⟩.
Definition 2.15. (Orthogonality)[8] An element x of an inner product space X is said to
be orthogonal to an element y ∈ X if ⟨x, y⟩ = 0, we also say that x and y are orthogonal
and we write x ⊥ y. Similarly, for subsets A,B ⊆ X we write x ⊥ A if x ⊥ a for all a ∈ A
and A ⊥ B if a ⊥ b for all a ∈ A and all b ∈ B.

3. Fuzzy unbounded operator

Now we study the case of fuzzy unbounded operators. The theory of fuzzy unbounded
operators is more complicated than that of bounded operators.

Example 3.1. Let X = R (the linear space of real numbers). Define two functions ∥ · ∥1
and ∥ · ∥2 by

∥x∥1(t) =

{
1, t = |x|
0, t ̸= |x|

and ∥x∥2(t) =


|x|
t , |x| ≤ t, x ̸= 0

1, t = |x| = 0

0, otherwise.

Then ∥ · ∥1 and ∥ · ∥2 are fuzzy norms on R and the α-level sets of ∥ · ∥1 and ∥ · ∥2 are given
by

[∥x∥1]α = [|x|, |x|] and [∥x∥2]α = [|x|, |x|
α

], x ∈ R.

We define T : (R, ∥ · ∥1) → (R, ∥ · ∥2) by T (x) = nx, for each n ∈ N, for all x ∈ R. Clearly
T is linear.

Now
∥Tx∥+

2,α

∥x∥−
1,α

=
|nx|
α

|x| = n
α , for all x( ̸= 0) ∈ R, 0 < α ≤ 1. If T is bounded, then n ≤ αη

for each n ∈ N. Hence η = ∞, which contradicts the definition of fuzzy real number. This
shows that T is fuzzy unbounded. That such a fuzzy operator T may be unbounded, that is, T
may not be bounded. Bag in [1] established that the uniform boundedness theorem for weakly
fuzzy bounded holds and the authors in [9] presented that a version of uniform boundedness
theorem (the point-wise and uniformly boundedness) with new definitions of different from it
in [1]. Using the elementary functional analysis, we can prove the fuzzy version of uniform
boundedness theorem. Using of the uniform boundedness theorem with Felbin norm, one can
verify the main result of this section.

Definition 3.1. Let (X, ∥ · ∥) and (Y, ∥ · ∥∼) be two fuzzy normed linear spaces. A family
{Tn} ⊆ B(X,Y ) is called point-wise bounded if for every x(̸= 0) ∈ X, there exists a fuzzy
number 0̃ ≺ δx ∈ F ∗ such that for all n > 0,

∥Tn(x)∥∼ ≼ δx,
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and is said uniformly bounded if there exists a fuzzy number 0̃ ≺ δ ∈ F ∗ such that for each
n > 0 and x(̸= 0) ∈ X,

∥Tn∥∼ ≼ δ.

Theorem 3.1. (Uniform Boundedness Theorem) Let {Tn} ⊂B(H,H) such that for each
x ∈ H, {Tn} is bounded in H, i.e. there exists a fuzzy real number ηx such that ∥Tnx∥ ≼ ηx,
for all n. Then there exists a fuzzy real number δ such that ∥Tn∥ ≼ δ, for all n, where
(H, ∥ · ∥) is a complete fuzzy normed linear space for each α ∈ (0, 1].

Proof. Let [∥Tnx∥]α = [∥Tnx∥−α , ∥Tnx∥+α ], [∥x∥]α = [∥x∥−α , ∥x∥+α ] and [ηx]α = [η−x,α, η
+
x,α], α ∈

(0, 1]. Since ∥Tnx∥ ≼ ηx, ∀n, we have

∥Tnx∥−α ≤ η−x,α and ∥Tnx∥+α ≤ η+x,α.

Again, since H is a complete fuzzy normed linear space for each α ∈ (0, 1] (H, ∥ · ∥−α ) and
(H, ∥ · ∥+α ) are complete spaces for each α ∈ (0, 1]. We know that {Tn} ⊂B(H,H). So,

Tn : (H, ∥ · ∥−α ) → (H, ∥ · ∥+α ) and Tn : (H, ∥ · ∥+α ) → (H, ∥ · ∥−α )
are sequences of bounded linear operators for each α ∈ (0, 1]. Now by the uniform bound-
edness theorem, it follows that for each α ∈ (0, 1] there exist constants C−

α , C+
α such that

sup
n

∥Tn∥−α = C−
α and sup

n
∥Tn∥+α = C+

α ,

where ∥T∥−α = supβ<α sup∥x∥−
β ≤1 ∥Tx∥

−
β and ∥T∥+α = inf{η+α : ∥Tx∥ ≤ η∥x∥}. We have

∥Tn∥−α ≤ C−
α (5)

and
∥Tn∥+α ≤ C+

α . (6)

It can be easily verified that {[C−
α , C+

α ], α ∈ (0, 1]} is a family of nested, bounded and closed
intervals of real numbers and thus it generates a fuzzy real number say δ (by Proposition
2.1). Hence by Proposition 2.1, from (5) and (6) we have ∥Tn∥ ≼ δ,∀n. �
Remark 3.1. If T is weakly fuzzy bounded, then the above theorem is also true.

Theorem 3.2. If a fuzzy linear operator T is defined on a fuzzy Hilbert space H and satisfies:
⟨Tx, y⟩ = ⟨x, Ty⟩, for all x, y ∈ H, then T is bounded.

Proof. If T is not bounded, then H shall contain a sequence {yn} such that ∥yn∥ = 1 and
∥Tyn∥ → ∞. We consider the functional fn defined by

fn(x) = ⟨Tx, yn⟩
where for n = 1, 2, ..., any fn is defined on H and is linear for any fixed n, the functional fn
is fuzzy bounded since

∥fn(x)∥ = ∥⟨x, Tyn⟩∥
≼ ∥Tyn∥∥x∥.

Moreover, for any fixed x ∈ H, the sequence {fn(x)} is fuzzy bounded. Indeed, since
∥yn∥ = 1, we have

∥fn(x)∥ ≼ ∥T∥∥x∥,
we know that ∥T∥ is fuzzy real number that is independent of x and ∥T∥∥x∥ is depend of x.
Also fn(x) is fuzzy bounded. From this and the uniform boundedness theorem, we conclude
that there exists k ∈ F (R) such that ∥fn∥ ≼ k for all n. This implies that for any x ∈ H we
have by Lemma 2.5,

∥fn(x)∥ ≤ ∥fn∥∥x∥
≤ k∥x∥
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and taking x = Tyn, we arrive at

∥Tyn∥2 = ⟨Tyn, T yn⟩
= ∥fn(Tyn)∥
≤ k∥Tyn∥.

Hence ∥Tyn∥ ≼ k, which contradicts our initial assumption ∥Tyn∥ → ∞ and proves the
theorem. �

4. Closed linear operators

We review the definition of a closed linear operator, using formulations which are convenient
for fuzzy Hilbert spaces. Let (H, ∥ · ∥) and (H, ∥ · ∥∗) be two α-complete fuzzy normed linear
spaces for each α ∈ (0, 1]. Define ⟨x, y⟩ + ⟨x′, y′⟩ = ⟨x + x′, y + y′⟩ and c⟨x, y⟩ = ⟨cx, cy⟩
where ⟨x, y⟩, ⟨x′, y′⟩ ∈ H ×H and c is a scalar, ⟨x, y⟩ = x+ y.
Since (H, ∥ · ∥) and (H, ∥ · ∥∗) are α-complete fuzzy normed linear spaces for each α ∈ (0, 1],
thus (H, ∥ · ∥sα) and (H, ∥ · ∥∗α

s
) are fuzzy Hilbert spaces for s = −,+ and for α ∈ (0, 1]. Now

we define the functions ∥ · ∥′α and ∥ · ∥′′α from H ×H to R+ by

∥⟨x, y⟩∥′α = ∥x∥−α + ∥y∥∗α
+

and ∥⟨x, y⟩∥′′α = ∥x∥+α + ∥y∥∗α
−

where [∥x∥]α = [∥x∥−α , ∥x∥+α ] and [∥y∥∗]α = [∥y∥∗α
−
, ∥y∥∗α

+
], α ∈ (0, 1].

Then it can be verified that (H × H, ∥ · ∥′α) and (H × H, ∥ · ∥′′α) are fuzzy normed linear
spaces for each α ∈ (0, 1]. If H be fuzzy Hilbert space and T : H → H is a linear operator
then the set given by G(T ) = {(x, Tx) : x ∈ H} ⊂ H ×H is called the graph of T .

Definition 4.1. Let (H, ∥ · ∥) and (H, ∥ · ∥∗) be two fuzzy Hilbert spaces and T : (H, ∥ · ∥) →
(H, ∥ · ∥∗) be a linear operator and α ∈ (0, 1]. Then G(T ) = {(x, Tx) : x ∈ H} ⊂ H ×H is
said to be α-closed if for every sequence {xn} in H, where xn = (x′

n, y
′
n), ∥xn − x∥+α → 0

and ∥Txn − y∥∗α
+ → 0 as n → ∞, implies x ∈ H and y = Tx where [∥x∥]α = [∥x∥−α , ∥x∥+α ]

and [∥y∥∗]α = [∥y∥∗α
−
, ∥y∥∗α

+
], α ∈ (0, 1].

If G(T ) is α-closed, then T is called an α-closed linear operator. The same discussion
in closed graph theorem holds for the above definition.

5. Bessel’s inequality

Definition 5.1. Let X be a fuzzy inner product space. A fuzzy orthogonal set M in X is

said to be fuzzy orthonormal if ⟨x, y⟩ =

{
1̃, x = y

0̃, x ̸= y
, for all x, y ∈ M.

Theorem 5.1. Let X be a fuzzy inner product space and assume that for any x ∈ X there
exists {xn} ⊂ X,xn → x. Let {ek} be a fuzzy orthonormal sequence in X. Then

∞∑
k=1

|⟨x, ek⟩|2 ≤ ∥x∥2, x ∈ X.

Proof. We cautiously note that the classic form of Bessel’s inequality can not be directly
applied in this case because ∥ · ∥ is Felbin’s fuzzy norm. Due to Bessel’s inequality in crisp
inner product space we have ∑

k

|⟨x, ek⟩|2 ≤ ∥x∥2, x ∈ X. (7)
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Using xn, for n = 1, 2, . . . , substitute for x in (7), we obtain
∑n

k=1 |⟨xn, ek⟩|2 ≤ ∥xn∥2.
Step 1. Since ∥ · ∥sα; s = −,+; are crisp norms on X, we have

n∑
k=1

|⟨xn, ek⟩|2 ≤ ∥xn∥−2
α and

n∑
k=1

|⟨xn, ek⟩|2 ≤ ∥xn∥+2
α .

Since ⟨·, ·⟩ is continuous, passing the limit above yields,
∞∑
k=1

|⟨x, ek⟩|2 ≤ ∥x∥−2
α and

∞∑
k=1

|⟨x, ek⟩|2 ≤ ∥x∥+2
α .

Step 2. In this case, the norm is Felbin-type induced by the fuzzy inner product on
X and let [⟨xn, ek⟩]α = [⟨xn, ek⟩−α , ⟨xn, ek⟩+α ] and [|⟨xn, ek⟩|]α = [mα,m

′
α], where mα =

max(0, ⟨xn, ek⟩−α ,−⟨xn, ek⟩+α ),m′
α = max(|⟨xn, ek⟩−α |, |⟨xn, ek⟩+α |) for α ∈ (0, 1]. Invoking the

Theorem 2.4, we have ⟨xn, ek⟩ → ⟨x, ek⟩. Hence ⟨xn, ek⟩±α → ⟨x, ek⟩±α , with respect to n. We
have ||⟨xn, ek⟩±α | − |⟨x, ek⟩±α || ≤ |⟨xn, ek⟩±α − ⟨x, ek⟩±α |, hence

|⟨xn, ek⟩±α |2 → |⟨x, ek⟩±α |2. (8)

Also from Theorem 2.4 again, ⟨xn, xn⟩ → ⟨x, x⟩, then we have ⟨xn, xn⟩±α → ⟨x, x⟩±α . There-
fore

∥xn∥±α → ∥x∥±α . (9)

By Schwarz inequality, we have |⟨xn, ek⟩| ≼ ∥xn∥∥ek∥ and since ∥ek∥ = 1, we have |⟨xn, ek⟩|2 ≼
∥xn∥2 then |⟨xn, ek⟩±α |2 ≤ ∥xn∥±α

2
. From (8) and (9) with taking lim as n → ∞, |⟨x, ek⟩±α |2 ≤

∥x∥±α
2
, and since ⟨x, ek⟩ =

{
1, x = ek

0, x ̸= ek
, we have

∞∑
k=1

|⟨x, ek⟩−α |2 ≤ ∥x∥−α
2

(10)

and
∞∑
k=1

|⟨x, ek⟩+α |2 ≤ ∥x∥+α
2
, (11)

from (10) and (11) we have
∞∑
k=1

|⟨x, ek⟩|2 ≼ ∥x∥2.

This completes the proof. �
Theorem 5.2. (Bessel’s inequality) Let H be a fuzzy Hilbert space. If {ek} is a fuzzy
orthonormal sequence in H, then

∞∑
k=1

|⟨x, ek⟩|2 ≼ ∥x∥2, x ∈ H,

which is a special case of Theorem 5.1.

6. Conclusion

As the idea of fuzzy Hilbert space is relatively new and the classic form of theorems plays the
role of a prototype in our discussion of this paper, it is natural to ask: do ordinary theorems
in this discussion hold in Felbin’s fuzzy Hilbert space? In this paper, we consider the fuzzy
norm in the sense of Felbin. Some concepts have been introduced. Some theorems have
been established in fuzzy setting. Since these theorems have many applications in functional
analysis, it is expected that the results of this paper will be helpful for the researchers to
develop fuzzy functional analysis.
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