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A NEW DIAGONAL GRADIENT-TYPE METHOD FOR LARGE

SCALE UNCONSTRAINED OPTIMIZATION
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The main focus of this paper is to derive new diagonal updating scheme

via the direct weak secant equation. This new scheme allows us to improve the

accuracy of the Hessian’s approximation and is also capable to utilize informa-

tion gathered about the function in previous iterations. It follows by an scaling

approach that employs scaling parameter based upon the proposed weak secant

equation to guarantee the positive definiteness of the Hessian’s approximation.

Moreover, we also prove the convergence of the proposed method under a sim-

ple monotone strategy. Numerical results show that the method is promising and

frequently outperforms its competitors.
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1. Introduction

To minimize a continuously differentiable function f without constraints,

min f(x), x ∈ Rn, (1)

Barzilai and Borwein method [2] generates the sequence xk according to the iterative

scheme:

xk+1 = xk −B−1
k gk, (2)

where gk = ∇f(xk) and B−1
k = αkI. Here, αk is a stepsize decided by the informa-

tion obtained at points xk and xk−1. The two choice of the scalar αk are given as

follows:

α
(1)
k =

sTk−1sk−1

sTk−1yk−1
(3)

and

α
(2)
k =

sTk−1yk−1

yTk−1yk−1
(4)

1Department of Mathematics, University Putra Malaysia, 43400 Serdang, Selangor, Malaysia,

E-mail: mfarid7@gmail.com
2 Department of Mathematics, University Putra Malaysia, 43400 Serdang, Selangor, Malaysia,

E-mail: wjleong@science.upm.edu.my
3School of Computing and Maths, Charles Sturt University, Australia, E-mail:

lzheng@csu.edu.au

57



58 Mahboubeh Farid, Wah June Leong, Lihong Zheng

where sk−1 = xk − xk−1 and yk−1 = gk − gk−1. These alternative choices for are

related to the quasi-Newton equation (also called the secant equation)

Bksk−1 = yk−1, (5)

where Bk is an n× n symmetric positive definite matrix approximating the Hessian

matrix ∇2f(xk). The BB method has received a great deal of studies because it pro-

vides an effective and very useful stepsize adaption procedure for unconstrained op-

timization [4],[10],[15]. However, there are several disadvantages of the BB method.

The method does not guarantee a descent in the objective function at each iteration,

and the extent of the non-monotonicity depends in some way on the condition of

the Hessian matrix. Motivated by these shortcomings, a variant of spectral gradi-

ent methods, called diagonal gradient-type method are developed by [8],[9],[11],[12].

This approach replaces αkI with the diagonal matrix B−1
k , and the spectral infor-

mation on the Bk is corrected via a weaker form of the quasi-Newton equation (5).

In general, the approach consists in finding an updated Hessian approximation Bk,

which is restricted to be a diagonal matrix, obeys the weak secant equation of Dennis

and Wolkowicz [6], namely

sTk−1Bksk−1 = sTk−1yk−1, (6)

and simultaneously preserves as much information as possible from the current ap-

proximation Bk−1, which is assumed to be diagonal. Here, the spectral information

which is characteristically used in determining Bk+1 is contained only in vectors sk
and yk, and does not use information of function values of the objective function.

Thus, it is reasonable to construct a new weak secant equation that incorporates

information on function values for approximating the curvature. Moreover, one can

view the weak secant equation as a projection of the quasi-Newton equation (5) in

a direction υ such that υTBksk−1 = υT yk ̸= 0. It seems that the choice of υ may

influent the quality of the curvature information.

To avoid these obstacles, the approach proposed in this paper is based on

defining the weak secant equation by interpolation rather than deriving from the

secant equation. Moreover, it uses information of two successive function values for

approximating the curvature information in higher accuracy. Along this line, a new

diagonal updating formula is proposed. The structure of the paper is as follows:

in Section 2 we describe the new diagonal updating and details of the proposed

algorithm. Section 3 deals with the global convergence of the algorithm and Section

4 presents the result of computational experiments. Finally, Section 5 concludes the

paper.

2. Derivation of New Diagonal Updating

Many of the quasi-Newton methods accumulate Hessian information based on

the secant equation (5). However, since it is usually difficult to satisfy the secant

equation with a nonsingular matrix of the diagonal form, we need some alternatives

that can ensure the accumulated curvature information along the step is correct. The
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alternative we look for is the non-secant updating strategy proposed by Dennis and

Wolkowicz [6]. Dennis and Wolkowicz introduced a weaker form of secant equation

by projecting the secant equation (5) in a direction υ such that yTk υ ̸= 0 to give

υTBksk−1 = υT yk. (7)

Particularly, Dennis and Wolkowicz considered υ = sk−1, which leads to (6). Under

this weak-secant equation, Zhu et al. [16], Hassan et al., [11], and Leong et al. [12]

employ independently, a variational technique that is analogue to the one used to

derive the Powell Symmetric Broyden (PSB) quasi-Newton update (see, for example

Dennis and Schnabel [5]) for approximating the Hessian matrix diagonally. Despite

some promising numerical results, it remains unknown on the appropriateness of the

choice of υ and one can expect that nontrivial computational experience is required

to determine such direction. Moreover, relation (6) does not use information of

function values of the objective function, which may be essential to interpolate the

curvature information correctly.

Motivated by these drawbacks, we propose an approach that defines a new

weak secant equation as view of interpolation rather than deriving from secant equa-

tion. The general idea of our approach is given as follows:

Quasi-Newton methods use a local quadratic model of the form

f(xk + s) ≈ ϕk(s) = f(xk) + gTk s+
1

2
sTGks (8)

where Gk is the true Hessian at xk. Thus, the curvature information carried in

sTGks of (11) can be approximated by

sTGks ≈ 2(f(xk + s)− f(xk)− gTk s). (9)

Since the updated Bk+1 is supposed to approximate Gk, it is reasonable to having

sTkBk+1sk = 2(fk+1 − fk + gTk sk) (10)

In fact, this new weak secant equation (10) is superior to the one defined by

(6) in the sense that it gives lower error in approximating the curvature information.

We shall give some details on this claim. Let us consider the Taylor expansion of

f(xk + sk) about xk, and its derivative, respectively:

f(xk + sk) = f(xk) + gTk sk +
1

2
sTkGksk +

1

6
Tk ⊗ s3k +O(∥sk∥4); (11)

g(xk + sk) = g(xk) +G(xk)sk +
1

2
Tk ⊗ s2k +O(∥sk∥3), (12)

where Tk ∈ Rn×n×n is the third order derivative tensor of f at xk and ⊗ is some

appropriate tensor product. After multiplying (12) by sk and using the fact that,

yk = g(xk + sk)− g(xk) we have

sTk yk = sTkG(xk)sk +
1

2
Tk ⊗ s3k +O(∥sk∥4). (13)
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If Bk+1 and B̂k+1 is the Hessian approximation that based upon (10) and (6) (with

index k being replaced by k + 1), respectively. Then we obtain

|sTkBk+1sk − sTkGksk| =
1

3
|Tk ⊗ s3k|+O(∥sk∥4); (14)

|sTk B̂k+1sk − sTkGksk| =
1

2
|Tk ⊗ s3k|+O(∥sk∥4), (15)

and these imply that using (10) will eventually give a lower error in the approxima-

tion.

Hence, by using (10) we shall construct the new updating formula for diagonal

approximation of Hessian accordingly. The updating formula that we are looking for

is derived based upon the least change updating strategy analogue to that of Leong

et al. [12], i.e. the solution of the following problem:

min
1

2
∥Bk+1 −Bk∥2F ,

s.t sTkBk+1sk = 2(fk+1 − fk + gTk sk), (16)

and Bk+1 is a diagonal matrix

where ∥.∥F denotes the Frobonius norm. Using the procedure similar to that of

Leong et al. [12], the updating formula for Bk+1 will be generated by the following:

Bk+1 = Bk +

(
2(fk+1 − fk + gTk sk)− sTkBksk

tr(E2
k)

)
Ek (17)

where Ek = diag((s
(1)
k )2, (s

(2)
k )2, ..., (s

(n)
k )2) and s

(i)
k is the ith component of vector

sk. To safeguard on the possibility of having non-positive-definite updating matrix,

we define a scaling for (17) such that Bk+1 is forced to be positive definite. Note

that we will have Bk+1 ≻ 0 if the following condition holds:

2(fk+1 − fk + gTk sk)− sTkBksk > 0. (18)

Then, one can employ a scaling βk such that

βk = min(ρk, 1) (19)

where

ρk =
2(fk+1 − fk + gTk sk)

sTkBksk
. (20)

We can immediately see that by incorporating such scaling to Bk, before using it to

update Bk+1, we can guarantee the positive definiteness of Bk+1 [13]. Accordingly,

our updating formula will be as follow:

Bk+1 = βkBk +

(
2(fk+1 − fk + gTk sk)− βks

T
kBksk

tr(E2
k)

)
Ek. (21)

We can now state the detailed algorithm corresponding to the updating formula (21)

under the monotone strategy of [11].

TSDG Algorithm



A New Diagonal Gradient-Type Method for Large Scale Unconstrained Optimization 61

Step 0. Choose an initial point x0 ∈ Rn, and a positive definite symetric matrix

B0 = I. Set k = 0.

Step 1. Compute gk. If ∥gk∥ ≤ ϵ, stop.

Step 2. Set xk+1 = xk −B−1
k gk. Calculate ρk, βk, Bk+1 by (20),(19),(21), respec-

tively.

Step 3. If bMk+1b
M
k > 2(bmk )2 Set Bk+1 = τI where τ = min

(
bMk

2(bmk )2
,
sTk yk
sTk sk

)
in Step

2 with bmk , bMk , bMk+1 be the smallest and largest diagonal component of

Bk and Bk+1, respectively.

Step 4. Set k := k + 1 and go to Step 2.

3. Convergence Analysis

This section is devoted to study the convergence behavior of TSDG method.

We shall establish the convergence of the TSDG algorithm when applied to the

minimization of a strictly convex quadratic function with constant Hessian.

Theorem 3.1. Assume that f(x) is a strictly convex quadratic function. Let {xk}
be a sequence generated by the TSDG method and x∗ is a unique minimizer of f.

Then either gk = 0 holds for some finite k ≥ 1, or lim
k→∞

∥gk∥ = 0.

Proof. Denote G = ∇2f. Let bmk , bMk , bmk+1 and bMk+1 be the smallest and largest

diagonal elements of Bk and Bk+1, respectively where Bk+1 is obtained is step 4 of

TSDG Algorithm. Consider the Taylor expansion of the strictly convex function, f

at xk+1 :

f(xk −B−1
k gk) = f(xk)− gTk B

−1
k gk +

1

2
gTk B

−1
k GB−1

k gk. (22)

Since Gsk = yk, it follows that s
T
kGsk = gTk B

−1
k Bk+1B

−1
k gk.Thus

f(xk+1) ≤ f(xk)− c ∥gk∥2 , (23)

where c = (bMk )−1 − (bmk )−2bMk+1

2 > 0. If c > 0, we have f(xk+1) ≤ f(xk) for all k.

Else if c < 0, then we let Bk+1 = ϑI where ϑ = min(
bMk

2(bmk )2
,
sTk yk
sTk sk

). Hence (23)

becomes

f(xk+1) ≤ f(xk)− c̄ ∥gk∥2 ,

where c̄ = bmk −
(
(bMk )2ϑ

)
/2. With our choice of ϑ, we have that c̄ ≥ 0. This implies

that f(xk+1) ≤ f(xk) for all k and since f is bounded below, it follows that

lim
k→∞

f(xk)− f(xk+1) = 0.

As f(xk)− f(xk+1) → 0, and c > 0 then lim
k→∞

∥gk∥ = 0, i.e. xk converges to x∗. �
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Table 1. Test problem and its dimension

Problem Dimension

Diagonal 5, Extended Himmelblau, Generalized Rosenbrock, Generalized PSC1,

Extended PSC1,Generalized Tridiagonal 1, Extended three Exponential terms,

Generalized Tridiagonal 2, Broydan Tridiagonal, Extended Block Diagonal BD1, 10,100,1000,10000

Extended Freudenstein and Roth, Extended Trigonometric, Extended Beale,

Quadratic Diagonal Perturbed, Quadratic QF2, Extended Tridiagonal 2,

Penalty 1, Penalty 2, Diagonal 4, Full Hessian FH1, Raydan 2,

Perturbed Quadratic,Raydan 1, Diagonal 1, Diagonal 2,Diagonal 3, Hager, EG2,

Almost perturbed Quadratic, Quadratic QF1 10,100,1000

4. Numerical Results

In this section we analysis the effectiveness of TSDG algorithm and compare

it to the BB and MDGRAD [11] method. The algorithms are coded in Matlab 7 and

executed by a PC with Core Duo CPU. For all runs in our numerical experience,

the iteration counts are limited as 1000. In addition, the algorithms are stopped if

the maximum norm of the final gradient is below 10−4, that is

∥g(xk)∥ ≤ 10−4.

We solved 30 problems where the name and dimensions of these tested problems are

listed in Table 1.

Figure 1. Performance profile based on Iteration for all problems.
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Figure 1 and 2 report the performance profiles of the TSDG, BB and MD-

GRAD algorithms. These profile graphs compare the number of iteration counts and
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Figure 2. Performance profile based on CPU time.
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Figure 3. Performance profile based on iteration for large scale

problems (n = 10000).

the computation time of the runs. It can be seen from Fig. 1 that TSDG algorithm

is superior to the BB and MDGRAD methods in general. Moreover, all of the algo-

rithms employ a monotone search strategy that only uses one function and gradient

evaluation per iteration while TSDG algorithm uses an additional function value in
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approximating the Hessian diagonally. The additional function value requires only

a unit of storage but the overall improvement is worthy.

5. Conclusion

The main contribution of the paper is in proposing a new derivation for weak

secant equation. Through this new relation, we have presented a new gradient-type

method that estimates Hessian matrix by a diagonal matrix. Our scheme is simple

and able to enhance the performance of the gradient-type methods with minimal

storage.
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