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ANUMERICAL METHOD OF SOLVING CAUCHY
PROBLEM FOR DIFFERENTIAL EQUATIONS BASED ON A
LINEAR APPROXIMATION

Cristina SERBANESCU?, Marius BREBENEL 2

An alternate method of numerical integration of first order ordinary
differential equations (i.e. solving Cauchy problem) is proposed, based on the
linearization of the expression which doesn’t contain the derivative of the unknown
function. It is proved that the approximation is of order 2 and, by given examples,
the accuracy of method is illustrated. The method is extended for 2'nd order
differential equations and one shows that it is also of order 2 of accuracy, but for
some classes of such equations, the methods becomes of order 3. The advantage is
that the proposed method applies directly to 2’nd order equations, without the need
of solving systems of first order.

Keywords: Taylor series; linear approximation; order of approximation; Cauchy
problem.

1. Introduction

The classical numerical methods for solving first-order ordinary
differential equations (ODE) with initial values are based on approximations
derived from the Taylor expansions of the unknown function. The simplest (and
oldest) method is named after Euler and is based on the first order Taylor
approximation of the function we are looking for. However, the Euler method is
not as accurate as engineering problems require, so that more precise methods are
needed to solve Cauchy problems for ODE’s and systems of ODE’s. Today, the
most used such a method, specially on solving large systems of 1-st order ODE’s
with constant coefficients, is known as “Runge-Kutta method” (RK), which in
fact is a class of methods. The most applied version belonging to this class is the
4-th order RK method ([1], [4]). Other methods are also known, which belong to
families of linear multistep methods, like the explicit “Adams—Bashforth”
methods or implicit “Adams-Moulton” methods, having various orders of
accuracy ([2], [5]). Linear multi-step methods using higher-order derivatives have
been developed (such as Stérmer method) as well ([6]).
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Other methods use adaptative step sizes in order to improve the accuracy
of approximation, by changing the step size during the integration. The implicit
methods are not mentioned in this paper, since the proposed method is an explicit
one and it will be compared with methods of the same category.

The method proposed in this paper combines the versatility of Taylor
approximations with the accuracy given by the exact analytic solutions of linear
ODE of 1’st order. One consequence of this feature is that for some classes of
ODE’s, the order of the approximation gets higher, using the same method. This
could be an advantage over the classical methods.

2. First order ODE — first method

One considers the Cauchy problem stated as follows: find the function
y= y(x) satisfying the differential equation and the initial condition given below:

y'=f(xY), y(xg)=Yo .where f eC?(D), D<R?. 1)

The first proposed method consists of taking the linear term from the
Taylor expansion of f (x,y) with respect to the variable y :
of ,
f(xy)=f(xyo)+(y-Yo) = =f(xyo)+(y-Yo)fy,- (@
oy (X0.Yo)
One can observe that Euler method considered only the first term of (2)
where, in addition, the value of f (x,y) was takenin x=Xxg.

By performing the function change

u(x) = y(x) - Yo (3)
the equation (1) becomes a linear inhomogeneous ODE of form:
u'—fy, - u="F(xyo), u(xo)=0. 4)
The general solution of above equation can be expressed as
X
—f —X
u()=[f(&yo)e " =) ge. (5)
Xo

According to (3), it follows that
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X
—f —X
y(X)=yo+_f f(&yo)e jol )dé- (6)
Xo
Since the interval [xo, x] is in general small (it represents the step of the

numerical algorithm), a mean value theorem can be applied on the integral in (6):
X

X + Xg

Y(9=yo+ F (6w yo) [0 where £y = 20 )

Xo
By computing the integral, one gets finally the approximate solution on
[Xo. X]:
fyo(x=%o)

X+ X e Y0 — ,
y(x)= y0+f( > 0 yo]T,where fy, #0. 8)
0

Remarks:

1) Since the function f is supposed to be of class C?, its partial
derivatives can be easily found and the above expression can be implemented
without difficulties in the computing codes.

2) In the case when f;,o =0, one can observe that the last fraction in (8)

has a finite limit;

el
lim , = X—Xg 9)
fyo—0 fyO

(in other words, fg,o =0 is an apparent singularity). The approximate solution
becomes:

X+ X
y(x)= Yo+ (x=xo) f( S YOJ- (10)
The trivial case when f{ =0 can be easily treated using the above

formula, which is similar but not identical to the formulas given by other known
methods, like improved Euler, second order Runge-Kutta or Heun’s method.
3) For the linear ODE of first order, the rule applies as follows:

y'=p(x)-y+a(x), y(xo)=Yo (11)

f(xy)=p(x)-y+a(x), fy=p(x) (12)
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P(Xo)(x—Xo) _
y(X)%yo{p(X;XOJ-yw Q(“Zxoﬂe ] L w

This expression approximates the closed form solution
X

y(X)=yo+_[q(é)e_p(g)(g_x)dé (14)
Xo

wherein the integral cannot be computed analytically and numerical approaches
were needed involving thus a higher volume of computations.

The accuracy of approximation
In the sequel, the Taylor expansions of the exact solution and the
approximate one about x =Xq will be analyzed.

The Taylor series of function y(x) about x =xq has the form:

(%)= Yo+ ¥ (x0) (X~ Xo0) + 5 ¥(x0)(X — X0)+

1 3 (15)
Ty y"(xg)(x = %) +....
Using (1), the above expansion can be rewritten as:
2
(x=xg)° d
- —xn)f A V.
y(X)=yo+(x—xq)fg + > -~ (xy)| +
. ° (16)
(x=xp)” d
+ 5 -dxzf(x,y) + ..
where
fo="f(xo, Yo)- 17

By using the basic rules of Calculus, the total derivatives of f(x,y) with

respect to x will get the following explicit forms:

d—f=ﬂ+y'ﬂ=f’+ f f{

dx  ox oy * y (18)
2f " n 2 ” ! ! ’
= ot 2F fy+ £ 200 + (o F)) 1. (19)

o

o

X
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It follows that the Taylor expansion of y(x) about x =xq gets the form:

(x-x0)*
S

y(X)= Yo+ (x=xg) fo + f;o+f0f'yo]+

(20)
(X_XO)3 14 n 2 n ! ! ’
n T[fxxo + 260 Fyo + TEFhyy + 3o (o + fo Ty, )}
A similar analysis will be performed on the approximate solution (8). The
exponential function has the expansion:

50U 1 (xxg) £, + Scona)? 17
1 3 1)
'3
+ g(x—xo) fle +o
so that the corresponding term in (8) reduces to
f3o (x=xo)
g Y0 -1 1 2 1 3,2
=X—Xg+ =(X—X fi, +=(x—x flo+... 22
i 0 2( 0)" Ty, 6( 0) Yo (22)
The other term which has to be expanded is
X+ X X + X of
f( > 0 yoj; f(Xo,YO)+( > 0 —xoja—
X(X01yo) 23)
1( X+ Xg 202¢
22 ) oz
X (x0:Y0)
X+ X 1 ' 1 2 ¢
f( > O,yoj; fo +E(x—xo)fx0 +Z(X_XO) fXxg + (24)
Introducing in (8), one yields:
1 2[ ¢+ :
y(x)=yq + (x—xo)fo+z(x—x0) [fxo+f0fy0]+
(25)

1 3 3 ” ’ ' r2
+ 2 (x=x0) {E<fxxo+ fio T90 )+ fofy0}+....

By comparing to (8), one can observe that the differences occur at the term
of order 3, which means that the accuracy of the method is of order 2.

The next example will illustrate the accuracy of the proposed method, by
comparing the results with those given by other known methods (like Euler and
Runge-Kutta of order 4).

The following Cauchy problem is considered:
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2X 3 1

e =2(x+2 , Y(0)=—. 26

y'=2(x+2)y°, y(0) NG (26)
The equation is of separable variables and admits a closed analytical
solution, such that it is easy to compare the approximate solutions with the exact

one:

eX

y(x) = ﬁ (27)

For the given example, one derives:

f(x, y)=2(x+2) e"2Xy3, f(Xn, Yn)=2(Xn+2) e~ 2Xn y3 (28)

, of _9
fy =— =6 (x,+2)e “¥nyZ. 29)
Y (x0.30)
The recurrent formula derived from (8) is
1 X + X fl (Xpa— X
yn+1: yn + y f( n+12 n ’ ynJ|:e Yn( n+l n) _1} (30)
Yn

A constant step of h= X, —X,=0.05 was chosen for the given

example. In the Table 1 and Fig.1, the numerical results and the graphical
representation are shown.

Table 1
Comparative results of numerical solutions of Cauchy problem (26) using
the 1-st proposed method and other known methods

Xn | yn-exact | yn—proposed (1) | yn—RK | yn-Euler
0 0.447214 0.447214 0.447214 0.447214
0.1 0.484650 0.484667 0.484649 0.483765
0.2 0.525608 0.525651 0.525608 0.523528
0.3 0.570419 0.570497 0.570419 0.566742
04 0.619446 0.619571 0.619446 0.613653
0.5 0.673088 0.673277 0.673087 0.66451
0.6 0.731781 0.732056 0.73178 0.719563
0.7 0.796006 0.796396 0.796005 0.779054
0.8 0.866291 0.866834 0.86629 0.84321
0.9 0.943215 0.943962 0.943214 0.912233
1.0 1.027414 1.02843 1.027413 0.986289
1.1 1.119587 1.120957 1.119585 1.065491
1.2 1.220499 1.222337 1.220497 1.149888
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1.3 1.330994 1.333447 1.330991 1.23944
14 1.451995 1.455257 1.45199 1.334002
15 1.584516 1.588844 1.584511 1.433308
1,8
Y
1,6 Al
& Y
1,4 B
B L
1,2 A—f,ﬁ P
1 ﬁ* Exact
}l
os -A,JP'AJ} ——Euler
g A"ﬂ"c};@r Proposed 1
0.6 &b Aiﬁ“&& #A— Runge-Kutta
oq ST
0,2

0 0102 03040506070809 1 1,112 13 14 15 X
Fig. 1. Graphical representation of the solution of problem (26) using the 1-st proposed method
and other known methods
3. First order ODE - second method

Unlike the first proposed method, the second one uses the expansion of the
unknown solution in Taylor series of two variables, taking into consideration only
the linear terms:

of of
F(xy)= f(xo,¥0) + (x=%0) 7 +(y=Yo)5y (31)
(X0.Yo) (X0.Yo)
or, in shorter notations:
f(xy)= f0+(x—x0)f)'(0+(y—yo)f§,o. (32)
A new linear inhomogeneous ODE of first order is obtained:
y' = fy,v= f0+(x—x0)f)’(o—yof§,0 (33)
whose general analytical solution can be written as
fl —f!
y(x)=¢e yOX{CoJrI[fovL(X—XO)f)’(O—yofg,o]e yode}. (34)

By computing the integral, one yields:
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flox f, f f
Y(x)= Coe 07— (x=x0) 13 +| yo — 3 = 8 (35)
Yo Yo Yo

The constant C will be determined by applying the initial value and,
finally, a new approximate solution of problem (1) is found:

f' .I:r ef;,O(X—XO)_l

y(X)= yo - (x—Xq) fi(o +£f0+ ff(oj y , fy, %0, (36)
Yo Yo Yo

One can see again that f’O =0 is an apparent singularity, when the

approximate solution becomes:
y(x) =Yg + (x=xg) fg, when f —0 (37)
which is the well-known Euler approximation.

The accuracy of approximation
Using the expansion of the exponential term (22), the Taylor expansion of
the approximate solution (36) gets the form:

1 2 : /
y(X) = yo+(x—Xg) fo +E(X_ Xo) (fo fy, + fXO)+
1 3 (38)
!2 ! 1
+6(x—x0) (fo Bt T f yo)+....

By comparing with the exact expansion (20), the terms up to order 2 are
identical and, in addition, part of the term of order 3 is the same. However, the
accuracy of this method is the same as the previous one, namely is of order 2.

From the point of view of the volume of computational work, this method
involves the additional calculation of the partial derivative fy .

For the example given in (28), the following expressions are used:

f(Xn, Yn)=2(xp+2) e~ 2%n yﬁ (39)
, of 3 —2
fxnza( )=—2yn(2xn+3)e Xn
XnyY
. o (40)
fy =— = 6(xp+2)e 2Xny2,
ay (Xn!yn)

The recurrent formula derived from (36) used for numerical calculations



A numerical method of solving Cauchy problem for differential egs. [...] linear approximation 243

X
Yni1 = yn_(xn+l_xn)fr_nJr
Yn
f1 e fon(na—xn) _4 (41)
+ | f(Xpyn)+ =2 , .
fyn fyn

The results obtained by applying the second proposed method of
approximation are presented in the Table 2 and in Fig.2, in comparison with the
exact solution and 4-th order Runge-Kutta approximation.

As in the previous example, a constant step of h=x,, —x, =0.05 was

chosen. Since the method has the same order of accuracy like the previous one,
namely order 2, the results are comparable, as expected. The 4-th order Runge-
Kutta method remains however the most precise one, having the disadvantage of a
higher volume of computational work.

4. Second order ODE

In general, the 2-nd order ODE are integrated numerically by transforming
them first into a system of two 1-st order ODE’s on which an appropriate method
of integrating is applied. In the next, an approximate method which applies
directly on the 2-nd order ODE is proposed, using the same idea used in the case

of the 1-st order ODE’s.
Table 2
Comparative results of numerical solutions of Cauchy problem (26) using
the 2-nd proposed method and other known methods

Xn Yn - exact Yn — proposed (2) yn— RK
0 0.447214 0.447213 0.447214
0.1 0.484650 0.484672 0.484649
0.2 0.525608 0.525662 0.525608
0.3 0.570419 0.570517 0.570419
04 0.619446 0.619603 0.619446
0.5 0.673088 0.673323 0.673087
0.6 0.731781 0.732122 0.73178
0.7 0.796006 0.796488 0.796005
0.8 0.866291 0.866959 0.86629
0.9 0.943215 0.944129 0.943214
1 1.027414 1.028653 1.027413
1.1 1.119587 1.121254 1.119585
1.2 1.220499 1.222730 1.220497
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1.3 1.330994 1.333965 1.330991
1.4 1.451995 1.455940 1.45199
1.5 1.584516 1.589741 1.584511
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Fig. 2. Graphical representation of the solution of problem (26) using the 2-nd proposed method
and other known methods

Let us consider a 2-nd order Cauchy problem written in the form:

y"=f(xy.¥"), ¥(X0)=Yo. ¥'(x0)=Yo- (42)
The Taylor expansion of f(x,y,y') with respect to y and y' has the
form:
. , of
f(xy.y")="1(xYo0.Y0) +(¥-Yo) v
y (XOlyO,yb)
(43)
N
y (XO!yO,yb)
Considering only the linear terms and using short notations, one can write:
f(xy,y)=f(X%yo,¥0) +(y—Yo) fy, +(y=Yo)fy,. (44)

The second term in the right-hand side can be also approximated by using
Euler’s rule:

(x=Xg) = Yo(x—xp). (45)
0

y—-y :d_
0= dx
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Introducing in (44), one yields:
F(xy,y)= f(X Yo, Yo)+ (Xx=X0)Yo fy, +(¥'=Yo)fy, - (46)
With the function change:

z(X)=Yy'- Yo (47)

the 2-nd order differential equation (42) gets the following approximate form,
which is an inhomogeneous linear 1-st order ODE:

2'—z- i = F(x Y0, Yo) + (x=%0) Yo fy,, 2(X0)=0. (48)

The solution of the above equation can be written as
X

2(x)= _Hf (£.Y0.¥0)+(£-%0)Yp T3, |0 ae (49)
Xo

and applying again a mean value theorem in the integral, one yields:
X

z(x)=f(ém 'YO,Yb)Ie_%(f_ X)d§ +
Xo

(50)

X
o Ty, [ (6-x)e” 0 e
Xo
where &y is given by (7). After computing the integrals, the expression of z(x)
becomes:

e f;’b(x_XO)_l
z(x)="f (&m0 Yo, Y0) ) +
Yo
efy'o(X—Xo)_ (X—Xo)fi/' 1 (51)
+ybf’yO 12 : ’
fy’o
X + Xg

By replacing &y =

becomes:

, the approximate expression of y'(x)
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, , X+Xg , e o =%0) 4
y'(x)=yo+ | ——.Y0.Y0 , +
2 fyo
C oy (52)
o efyo(x XO)—(X—Xo)fil'o—l
+ Yo fyO f'2 .
Yo
A second integration yields:
h E+X e Wo(6%0) _y
Y(X)5y0+Y'o(X—X0)+J. f( O,yo,y’oJ y dé+
%o Yo
) (53)
Yo fy £, (£ = %) ,
+ f—?_oﬂe yo 0 —(&-xo) fy, —1|d¢ .
0 xg

Following the same judgment and computing the integrals, the final
expression of the approximate solution of problem (42) is found:

y(X)= yo+ Yo (x—x%q) +

o (X =Xo) ,
X+3X e ° —fy (x=xp)-1
n f( 0, 01y0j Yo

+

)2
T 2
Yo fyg | fi(x-x) (X=%0)° .2 ,
Yo
Remark:

Like in the case of the 1-st order ODE analyzed, all the expressions
containing fg,fo at denominator have finite limits as yp—0 (apparent

singularity). Thus:

. _ f'yo(x=x '
) ef yo(X Xo)_l . e yO( O)_(X_Xo)f yo_l (X—X0)2
lim =X—Xp, lim =

' ' 1 2
o0 f'yg 'y 0 f'y0 2

2
fl , — X_X 1 !
| o yO(X Xo)_(ZO)f y-oz—(X_XO)f y'O_l (X—X0)3
lim ) O
yo =0 fly'OS °
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The accuracy of approximation
The Taylor expansion of the exact solution y(x) about x=Xq:

X—Xg)? X—Xg)°
0 m 0
> T Yo

y(X)=Yo+ Yo(Xx=Xo)+ Yo S (56)

will be compared with the similar expansion of the approximate solution (54). The
series (56) can be re-written as:\
2 3
(x=xo) » (X=Xo)

> +yOT+.... (57)

y(X)=Yo+ Yo(x=x0) + f(x0.¥0.,Y0)

The third derivative of y(x) has the expression:
d of of of
"(X)=—f (XY, y)= —+ Yy —+Yy'—=
y()dx(yy) OX yay yay' (58)
=fe+y fy+ f(xyy)fy
so that the expansion (57) becomes:

2
X— X

y(X)=yo+ Yo(x—xg)+ f0@+
(5o =

1 ’ 1 ! X_XO

+(fxo+y0fy0+f0fyb) 5 + ...
where

fo="f(x0.Y0.¥0)- (60)

For the approximate solution (54), the terms containing the exponential
function have the known expansions:

2
e fgl'O(X_XO) _ (X B XO) f

IZ ’
2 yb _(X_xo)f)’b _1:(X—X0)3+ (61)
P s
Yo
f Y (X=Xo) , 2 3
e ~(x=x0) fy -1 (x=x0)" ., (x=x0)
2 0 - 5 +fbe+... . (62)

Yo
On the other hand, the following first order approximation applies:
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X+ 3X , , X+ 3X of
f[ ; °,yo,yoj%f(xo,yo,yo)+( 2 O—Xo]—

0 (63)
_ X~ Xo

—f0+

fy 0"
Introducing all these results in (54), the following Taylor expansion of the
approximate solution is found:

2
X—X
V()= Yo+ vo(x-xg) + To X0,

(64)

(=)’ ( ¢ 0y 4 3
+T fofy'o+y0fyo+zfx0 + o

Comparing (64) with (59), one can see that the expansions differ by a
quantity of order 3:
3

o (x—x 4
€ = Yexact — Yapprox = fxo%"'o(x_xo) : (65)

In the particular case when f; =0, the proposed approximation becomes
completely of order 3.

Example: y"(x)+ 4y(x)=0; y(0)=1, y'(0)=0.

The exact solution is y(x) = cos2x.

For the approximate solution, one writes:

y'=—4y = f(xy,y')=—4y, fy=—4,1,=0, f; =0.

Since fy.=0, the formulas (55) apply. The recurrent expression for

numerical computation, derived from (54) and wherein the above expressions are
introduced, will read:
2 3
Xpa1 — X Xpa1 — X
Yn+l:yn+y’n(xn+1_xn)_4ynw_4y’nM (66)
where

2
Xp41 — X
Yni1=Yh —4yn(xn+1—xn)—4y’n%. (67)

For computation, a constant step of h=x,,, —x, =0.1 was chosen. The

results are presented in the Table 3 and Fig.3, in comparison with the exact
solution. Since f)'(0 =0, according to the above analysis, the approximation is of

order 3 and thus, the Runge-Kutta method of 4-th order is more precise. On the
other hand, the proposed method is much easier to be implemented than RK
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algorithm, involving fewer explicit formulas for computation (the differential
equation doesn’t need to be transformed into a system of two 1-st order ODE’s).

In the Table 3, the 1-st order derivatives of the function we are looking for
are also presented, in comparison with the exact values, along with the relative
errors regarding the approximate solution.

Table 3
Comparative results of exact and approximate numerical solutions
of Cauchy problem (42)
’ -

X - exact —proposed | Error Y 'n — proposed
n| Yn yn—prop exact Y'n—prop
0 1.000000 1.000000 0.000000 | 0.000000 0.000000

0.4 0.696707 0.694988 0.001719 | -1.434712 -1.443605

0.8 -0.029200 -0.034518 0.005319 | -1.999147 -2.006575

1.2 -0.737394 -0.743338 0.005944 | -1.350926 -1.344714

1.6 -0.998295 -0.998684 0.000389 | 0.116748 0.138526
2 -0.653644 -0.644412 0.009232 | 1.513605 1.537980

2.4 0.087499 0.103500 0.016001 | 1.992329 1.999153

2.8 0.775566 0.788619 0.013053 | 1.262533 1.239973

3.2 0.993185 0.992605 0.000580 | -0.233098 -0.276688

3.6 0.608351 0.590657 0.017695 | -1.587336 -1.625224
4 -0.145500 -0.172136 0.026636 | -1.978716 -1.982185

1,5
y
1 0

QOQ dv O"J @— Exact
% # ® '
0,5 N L " Proposed
N /7 R
0 > 7\) o «
=T SN - = T o = i U= T e I N o S T= i = o T o o Y=
E e e HHH 3‘ N e Sl S O
. -
-0,5 4
N o
® @
1 O%o"‘ 4
-1,5

Fig. 3. Graphical representation of the solution of problem (42), showing the exact and the
approximate solution
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5. Conclusions

An alternate method of numerical integration of first order ODEs (Cauchy
problem) was presented in two variants, based on the linearization of the
expression which doesn’t contain the derivative of the unknown function. Both
variants have the order 2 of approximation and, by taking a smaller step of
advancing, the accuracy of solution can be improved.

The advantage versus Runge-Kutta of 4-th order (which is more precise at
the same size of the step) consists in the simplicity of implementing on computer.
The method was adapted also for 2°nd order differential equations, obtaining the
order 2 of accuracy, but it was shown that for some classes of equations, the
approximation becomes of order 3. The advantage is that the proposed method
applies directly to 2’nd order equations, without the need of transforming them
into systems of first order.
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