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A NUMERICAL METHOD OF SOLVING CAUCHY 

PROBLEM FOR DIFFERENTIAL EQUATIONS BASED ON A 

LINEAR APPROXIMATION 

Cristina ŞERBĂNESCU1, Marius BREBENEL 2 

An alternate method of numerical integration of first order ordinary 

differential equations (i.e. solving Cauchy problem) is proposed, based on the 

linearization of the expression which doesn’t contain the derivative of the unknown 

function. It is proved that the approximation is of order 2 and, by given examples, 

the accuracy of method is illustrated. The method is extended for 2’nd order 

differential equations and one shows that it is also of order 2 of accuracy, but for 

some classes of such equations, the methods becomes of order 3. The advantage is 

that the proposed method applies directly to 2’nd order equations, without the need 

of solving systems of first order. 

Keywords: Taylor series; linear approximation; order of approximation; Cauchy 

problem. 

1. Introduction 

The classical numerical methods for solving first-order ordinary 

differential equations (ODE) with initial values are based on approximations 

derived from the Taylor expansions of the unknown function. The simplest (and 

oldest) method is named after Euler and is based on the first order Taylor 

approximation of the function we are looking for. However, the Euler method is 

not as accurate as engineering problems require, so that more precise methods are 

needed to solve Cauchy problems for ODE’s and systems of ODE’s. Today, the 

most used such a method, specially on solving large systems of 1-st order ODE’s 

with constant coefficients, is known as “Runge-Kutta method” (RK), which in 

fact is a class of methods. The most applied version belonging to this class is the 

4-th order RK method ([1], [4]). Other methods are also known, which belong to 

families of linear multistep methods, like the explicit “Adams–Bashforth” 

methods or implicit “Adams-Moulton” methods, having various orders of 

accuracy ([2], [5]). Linear multi-step methods using higher-order derivatives have 

been developed (such as Störmer method) as well ([6]).  
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Other methods use adaptative step sizes in order to improve the accuracy 

of approximation, by changing the step size during the integration. The implicit 

methods are not mentioned in this paper, since the proposed method is an explicit 

one and it will be compared with methods of the same category. 

The method proposed in this paper combines the versatility of Taylor 

approximations with the accuracy given by the exact analytic solutions of linear 

ODE of 1’st order. One consequence of this feature is that for some classes of 

ODE’s, the order of the approximation gets higher, using the same method. This 

could be an advantage over the classical methods.  

2. First order ODE – first method 

One considers the Cauchy problem stated as follows: find the function  

 xyy   satisfying the differential equation and the initial condition given below: 

   0 0' , ,y f x y y x y   , where   22 , RDDCf     . (1) 

The first proposed method consists of taking the linear term from the 

Taylor expansion of  ,f x y  with respect to the variable y : 

     
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
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One can observe that Euler method considered only the first term of (2) 

where, in addition, the value of  ,f x y  was taken in 0x x .  

By performing the function change 

    0u x y x y   (3) 

the equation (1) becomes a linear inhomogeneous ODE of form: 

   
0 0 0' , , 0yu f u f x y u x    . (4) 

The general solution of above equation can be expressed as 
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According to (3), it follows that 
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   . (6) 

Since the interval  0 ,x x  is in general small (it represents the step of the 

numerical algorithm), a mean value theorem can be applied on the integral in (6): 
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By computing the integral, one gets finally the approximate solution on 

 0 ,x x : 
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x x e
y x y f y
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 
  

     
, where 

0
0yf   . (8) 

Remarks: 

1) Since the function f  is supposed to be of class C2, its partial 

derivatives can be easily found and the above expression can be implemented 

without difficulties in the computing codes.  

2) In the case when 
0

0yf   , one can observe that the last fraction in (8) 

has a finite limit: 
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 (9) 

(in other words, 
0

0yf    is an apparent singularity). The approximate solution 

becomes: 

    0
0 0 0,

2

x x
y x y x x f y

 
    

 
. (10) 

The trivial case when 0yf    can be easily treated using the above 

formula, which is similar but not identical to the formulas given by other known 

methods, like improved Euler, second order Runge-Kutta or Heun’s method. 

3) For the linear ODE of first order, the rule applies as follows: 

     0 0' ,y p x y q x y x y     (11) 

       , , yf x y p x y q x f p x     (12) 
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. (13) 

This expression approximates the closed form solution 
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wherein the integral cannot be computed analytically and numerical approaches 

were needed involving thus a higher volume of computations. 

The accuracy of approximation 

In the sequel, the Taylor expansions of the exact solution and the 

approximate one about 0x x  will be analyzed. 

The Taylor series of function  y x  about 0x x  has the form: 
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Using (1), the above expansion can be rewritten as: 
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where  

 0 0 0,f f x y . (17) 

By using the basic rules of Calculus, the total derivatives of  ,f x y  with 

respect to x  will get the following explicit forms: 

' x y
d f f f

y f f f
d x x y

 
    

 
 (18) 
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d f
f f f f f f f f f
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          . (19) 
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It follows that the Taylor expansion of  y x  about 0x x  gets the form: 
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A similar analysis will be performed on the approximate solution (8). The 

exponential function has the expansion: 
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so that the corresponding term in (8) reduces to 
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The other term which has to be expanded is 
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Introducing in (8), one yields: 
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By comparing to (8), one can observe that the differences occur at the term 

of order 3, which means that the accuracy of the method is of order 2. 

The next example will illustrate the accuracy of the proposed method, by 

comparing the results with those given by other known methods (like Euler and 

Runge-Kutta of order 4). 

The following Cauchy problem is considered: 
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   2 3 1
' 2 2 , 0

5

xe y x y y   . (26) 

The equation is of separable variables and admits a closed analytical 

solution, such that it is easy to compare the approximate solutions with the exact 

one: 
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xe
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x
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
. (27) 

For the given example, one derives: 
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The recurrent formula derived from (8) is 
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. (30) 

A constant step of 1 0.05n nh x x    was chosen for the given 

example. In the Table 1 and Fig.1, the numerical results and the graphical 

representation are shown. 

 
Table 1 

Comparative results of numerical solutions of Cauchy problem (26) using  

the 1-st proposed method and other known methods 

xn yn - exact yn – proposed (1) yn – RK yn - Euler 

0 0.447214 0.447214 0.447214 0.447214 

0.1 0.484650 0.484667 0.484649 0.483765 

0.2 0.525608 0.525651 0.525608 0.523528 

0.3 0.570419 0.570497 0.570419 0.566742 

0.4 0.619446 0.619571 0.619446 0.613653 

0.5 0.673088 0.673277 0.673087 0.66451 

0.6 0.731781 0.732056 0.73178 0.719563 

0.7 0.796006 0.796396 0.796005 0.779054 

0.8 0.866291 0.866834 0.86629 0.84321 

0.9 0.943215 0.943962 0.943214 0.912233 

1.0 1.027414 1.02843 1.027413 0.986289 

1.1 1.119587 1.120957 1.119585 1.065491 

1.2 1.220499 1.222337 1.220497 1.149888 
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1.3 1.330994 1.333447 1.330991 1.23944 

1.4 1.451995 1.455257 1.45199 1.334002 

1.5 1.584516 1.588844 1.584511 1.433308 

 

 

 

  

  

  

  

  

  

  

  

  

  

  

  

 
Fig. 1. Graphical representation of the solution of problem (26) using the 1-st proposed method 

and other known methods 

3. First order ODE – second method 

Unlike the first proposed method, the second one uses the expansion of the 

unknown solution in Taylor series of two variables, taking into consideration only 

the linear terms: 

     
 
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 
 (31) 

or, in shorter notations: 

     
0 00 0 0, x yf x y f x x f y y f      . (32) 

A new linear inhomogeneous ODE of first order is obtained: 

 
0 0 00 0 0' y x yy f y f x x f y f        (33) 

whose general analytical solution can be written as 

   0 0
0 00 0 0 0

y yf x f x
x yy x e C f x x f y f e d x

            . (34) 

By computing the integral, one yields: 
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The constant 0C  will be determined by applying the initial value and, 

finally, a new approximate solution of problem (1) is found: 
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One can see again that 
0

0yf    is an apparent singularity, when the 

approximate solution becomes: 

   0 0 0y x y x x f   , when 
0

0yf    (37) 

which is the well-known Euler approximation. 

The accuracy of approximation 

Using the expansion of the exponential term (22), the Taylor expansion of 

the approximate solution (36) gets the form: 
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By comparing with the exact expansion (20), the terms up to order 2 are 

identical and, in addition, part of the term of order 3 is the same. However, the 

accuracy of this method is the same as the previous one, namely is of order 2. 

From the point of view of the volume of computational work, this method 

involves the additional calculation of the partial derivative xf  . 

For the example given in (28), the following expressions are used: 
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The recurrent formula derived from (36) used for numerical calculations 

is: 
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The results obtained by applying the second proposed method of 

approximation are presented in the Table 2 and in Fig.2, in comparison with the 

exact solution and 4-th order Runge-Kutta approximation. 

As in the previous example, a constant step of 05.01   nn xxh  was 

chosen. Since the method has the same order of accuracy like the previous one, 

namely order 2, the results are comparable, as expected. The 4-th order Runge-

Kutta method remains however the most precise one, having the disadvantage of a 

higher volume of computational work. 

4. Second order ODE 

In general, the 2-nd order ODE are integrated numerically by transforming 

them first into a system of two 1-st order ODE’s on which an appropriate method 

of integrating is applied. In the next, an approximate method which applies 

directly on the 2-nd order ODE is proposed, using the same idea used in the case 

of the 1-st order ODE’s.  
Table 2 

Comparative results of numerical solutions of Cauchy problem (26) using  

the 2-nd proposed method and other known methods 

xn yn - exact yn – proposed (2) yn – RK 

0 0.447214 0.447213 0.447214 

0.1 0.484650 0.484672 0.484649 

0.2 0.525608 0.525662 0.525608 

0.3 0.570419 0.570517 0.570419 

0.4 0.619446 0.619603 0.619446 

0.5 0.673088 0.673323 0.673087 

0.6 0.731781 0.732122 0.73178 

0.7 0.796006 0.796488 0.796005 

0.8 0.866291 0.866959 0.86629 

0.9 0.943215 0.944129 0.943214 

1 1.027414 1.028653 1.027413 

1.1 1.119587 1.121254 1.119585 

1.2 1.220499 1.222730 1.220497 
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1.3 1.330994 1.333965 1.330991 

1.4 1.451995 1.455940 1.45199 

1.5 1.584516 1.589741 1.584511 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 2. Graphical representation of the solution of problem (26) using the 2-nd proposed method 

and other known methods 

 

Let us consider a 2-nd order Cauchy problem written in the form: 

     0 0 0 0'' , , ' , , 'y f x y y y x y y x y   . (42) 

The Taylor expansion of  , , 'f x y y  with respect to y  and 'y  has the 

form: 
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Considering only the linear terms and using short notations, one can write: 

       
0 00 0 0 0, , ' , , 'y yf x y y f x y y y y f y y f         . (44) 

The second term in the right-hand side can be also approximated by using 

Euler’s rule: 

   0 0 0 0
0

d y
y y x x y x x

d x
     . (45) 
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Introducing in (44), one yields: 

       
0 00 0 0 0 0, , ' , , 'y yf x y y f x y y x x y f y y f          . (46) 

With the function change: 

  0'z x y y   (47) 

the 2-nd order differential equation (42) gets the following approximate form, 

which is an inhomogeneous linear 1-st order ODE: 

     
0 00 0 0 0 0' , , , 0y yz z f f x y y x x y f z x         . (48) 

The solution of the above equation can be written as 

     
 

0
0

0

0 0 0 0, , y

x
f x

y

x

z x f y y x y f e d


   
     
   (49) 

and applying again a mean value theorem in the integral, one yields: 

   
 

 
 

0

0

0
0

0

0 0

0 0

, , y

y

x
f x

M

x

x
f x

y

x

z x f y y e d

y f x e d





 

 





 

 

 

  





 (50) 

where M  is given by (7). After computing the integrals, the expression of  z x  

becomes: 

   
 

 
 

00

0

00
0

0

0

0 0

0
0 2

1
, ,

1
.

y

y

f x x

M
y

f x x
y

y

y

e
z x f y y

f

e x x f
y f

f






 



 





 



  
 



 (51) 

By replacing 0

2
M

x x



  , the approximate expression of  'y x  

becomes: 
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 
 

 
 

00

0

00
0

0

0

0
0 0 0

0
0 2

1
' , ,

2

1
.

y

y

f x x

y

f x x
y

y

y

x x e
y x y f y y

f

e x x f
y f

f





 



 




  
      

  
 



 (52) 

A second integration yields: 

   
 

 
 

00

0
0

00 0
0

0
0

0
0 0 0 0 0

0
02

1
, ,

2

1 .

y

y

x f x

y
x

x
f xy

y

y x

x e
y x y y x x f y y d

f

y f
e x f d

f








 





 



 




  
        

   
     





 (53) 

Following the same judgment and computing the integrals, the final 

expression of the approximate solution of problem (42) is found: 

   

 
 

   
 

00
0

0

00 0
00

0

0 0 0

00
0 0 2

2
0 0 2

03

13
, ,

4

1 .
2

y

y

f x x
y

y

f x xy
yy

y

y x y y x x

e f x xx x
f y y

f

y f x x
e f x x f

f





 




 




   

   
  

 

   
      
 
 

          

 

(54) 

Remark: 

Like in the case of the 1-st order ODE analyzed, all the expressions 

containing 
0yf   at denominator have finite limits as 0 0y   (apparent 

singularity). Thus: 

 

0
0

'

0' '

1
lim

00

0

xx
f

e

y

xxf

f

y

y







, 

 
   

2'

1'
lim

2
0

2
0

00
'

0'

00

0'

xx

f

fxxe

y

y
xxf

f

y

y








     

      

   
   

6'

1''
2lim

3
0

3
0'

0'0
2

0'

2
0'

0'

00'

0'

xx

f

fxxf
xx

e

y

yy
xxf

f

y

y











.     (55) 
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The accuracy of approximation 

The Taylor expansion of the exact solution  y x  about 0x x : 

   
   

2 3
0 0

0 0 0 0 0 ...
2 6

x x x x
y x y y x x y y

 
         (56) 

will be compared with the similar expansion of the approximate solution (54). The 

series (56) can be re-written as:\ 

     
   

2 3
0 0

0 0 0 0 0 0 0, , ... .
2 6

x x x x
y x y y x x f x y y y

 
       

 

(57) 

The third derivative of  y x  has the expression: 

   

  '

''' , , ' ' ''
'

' , , 'x y y

d f f f
y x f x y y y y

d x x y y

f y f f x y y f

  
    

  

    

 (58) 

so that the expansion (57) becomes: 

   
 

 
 

0 0 0

2
0

0 0 0 0

3
0

0 0

2

...
6

x y y

x x
y x y y x x f

x x
f y f f f 


    


      

 (59) 

where  

 0 0 0 0, ,f f x y y . (60) 

For the approximate solution (54), the terms containing the exponential 

function have the known expansions: 

   
   

00
00

0

2
0 2 3

0
0

3

1
2 ...

6

yf x x
yy

y

x x
e f x x f x x

f

 





     

 


 (61) 

 
     

00
0

0

0

2 3
0 0 0

2

1
...

2 6

yf x x
y

y

y

e x x f x x x x
f

f

 






    
  


 . (62) 

On the other hand, the following first order approximation applies: 
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 

0

0 0
0 0 0 0 0 0

0

0
0

3 3
, , , ,

4 4

.
4

x

x x x x f
f y y f x y y x

x

x x
f f

     
       

   


 

 (63) 

Introducing all these results in (54), the following Taylor expansion of the 

approximate solution is found: 

   
 

 
0 0 0

2
0

0 0 0 0

3
0

0 0

2

3
... .

6 4
y y x

x x
y x y y x x f

x x
f f y f f


    

  
       

 

 (64) 

Comparing (64) with (59), one can see that the expansions differ by a 

quantity of order 3: 

 
 

0

3
40

exact approx 0
24

x

x x
y y f x x


    O . (65) 

In the particular case when 
0

0xf   , the proposed approximation becomes 

completely of order 3. 

Example:        '' 4 0;   0 1, ' 0 0y x y x y y    . 

The exact solution is   cos 2y x x . 

For the approximate solution, one writes: 

  ''' 4  , , ' 4 , 4, 0,  0y y xy y f x y y y f f f           . 

Since ' 0yf   , the formulas (55) apply. The recurrent expression for 

numerical computation, derived from (54) and wherein the above expressions are 

introduced, will read: 

 
   

2 3
1 1

1 1 4 4
2 6

n n n n
n n n n n n n

x x x x
y y y x x y y

 
 

 
       (66) 

where 

 
 

2
1

1 14 4
2

n n
n n n n n n

x x
y y y x x y


 


      . (67) 

For computation, a constant step of 1.01   nn xxh  was chosen. The 

results are presented in the Table 3 and Fig.3, in comparison with the exact 

solution. Since 
0

0xf   , according to the above analysis, the approximation is of 

order 3 and thus, the Runge-Kutta method of 4-th order is more precise. On the 

other hand, the proposed method is much easier to be implemented than RK 
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algorithm, involving fewer explicit formulas for computation (the differential 

equation doesn’t need to be transformed into a system of two 1-st order ODE’s). 

In the Table 3, the 1-st order derivatives of the function we are looking for 

are also presented, in comparison with the exact values, along with the relative 

errors regarding the approximate solution.  

 
Table 3 

Comparative results of exact and approximate numerical solutions  

of Cauchy problem (42)  

xn yn - exact yn – proposed  Error 
y’n - 

exact 
y'n – proposed  

0 1.000000 1.000000 0.000000 0.000000 0.000000 

0.4 0.696707 0.694988 0.001719 -1.434712 -1.443605 

0.8 -0.029200 -0.034518 0.005319 -1.999147 -2.006575 

1.2 -0.737394 -0.743338 0.005944 -1.350926 -1.344714 

1.6 -0.998295 -0.998684 0.000389 0.116748 0.138526 

2 -0.653644 -0.644412 0.009232 1.513605 1.537980 

2.4 0.087499 0.103500 0.016001 1.992329 1.999153 

2.8 0.775566 0.788619 0.013053 1.262533 1.239973 

3.2 0.993185 0.992605 0.000580 -0.233098 -0.276688 

3.6 0.608351 0.590657 0.017695 -1.587336 -1.625224 

4 -0.145500 -0.172136 0.026636 -1.978716 -1.982185 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

Fig. 3. Graphical representation of the solution of problem (42), showing the exact and the 

approximate solution 
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5. Conclusions 

An alternate method of numerical integration of first order ODEs (Cauchy 

problem) was presented in two variants, based on the linearization of the 

expression which doesn’t contain the derivative of the unknown function. Both 

variants have the order 2 of approximation and, by taking a smaller step of 

advancing, the accuracy of solution can be improved. 

The advantage versus Runge-Kutta of 4-th order (which is more precise at 

the same size of the step) consists in the simplicity of implementing on computer. 

The method was adapted also for 2’nd order differential equations, obtaining the 

order 2 of accuracy, but it was shown that for some classes of equations, the 

approximation becomes of order 3. The advantage is that the proposed method 

applies directly to 2’nd order equations, without the need of transforming them 

into systems of first order. 
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