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ITERATIVE ALGORITHMS WITH SELF-ADAPTIVE RULE AND

KM METHOD FOR SOLVING SPLIT FIXED POINT PROBLEMS

Lu Zheng1, Alexandru Gogoasa2

In this paper, we investigate the split fixed point problem regarding pseudo-

contractive operators and demicontractive operators in Hilbert spaces. We propose

an iterative algorithm with self-adaptive rule and the Krasnoselskii-Mann method

for finding a solution of this split problem. The self-adaptive rule does not require

the a priori knowledge of the Lipschitz constant of pseudocontractive operators.

Under several additional conditions, we prove that the presented algorithm con-

verges strongly to a solution of the considered split problem.
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1. Introduction

Let H1 and H2 be two real Hilbert spaces. Let (H1 ⊃)C ̸= ∅ and (H2 ⊃)Q ̸= ∅
be two closed convex sets. Let A : H1 → H2 be a linear bounded operator.

(i) SFP: Recall that the split feasibility problem (SFP) is to search an element
u† ∈ H1 such that

u† ∈ C and Au† ∈ Q, (1)

which is a model for the intensity modulated radiation therapy ([4]).
(ii) SFFP: Also, the split fixed point problem (SFFP) is to pursuit an element

u† ∈ H1 such that

u ∈ Fix(ϕ) and Au ∈ Fix(ψ),

where Fix(ϕ) := {v ∈ C : ϕ(v) = v} and Fix(ψ) := {ṽ ∈ Q : ψ(ṽ) = ṽ} in which
ϕ : C → H1 and ψ : Q→ H2 are two nonlinear operators.

A wide variety of problems can be solved by finding a fixed point of a particular
operator, and algorithms for reckoning such points play a prominent role in a number
of applications [3, 9–11, 15–22, 25, 26, 33]. The SFPP is an extension of the SFP and
of the well-known convex feasibility problem, see Youla [30]. The SFPP investigated
by Censor and Segal [5] involves a class of directed operators which is an important
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class since it includes the orthogonal projections and the subgradient projectors (
see Yu and Yin [31], or Zhan et al. [32]). Moudafi [14] further studied the SFPP
involved in a class of demicontractive operators which properly includes the class of
quasi-nonexpansive mappings and thus that of directed operators. This context is
more desirable for example in fixed point methods related to image recovery where,
in many cases, it is possible to map the set of images possessing a certain property to
the fixed-point set of a nonlinear quasi-nonexpansive operator. The split problems
have been studied extensively in the literature, see ([2, 7, 8, 24, 27–29, 35–37]).

The main purpose of this paper is to study the following SFPP of finding an
element u† ∈ H1 such that

u† ∈ Fix(φ) ∩ Fix(ϕ) and Au† ∈ Fix(ψ), (2)

where ϕ : H1 → H1 and ψ : H2 → H2 are two demicontractive operators and φ :
H1 → H1 is a Lipschitz pseudocontractive operator. The solution set of (2) is
denoted by Ω, namely,

Ω := {u† ∈ H1 : u
† ∈ Fix(φ) ∩ Fix(ϕ) and Au† ∈ Fix(ψ)}.

Censor and Segal [5] proposed the following algorithm to solve (2):

u0 ∈ H1, un+1 = ϕ(un − ηA∗(I − ψ)Aun),

where ϕ and ψ are two directed operators and η ∈ (0, 2/∥A∥2). Moudafi further
proposed in [14], the following algorithm to solve (2):{

u0 ∈ H1, vn = un − ηA∗(I − ψ)Aun,

un+1 = (1− λn)vn + λnϕ(vn),
(3)

where ϕ and ψ are β1-demicontractiveand β2-demicontractive, respectively, η ∈
(0, 1−β2

∥A∥2 ) and λn ∈ (ϱ, 1 − βn − ϱ) for a small enough ϱ > 0. It should be pointed

out that in Algorithm (3), the Krasnoselskii-Mann method ([12, 13]) was applied.
Motivated by the works in this direction, in this paper we investigate the

SFPP (2) involved in a pseudocontractive operator and two demicontractive oper-
ators in Hilbert spaces. We propose an iterative algorithm with self-adaptive rule
and the Krasnoselskii-Mann method for finding a solution of the SFPP (2). The
self-adaptive rule has no need to know a priori the Lipschitz constant of pseudocon-
tractive operators. Under several additional conditions, we prove that the presented
algorithm converges strongly to an element in Ω provided Ω ̸= ∅.

2. Preliminaries

Let H be a real Hilbert space. The following equality is well-known in this
setting.

∥(1− θ)x+ θy∥2 = (1− θ)∥x∥2 + θ∥y∥2 − θ(1− θ)∥x− y∥2, ∀x, y ∈ H,∀θ ∈ R. (4)

Let Γ ⊂ H be a nonempty, closed, and convex set. For every point x ∈ H,
there exists a unique nearest point in Γ, denoted by PΓ(x). This point satisfies the
inequality

∥PΓ(x)− x∥ ≤ ∥y − x∥, ∀y ∈ Γ.
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The mapping PΓ is called the metric projection of H onto Γ. The metric
projection PΓ is characterized by the fact that PΓ(x) ∈ Γ and for all x ∈ H,

⟨x− PΓ(x), y − PΓ(x)⟩ ≤ 0, ∀y ∈ Γ.

In the sequel, we use the following marks:
• “ ⇀ ” and “ → ” denote weak convergence and strong convergence, respec-

tively.
• ωw(pn) := {p̃ ∈ H : ∃{pnk

}∞k=1 ⊂ {pn}∞n=1 ⊂ H with pnk
⇀ p̃(k → ∞)}.

Let f : H → H be a nonlinear operator. f is said to be
(i) L-Lipschitz if

∥f(x)− f(y)∥ ≤ L∥x− y∥, ∀x, y ∈ H,

where L > 0.
f is said to be L-contractive provided 0 < L < 1, and is called nonexpansive

provided L = 1. It is well-known that the metric projection is nonexpansive.
(ii) ϱ-demicontractive if

⟨x− f(x), x− y⟩ ≥ 1−ϱ
2 ∥f(x)− x∥2, ∀x ∈ H, y ∈ Fix(f),

which is the same as

∥f(x)− y∥2 ≤ ∥x− y∥2 + ϱ∥f(x)− x∥2, ∀x ∈ H, y ∈ Fix(f),

where ϱ ∈ [0, 1).
(iii) pseudocontractive if

⟨x− f(x)− (y − f(y)), x− y⟩ ≥ 0, ∀x, y ∈ H,

which is equivalent to

∥f(x)− f(y)∥2 ≤ ∥x− y∥2 + ∥x− y − (f(x)− f(y))∥2, ∀x, y ∈ H.

(iv) demiclosed at the origin if for any sequence {pn} ⊂ H and p ∈ H, the
following relation holds:

pn ⇀ p and pn − f(pn) → 0 ⇒ p ∈ Fix(f).

The following issues have to be emphasized.
• Obviously, between the previous concepts there is the next connextion:

(iv) ⇒ (iii) ⇒ (ii).
• The class of demicontractive operators is fundamental because many com-

mon types of operators arising is optimization belong to this class, see, for example
Bauschke and Combettes [1].

• We are interested in the class of pseudocontractive operators because of their
relationship with the class of monotone operators ([1, 6]).

Recall that a linear operator g : H → H is said to be τ -strongly positive if

⟨x, g(x)⟩ ≥ τ∥x∥2, ∀x ∈ H,

where τ > 0. It is known that

∥I − γg∥ ≤ 1− γτ, when γ ∈
(
0,

1

τ

)
.

The next property characterizes continuous pseudocontractive operators.
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Lemma 2.1 ([34]). Let h : H → H be a continuous pseudocontractive operator.
Then, I −h is demiclosed at the origin (thus, a nonexpansive operator is also demi-
closed).

The following lemma on the convergence of sequence holds true.

Lemma 2.2 ([23]). Suppose the sequences {rn}, {γn} and {wn} satisfy the following
conditions:

(i) ∀n ≥ 0, rn ∈ [0,∞), γn ∈ [0, 1], wn ∈ R;
(ii)

∑∞
n=0 γn = ∞ and lim supn→∞wn ≤ 0;

(iii) ∀n ≥ 0, rn+1 ≤ (1− γn)rn + γnwn.
Then limn→∞ rn = 0.

3. Main results

In this section, to solve (2), we first state some necessary assumptions and
propose an iterative algorithm. Finally, we demonstrate the strong convergence
of the proposed algorithm. Throughout, suppose that the following conditions are
satisfied:

(C1): H1 and H2 are two real Hilbert spaces;
(C2): A : H1 → H2 is a nonzero bounded linear operator and B : H1 → H1 is a

τ -strongly positive bounded linear operator;
(C3): ϕ : H1 → H1 is a β1-demicontractive operator and ψ : H2 → H2 is a

β2-demicontractive operator;
(C4): I − ϕ and I − ψ are demiclosed at the origin.
(C5): ρ : H1 → H1 is a ϖ-contractive operator and φ : H1 → H1 be an L-Lipschitz

pseudocontractive operator;
(C6): The solution set Ω of (2) is nonempty.
(C7): τ ∈ (0,∞), β1 ∈ [0, 1), β2 ∈ [0, 1), ϖ ∈ (0, 1), L ∈ [1,∞), λ ∈ (0, 1],

θ ∈
(
0, 1−β1

2λ

)
, η ∈ (0, 1−β2

2θ∥A∥2 ), µ ∈ (0, 1), δ ∈ (0, 1), ϵ ∈
(
0, 1−δ2

2

)
and ν ∈ (0, τ/ϖ);

(C8): γn ∈ (0, 1)(∀n ≥ 0), limn→∞ γn = 0 and
∑∞

n=0 γn = ∞.
Now, we propose the following algorithm for solving (2).

Algorithm 3.1. Let u0 ∈ H1 be an initial point.
Step 1. Assume the current iterate un is given. Compute

xn = (1− θ)un + θ[(1− λ)un + λϕ(un)− ηA∗(I − ψ)Aun]. (5)

Step 2. Compute

yn =
(
1− αn

2

)
xn +

αn

2
φ(zn), (6)

where

zn = (1− αn)xn + αnφ(xn), (7)

in which αn = ϵµk and k = min{0, 1, 2, · · · } such that

αn∥φ(zn)− φ(xn)∥ ≤ δ∥zn − xn∥. (8)
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Step 3. Compute

un+1 = γnνρ(un) + (I − γnB)yn, (9)

and set n := n+ 1 and return to Step 1.

Remark 3.1. By condition (C7), we have the inequality δ2 < 1−2ϵ. It implies that
1− 2αn − δ2 > 0, for all n.

With respect to the well-posedness of this algorithm, the next property holds.

Lemma 3.1. There exists k such that inequality (8) holds, and

min

{
ϵ,
µδ

L

}
≤ αn ≤ ϵ, n ≥ 0.

Proof. In fact, if zn = xn, we can choose k = 0.
Next, we consider the case of zn ̸= xn. In this case, suppose that (8) does not

hold for any k ∈ min{0, 1, 2, · · · }, namely,

ϵµk∥φ(zn)− φ(xn)∥ > δ∥zn − xn∥, for all k ≥ 0. (10)

By (7), we have

∥zn − xn∥ = αn∥φ(xn)− xn∥ = ϵµk∥φ(xn)− xn∥ (11)

which together with zn ̸= xn implies that

∥φ(xn)− xn∥ > 0. (12)

Combining (10) and (11), we obtain

ϵµk∥φ(zn)− φ(xn)∥ > δ∥zn − xn∥ = δϵµk∥φ(xn)− xn∥, for all k ≥ 0,

which yields that

∥φ(zn)− φ(xn)∥ > δ∥φ(xn)− xn∥. (13)

Noting that µ ∈ (0, 1) and φ is L-Lipschitz, we have

lim
k→∞

∥φ(xn)− φ(zn)∥ = lim
k→∞

∥φ(xn)− φ(xn + ϵµk(φ(xn)− xn))∥ = 0,

which together with (13) implies that ∥φ(xn) − xn∥ ≤ 0. This is a contradiction
with (12). Hence, there is k such that inequality (8) holds.

Since φ is L-Lipschitz, we have

αn∥φ(zn)− φ(xn)∥ ≤ αnL∥zn − xn∥. (14)

At the same time, from the definition of k, it follows that
αn

µ
∥φ(zn)− φ(xn)∥ > δ∥zn − xn∥. (15)

From (14) and (15), we have

µδ∥zn − xn∥ < αnL∥zn − xn∥.

If zn = xn, then k = 0 and αn = ϵ. If zn ̸= xn, then αn >
µδ
L . □

Next, we prove the following main theorem.
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Theorem 3.1. The sequence {un} generated by Algorithm 3.1 converges strongly to
x∗ = PΩ(I −B + νρ)x∗.

Proof. Select q∗ ∈ Ω. Then, q∗ = ϕ(q∗) = φ(q∗) and Aq∗ = ψ(Aq∗). From (9), we
have

∥un+1 − q∗∥ = ∥γnν(ρ(un)− ρ(q∗)) + (I − γnB)(yn − q∗) + γn(νρ(q
∗)−B(q∗))∥

≤ γnνϖ∥un − q∗∥+ (1− τγn)∥yn − q∗∥+ γn∥νρ(q∗)−B(q∗)∥.
(16)

Applying equality (4), we obtain

∥yn − q∗∥2 =
∥∥∥(1− αn

2
)(xn − q∗) +

αn

2
(φ(zn)− q∗)

∥∥∥2
=

(
1− αn

2

)
∥xn − q∗∥2 + αn

2
∥φ(zn)− q∗∥2

− αn

2

(
1− αn

2

)
∥xn − φ(zn)∥2,

(17)

∥zn − q∗∥2 = ∥(1− αn)(xn − q∗) + αn(φ(xn)− q∗)∥2

= (1− αn)∥xn − q∗∥2 + αn∥φ(xn)− q∗∥2

− (1− αn)αn∥xn − φ(xn)∥2,
(18)

and

∥zn − φ(zn)∥2 = ∥(1− αn)(xn − φ(zn)) + αn(φ(xn)− φ(zn))∥2

= (1− αn)∥xn − φ(zn)∥2 + αn∥φ(xn)− φ(zn)∥2

− αn(1− αn)∥xn − φ(xn)∥2.
(19)

Since φ is pseudocontractive,

∥φ(xn)− q∗∥2 ≤ ∥xn − q∗∥2 + ∥xn − φ(xn)∥2, (20)

and

∥φ(zn)− q∗∥2 ≤ ∥zn − q∗∥2 + ∥zn − φ(zn)∥2. (21)

Combining (18) and (20), we deduce

∥zn − q∗∥2 ≤ (1− αn)∥xn − q∗∥2 − (1− αn)αn∥xn − φ(xn)∥2

+ αn(∥xn − q∗∥2 + ∥xn − φ(xn)∥2)
= ∥xn − q∗∥2 + α2

n∥xn − φ(xn)∥2.
(22)

We can rewrite (7) as

zn − xn = αn(φ(xn)− xn),

which together with (8) implies that

αn∥φ(xn)− φ(zn)∥2 ≤
δ2∥xn − zn∥2

αn
= δ2αn∥φ(xn)− xn∥2.

It follows from (19) that

∥zn − φ(zn)∥2 ≤ (1− αn)∥xn − φ(zn)∥2 − αn(1− αn − δ2)∥xn − φ(xn)∥2. (23)
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From (21)-(23), we have

∥φ(zn)− q∗∥2 ≤ ∥xn − q∗∥2 + α2
n∥xn − φ(xn)∥2 + ∥zn − φ(zn)∥2

≤ ∥xn − q∗∥2 + (1− αn)∥xn − φ(zn)∥2

− αn(1− 2αn − δ2)∥xn − φ(xn)∥2.
(24)

On account of (24) and Remark 3.1, it follows that

∥φ(zn)− q∗∥2 ≤ ∥xn − q∗∥2 + (1− αn)∥xn − φ(zn)∥2. (25)

For all n, set

vn = (1− λ)un + λϕ(un)− ηA∗(I − ψ)Aun,

Take into account (5), we obtain

∥xn − q∗∥2 = ∥un − q∗ − θ(un − vn)∥2

= ∥un − q∗∥2 − 2θ⟨un − q∗, un − vn⟩+ θ2∥un − vn∥2.
(26)

Owing to the equality

un − vn = λ(un − ϕ(un)) + ηA∗(I − ψ)Aun,

we receive

⟨un − q∗, un − vn⟩ = λ⟨un − q∗, un − ϕ(un)⟩+ η⟨Aun −Aq∗, (I − ψ)Aun⟩, (27)

and

∥un − vn∥2 ≤ (λ∥un − ϕ(un)∥+ η∥A∥∥(I − ψ)Aun∥)2

≤ 2λ2∥un − ϕ(un)∥2 + 2η2∥A∥2∥(I − ψ)Aun∥2.
(28)

Since ϕ is β1-demicontractive and q∗ ∈ Fix(ϕ),

⟨un − q∗, un − ϕ(un)⟩ ≥
1− β1

2
∥un − ϕ(un)∥2. (29)

Similarly,

⟨Aun −Aq∗, (I − ψ)Aun⟩ ≥
1− β2

2
∥(I − ψ)Aun∥2, (30)

because ψ is β2-demicontractive and Aq∗ ∈ Fix(ψ).
Substituting inequality (29) and relation (30) into equality (27), we get

⟨un − q∗, un − vn⟩ ≥
λ(1− β1)

2
∥un − ϕ(un)∥2 +

η(1− β2)

2
∥(I − ψ)Aun∥2. (31)

From (26), (28) and (31), we attain

∥xn − q∗∥2 ≤ ∥un − q∗∥2 − θλ(1− β1)∥un − ϕ(un)∥2 − θη(1− β2)∥(I − ψ)Aun∥2

+ 2θ2λ2∥un − ϕ(un)∥2 + 2θ2η2∥A∥2∥(I − ψ)Aun∥2

= ∥un − q∗∥2 − θλ(1− β1 − 2θλ)∥un − ϕ(un)∥2

− θη(1− β2 − 2θη∥A∥2)∥(I − ψ)Aun∥2.

(32)
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Combining with (17), (25) and (32), we get

∥yn − q∗∥2 ≤ ∥xn − q∗∥2 − α2
n

4
∥xn − φ(zn)∥2

≤ ∥un − q∗∥2 − θλ(1− β1 − 2θλ)∥un − ϕ(un)∥2

− θη(1− β2 − 2θη∥A∥2)∥(I − ψ)Aun∥2 −
α2
n

4
∥xn − φ(zn)∥2.

(33)

In view of (C7), 1− β1 − 2θλ > 0 and 1− β2 − 2θη∥A∥2 > 0. It follows from
(33) that

∥yn − q∗∥ ≤ ∥xn − q∗∥ ≤ ∥un − q∗∥.

By (16), we have

∥un+1 − q∗∥ ≤ [1− (τ − νϖ)γn]∥un − q∗∥+ γn∥νρ(q∗)−B(q∗)∥
≤ max{∥un − q∗∥, ∥νρ(q

∗)−B(q∗)∥
τ−νϖ }.

Using the same inequality repeatedly, we obtain, for any n, that

∥un+1 − q∗∥ ≤ max{∥u0 − q∗∥, ∥νρ(q
∗)−B(q∗)∥
τ−νϖ }.

Then, the sequence {un} is bounded.
In light of (9), we have

∥un+1 − q∗∥2 = ⟨γnν(ρ(un)− ρ(q∗)) + (I − γnB)(yn − q∗), un+1 − q∗⟩
+ γn⟨νρ(q∗)−B(q∗), un+1 − q∗⟩

≤ (νγn∥ρ(un)− ρ(q∗)∥+ ∥I − γnB∥∥yn − q∗∥)∥un+1 − q∗∥
+ γn⟨νρ(q∗)−B(q∗), un+1 − q∗⟩

≤ (νγnϖ∥un − q∗∥+ (1− τγn)∥yn − q∗∥)∥un+1 − q∗∥
+ γn⟨νρ(q∗)−B(q∗), un+1 − q∗⟩

≤ νϖγn
2

∥un − q∗∥2 + 1− τγn
2

∥yn − q∗∥2 + 1

2
∥un+1 − q∗∥2

+ γn⟨νρ(q∗)−B(q∗), un+1 − q∗⟩,

which yields

∥un+1 − q∗∥2 ≤ νϖγn∥un − q∗∥2 + (1− τγn)∥yn − q∗∥2

+ 2γn⟨νρ(q∗)−B(q∗), un+1 − q∗⟩.
(34)
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On account of (33) and (34), we obtain

∥un+1 − q∗∥2 ≤ [1− (τ − νϖ)γn]∥un − q∗∥2 + (τ − νϖ)γn

×
(
− (1− τγn)θλ(1− β1 − 2θλ)

∥un − ϕ(un)∥2

(τ − νϖ)γn

− (1− τγn)θη(1− β2 − 2θη∥A∥2)∥(I − ψ)Aun∥2

(τ − νϖ)γn

+
2

τ − νϖ
⟨νρ(q∗)−B(q∗), un+1 − q∗⟩

− (1− τγn)
α2
n

4

∥xn − φ(zn)∥2

(τ − νϖ)γn

)
.

(35)

Put rn = ∥un − q∗∥2 and

wn =− (1− τγn)θλ(1− β1 − 2θλ)
∥un − ϕ(un)∥2

(τ − νϖ)γn

− (1− τγn)θη(1− β2 − 2θη∥A∥2)∥(I − ψ)Aun∥2

(τ − νϖ)γn

+
2

τ − νϖ
⟨νρ(q∗)−B(q∗), un+1 − q∗⟩

− (1− τγn)
α2
n

4

∥xn − φ(zn)∥2

(τ − νϖ)γn
.

(36)

We can rewrite (35), for all n ≥ 0, as

rn+1 ≤ [1− (τ − νϖ)γn]rn + (τ − νϖ)γnwn.

Next, we prove lim supn→∞wn ≥ −1. If lim supn→∞wn < −1, then there is a
positive integer m satisfying wn < −1 when n ≥ m. Then, rn+1 ≤ rn − (τ − νϖ)γn,
n ≥ m, which results in

rn+1 ≤ rm −
n∑

i=m

(τ − νϖ)γi.

Hence, lim supn→∞ rn+1 ≤ −∞ which is impossible. Thus, lim supn→∞wn ≥
−1. At the same time, due to (36), we conclude that

wn ≤ 2

τ − νϖ
∥νρ(q∗)−B(q∗)∥∥un+1 − q∗∥,

which yields that lim supn→∞wn <∞.
Next, we prove ωw(un) ⊂ Ω. Pick up û ∈ ωw(un), which means that there

is {unk
} ⊂ {un} satisfying unk

⇀ û(k → ∞) and lim supn→∞wn = limk→∞wnk
.

Without loss of generality, assume limk→∞⟨νρ(q∗)−B(q∗), unk+1−q∗⟩ exists. Hence,



24 Lu Zheng, Alexandru Gogoasa

the following limit exists

lim
k→∞

(
− (1− τγnk

)θλ(1− β1 − 2θλ)
∥unk

− ϕ(unk
)∥2

(τ − νϖ)γnk

− (1− τγnk
)θη(1− β2 − 2θη∥A∥2)∥(I − ψ)Aunk

∥2

(τ − νϖ)γnk

− (1− τγnk
)
α2
nk

4

∥xnk
− φ(znk

)∥2

(τ − νϖ)γnk

)
,

which yields that

lim
k→∞

∥unk
− ϕ(unk

)∥ = lim
k→∞

∥(I − ψ)Aunk
∥ = lim

k→∞
∥xnk

− φ(znk
)∥ = 0. (37)

From (5), we have

∥xnk
− unk

∥ ≤ θλ∥ϕ(unk
)− unk

∥+ θη∥A∥∥(I − ψ)Aunk
∥,

which together with (37) implies that

lim
k→∞

∥xnk
− unk

∥ = 0. (38)

By (6),

∥ynk
− xnk

∥ ≤ αnk

2
∥φ(znk

)− xnk
∥.

It follows from (37) that

lim
k→∞

∥ynk
− xnk

∥ = 0. (39)

Taking into account (7) and (8), we have

∥znk
− xnk

∥ ≤ αnk
∥φ(xnk

)− φ(znk
)∥+ αnk

∥φ(znk
)− xnk

∥
≤ δ∥xnk

− znk
∥+ αnk

∥φ(znk
)− xnk

∥.

It follows that ∥znk
− xnk

∥ ≤ αnk
1−δ∥φ(znk

)− xnk
∥ and hence

lim
k→∞

∥znk
− xnk

∥ = 0. (40)

Combining (37) and (40), we deduce

lim
k→∞

∥znk
− φ(znk

)∥ = 0. (41)

As γn → 0, from relations (9), (38) and (39), the next relations

∥un+1 − un∥ = ∥γnνρ(un) + (I − γnB)yn − un∥
≤ γn(ν∥ρ(un)∥+ ∥B(yn)∥) + ∥yn − un∥
≤ γn(ν∥ρ(un)∥+ ∥B(yn)∥) + ∥yn − xn∥+ ∥xn − un∥

lead to

lim
k→∞

∥unk+1 − unk
∥ = 0. (42)

Noticing that unk
⇀ û, we obtain

Aunk
⇀ Aû, and znk

⇀ û.
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Therefore,

unk
⇀ û, ∥unk

− ϕ(unk
)∥ → 0

I − ϕ is demiclosed at the origin

}
⇒ û ∈ Fix(ϕ),

znk
⇀ û, ∥znk

− φ(znk
)∥ → 0

I − φ is demiclosed at the origin

}
⇒ û ∈ Fix(φ),

and

Aunk
⇀ Aû, ∥(I − ψ)Aunk

∥ → 0

I − ψ is demiclosed at the origin

}
⇒ Aû ∈ Fix(ψ).

So, û ∈ Ω and ωw(un) ⊂ Ω. Since x∗ = PΩ(I −B + νρ)x∗ is equivalent to

⟨(I −B + νρ)x∗ − x∗, y − x∗⟩ ≤ 0(∀y ∈ Ω),

we attain

lim sup
n→∞

⟨νρ(x∗)−B(x∗), un+1 − x∗⟩ = lim
k→∞

⟨νρ(x∗)−B(x∗), unk+1 − x∗⟩

= ⟨νρ(x∗)−B(x∗), û− x∗⟩ ≤ 0.
(43)

Based on (35), we have

∥un+1 − x∗∥2 ≤ [1− (τ − νϖ)γn]∥un − x∗∥2 + 2γn⟨νρ(x∗)−B(x∗), un+1 − x∗⟩.
(44)

Based on (43), (44) and Lemma 2.2, we conclude un → x∗. □

By considering A as the null operator, we are led to the following algorithm.

Algorithm 3.2. Let u0 ∈ H1 be an initial point.
Step 1. Assume the current iterate un is given. Compute

xn = (1− θ)un + θ[(1− λ)un + λϕ(un)].

Step 2. Compute

yn = (1− αn

2
)xn +

αn

2
φ(zn),

where

zn = (1− αn)xn + αnφ(xn),

in which αn = ϵµk and k = min{0, 1, 2, · · · } such that

αn∥φ(zn)− φ(xn)∥ ≤ δ∥zn − xn∥.

Step 3. Compute un+1 = γnνρ(un) + (I − γnB)yn. Set n := n + 1 and return to
Step 1.

Corollary 3.1. If Ω1 := Fix(ϕ) ∩ Fix(φ) ̸= ∅, then the sequence {un} generated by
Algorithm 3.2 converges strongly to y∗ = PΩ1(I −B + νρ)(y∗).
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4. Conclusion

In this paper we study the SFPP (2) which is an extension of the SFP, as
well as of the well-known convex feasibility problem. Our problem involves in a
pseudocontractive operator and two demicontractive operators in Hilbert spaces.
To solve this problem, we proposed an iterative algorithm with self-adaptive rule
and the Krasnoselskii-Mann method for the computation of a solution of the SFPP
(2). The self-adaptive rule has does not rely on an a priori the Lipschitz constant
of the involved pseudocontractive operators. Under several adequate conditions, we
proved that the presented algorithm converges strongly to an element in Ω.
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