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ON APPROXIMATELY BIFLAT BANACH ALGEBRAS

N. Razi', A. Pourabbas?, A. Sahami®

In this paper, we study the notion of approximately biflat Banach algebras
for second dual Banach algebras and semigroup algebras. We show that for a locally
compact group G, if S(G)** is approzimately biflat, then G is an amenable group. Also
we give some conditions which the second dual of a Triangular Banach algebra is never
approzimately biflat. For a uniformly locally finite semigroup S, we show that £}(S) is
approzimately biflat if and only if £1(S) is biflat.

Keywords: Approximate biflatness, Triangular Banach algebras, Segal algebras, semi-
group algebras.

MSC2010: 46M10, 46H05, 43A07, 43A20

1. Introduction

Helemskii [6] defined the notion of biflat Banach algebras. In fact a Banach algebra
A is biflat if there exists a bounded A-bimodule morphism p : (A ®, A)* — A* such that
pomy(f) = f for each f € A*, where m4 : A®, A — A is defined by m4(a ®b) = ab for each
a,b € A. For a group algebra L'(G), associated with a locally compact group G, L(G) is
biflat if and only if G is amenable. For the further details of Banach algebra homology see
[6]. Recently Ramsden in [12] characterized the biflatness of semigroup algebras associated
to a locally finite inverse semigroup. He showed that for a locally finite inverse semigroup
S, £1(9) is biflat if and only if each G,, is amenable group, where p is an idempotent and
G, is a maximal subgroup of S. Also biflatness of Triangular Banach algebras have been
studied in [10].

Recently, approximate notions in the homology of Banach algebras have been intro-
duced and improved. A Banach algebra A is approximately biflat if there exists a net of
A-bimodule morphism (p,) from (A ®, A)* into A* such that p, o 7% wror, id A+, where
W*OT is denoted the weak-star operator topology and id 4+ is the identity map on A*. In
fact for the discrete Heisenberg group G the Fourier algebra A(G) is approximately biflat
but A(G) is not biflat, see [14]. Samei et al. also showed that if A is an approximately biflat
Banach algebra with an approximate identity, then A is pseudo-amenable.

Motivated by these considerations, we study approximate biflatness of ¢1(S), where
S is a uniformly locally finite semigroup. We show that ¢!(S) is approximately biflat if and
only if £*(S) is biflat. Also we show that approximately biflatness of ¢1(S)** implies the
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pseudo-amenability of £1(.9). Also for a locally compact group G, we show that approximately
biflatness of S(G)**, implies that G is amenable, where S(G) is a Segal algebra with respect
to G. Finally we give a criteria to study approximately biflatness of Triangular Banach
algebras. We show that some second dual of Triangular Banach algebras related to a locally
compact groups are never approximately biflat.

2. Preliminaries

Let A be a Banach algebra. We recall that if X is a Banach A-bimodule, then X* is
also a Banach A-bimodule via the following actions

(@-f)@)=fz-a), (f-a)(@)=fla-z) (acAreX feX)

Throughout, the character space of A is denoted by A(A), that is, the set of all non-
zero multiplicative linear functionals on A. Let ¢ € A(A). Then ¢ has a unique extension
¢ € A(A**) which is defined by ¢(F) = F(¢) for every F € A**.

Let {Ay}aer be a collection of Banach algebras. Then we define the ¢!-direct sum of
A, by

0" — Baerda = {(an) € H A Z [laa|| < oo}
aecl acl
It is easy to verify that

A(f' = ®aerAa) = {®¢5 : d5 € A(4p), B €T},

where ®¢5((aa)acr) = ¢p(ag) for every (an)acr € £ — ®acrAqy and every § €T

Let A be a Banach algebra and let A be a non-empty set. The set of all A x A matrices
(@i,j)i,; which entries come from A is denoted by M, (A). With the matrix multiplication
and the following norm

(@i )il = llaill < oo,
0.

My (A) is a Banach algebra. M (A) belongs to the class of £:-Munn algebras. The map
0 : Ma(A) = A ®, Ma(C) defined by 0((a;,;)) = >, ;
isomorphism, where (F; ;) denotes the matrix unit of M (C). Also it is well-known that
M (C) is a biflat Banach algebra [12, Proposition 2.7].

The main reference for the semigroup theory is [7]. We say that S is an inverse

a;; ® E; ; is an isometric algebra

semigroup, if for each s € S there exists an element s* € S with ss*s = s and s*ss* = s.
An inverse semigroup S is called Clifford if for each s € S, we have ss* = s*s. Let S be a
semigroup and let E(S) be the set of its idempotents. A partial order on E(S) is defined by

s<t<=s=st=ts (s, tecE(9)).

If S is an inverse semigroup, then there exists a partial order on S which coincides with the
partial order on E(S). Indeed

s<t<=s=ss"t (s,tel).

For every x € S, we denote (z] = {y € S|y < x}. S is called locally finite (uniformly
locally finite) if for each « € S, |(z]| < oo (sup{|(z]| : € S} < 0), respectively. Suppose
that S is an inverse semigroup. Then the maximal subgroup of S at p € E(S) is denoted
by G, = {s € S|ss* = s*s = p}. For an inverse semigroup S, it is well-known that there
exists an equivalence relation ® such that s®t if and only if there exists « € S such that
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ss* = xa* and t*t = x*z. We denote {D) : A € A} for the collection of D-classes and
E(@)\) = E(S) NDy.

3. Approximate biflatness of second dual of Banach algebras

In this section we investigate approximate biflatness dual Banach algebras.

Proposition 3.1. Let A be a Banach algebra. Then A is approxzimately biflat if and only if
there exists a net (po) of bounded A-bimodule morphism from A into (A ®, A)** such that
T 0 pala) — a for every a € A.
Proof. Let A be approximately biflat. Then there exists a net &, : (A ®, A)* — A* of
bounded A-bimodule morphism such that &, o 74 (f) — f v, 0, for every f € A*. Set
Po = &, hence for each a € A and f € A* with ||f]| < 1, we have
174" 0 pa(a) — al| = [[74" 0 &5 (a) — al| = |[(§a 0 74)"(a) — all

= l[(€a 0 ™a)*(a)(f) — a(f)]|

= [la(§a 0 ™4 (f)) — a(f)]]

= lla(€a o 74 (f) — NI = 0.

For the converse, suppose that there exists a net (p,) of bounded A-bimodule morphism
from A into (A ®, A)™* such that 7" o po(a) — a for every a € A. Set {, = p|(ac,4)+-

Saoma(f)(a) = fla) = f(7} o pala) —a) =0,
where f € A*,a € A. Then A is approximately biflat. |

We recall that a Banach algebra A is called pseudo-amenable if there exists a (not
necessarily bounded) net (m,) in A ®, A such that

a My —My-a—0, ma(my)a—a (a€ A,
see [5] for further details.

Theorem 3.1. Let A be a Banach algebra with an approximate identity. If A** is approxi-
mately biflat, then A is pseudo-amenable.

Proof. Suppose that A** is approximately biflat. Then by Proposition 3.1 there exists a net
(Pa)acr of A**-bimodule morphism from A** into (A** ®, A**)** such that 7%%. opn(a) = a
for each a € A**. It is easy to see that the net (pa|4) is also a net of A-bimodule morphism
satisfies T4%. 0 pala(a) — a for each a € A. We denote (ex)xes for the approximate identity
of A. Consider

limliina “paler) — palen) -a= limliinpa(aeA —exa)
=limp,(0) =0 (a€ A).
Also
limli/r\nﬂj{i* o paler)a —a =lim i o pala) —a =0, (a € A).

Let E = I x J! be a directed set with product ordering, that is,

’

(aaﬂ) SE (aa6/)®a§1 alaﬂ SJI B, (OL,OA,E[, /875/€J1)a
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where J7 is the set of all functions from I into J and 8 <,;r 8 means that 8(d) <; 8 (d) for

each d € I. Suppose that v = (o, 84) € E and my = pa(er,) € (A ®, A**)**. Applying

iterated limit theorem [9, page 69] and above calculations, we can easily see that
a-my—my-a—0, 7i.(my)a—a, (a€A).

There exists a bounded linear map ¢ : A** ®, A** — (A ®, A)** such that for a,b € A and
m € A" ®, A**, the following holds;

(i) Y(a®b)=a®b,
(ii) ¥(m)-a=v¥(m-a), a-¢p(m)=1v(a-m),
(iii) 5" ((m)) = max- (m),

see [4, Lemma 1.7]. So ¢**(m,) is a net in (A ®, A)**** such that
a- P (my) =™ (my) -a =0, 7 (W (my))a = mh(my)a —a (a € A).

Put n, = ¢¥**(m,). Suppose that € > 0 and F' = {a1,...,a,} C A. Set

V={(ag-n—n-ai,.,a-n—n-a, w4 (n)a; —ay,..,
Ty (n)a, —ar)n € (A®, A)*}
c (JT(ae, A=) e (JTA™).
i=1 i=1
It is easy to see that (0,0, ...,0) is a w-limit point of V. Since V is convex set VH‘H = Vw,
then (0,0, ...,0) is a || - [|-limit point of V. Hence there exists a net (n(p) in (A ®, A)**
such that
lai - n(re) = nre - all <€ ma (nFre)ai —aill <€ (i €{1,2,...,r}).

Observe that
A = {(F,e): F is a finite subset of A,e > 0},

with the following order
(Fie) <(F',é)= FCF', e>¢
is a directed set. It is easy to see that there exists a net (n(pe))(rejea in (A ®, A)** such
that
a-npe —npe - a—0, Th(nEeo)a—a—0,
for every a € A. Using the same method as above we can assume that (n(p,))(r.e)ea is a
subset of A ®, A. This means that A is pseudo-amenable. O

Let A be a Banach algebra and ¢ € A(A). We say that A is approximately ¢-inner
amenable if there exists a net (ay)o in A such that aa, — aga — 0 and ¢(a,) — 1, for
all @ € A. Also A is approximately left ¢-amenable if there exists a net m,, in A such that
amq, — ¢p(a)mq — 0 and ¢(mg) — 1, see [1].

The proof of following two results are similar to the proof of Theorem 3.1 which we
omit them.

Theorem 3.2. Suppose that A is an approzimately ¢-inner amenable Banach algebra. If
A** is approzimately biflat, then A is approzimately left p-amenable.

Corollary 3.1. Suppose that A is an approximately ¢-inner amenable Banach algebra. If
A is approximately biflat, then A is approximately left ¢p-amenable.
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Theorem 3.3. Let A be a Banach algebra with ¢ € A(A). Suppose that A ker ¢ = ker ¢. If
A** is approximately biflat, then A is left ¢-amenable.

Proof. Since A** is approximately biflat, there exists a net (p,) of A**-bimodule morphism
from A** into (A** ®, A**)** such that 7%. 0ps(a) > a (a € A**). Wedenoteid: A — A
for the identity map and ¢ : A — ke‘? P the quotient map. Also it is well-known that there
exists a bounded linear map ¢ : A** ®, A™ — (A ®, A)** such that for a,b € A and

m € A** ®, A**, the following holds;

(i) ¥(e®b) =a®b,
(ii) ¥(m)-a=v(m-a),  a-¢(m)=1(a-m),
(iii) 74" (¢(m)) = ma-- (m),
see [4, Lemma 1.7]. Set 7 = (id ® ¢)*** o)™ 0 pala: A = (A®, k£¢)**** for each «.
We claim that 7,,(l) = 0 for each | € ker ¢. To see this let [ € ker ¢ be an arbitrary element.
Since Aker ¢ = ker ¢, there exist two nets (ag) in A and (Ig) in ker ¢ such that [ = limg aglgs.
Consider

Mall) = (id © )™ 0™ 0 pa(l) = (id @ )" 0 ™" 0 pa(limagly)

- 11/1311(id ® q)"**(¥** 0 palag) - 1g) = 0.

Hence, for each «, 7, induces a map on ﬁ;qﬁ which we again denote it by 7,. We also denote

A

¢ for a character which induced by ¢ on e

given by
Bla+kerg) = ¢la) (a€ A).
Set

. T\ kkckok A sk
ga:(ld®¢) Ona:@*)A .

Pick an element zy € A such that ¢(z¢) = 1. Define mqy = go(xo + ker ¢). We know that
(ga) is a net of left A-module morphisms. Thus

am, = alid ® B)*** o (wo+ ker @) = (id ® §)*** o 1 (azo + ker )

= ¢(a)(id @ §)**"" 0 na (w0 + ker ¢) (2)
= ¢(a)maa

the last equality holds because axg — ¢(a)xo € ker ¢. Since

we have

d(me) = ¢ o (id @ ¢)**** 0 ny (o + ker @)
— ~O d T\ kkkx 0 N,
i (i ®f) Na(Z0) 3)

— o™ o palwo) — (z0) = 1.
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Replacing (my) with (Z(ney) on can find an element m € A™*** such that am = ¢(a)m and

g(m) =1 for every a € A. Let F = {a3,as,...,a,} be an arbitrary finite subset of A and
€> 0. Set

V = {(a1n — ¢(ar)n, azn — $(az)n, ...;a;n — d(ay)n, (n) — 1)|n € A™, [In|| < [|m]|}.

It is easy to see that V is a convex subset of [[/_; A** @&; C. So (0,0,...,0) € V"' = il
Thus there exists a bounded net (n(z,))(r,) in A** such that

l|ainpe — dlai)npoll <€, |o(npeo) =11 <e a; € F.
One can show that
A = {(F,¢): F is a finite subset of A,e > 0},
with the following order
(Fie) < (Fl,d)=FCF', e>¢

is a directed set. Therefore there exists a bounded net (n(p))(F,ea in A** such that

an(p,e) — dla)n(p,e) — 0, q?)(n(F’e)) —-1—0, acA
Since (n(r,e))(F,e) is @ bounded net in A**, then (n(g,e))(F,e) has a w*-limit point in A*, say
N. It is easy to see that

aN = ¢(a)N, ¢(N)=1 (acA).
It means that A is left ¢-amenable. |

The map ¢; : L'(G) — C which is specified by

(/) = /G f(x)dx

is called the augmentation character. We know that the augmentation character induces a
character on S(G) we denote by ¢; again, see [2].
Let G be a locally compact group. A linear subspace S(G) of L'(G) is said to be a
Segal algebra on G if it satisfies the following conditions:
(i) S(G) is a dense in L'(G),
(ii) S(G) with a norm || - |[s() is a Banach space and [|f|[z1(@) < ||flls(e) for every
fesG),
(iii) for f € S(G) and y € G, we have L, f € S(G) and the map y — L, (f) from G into
S(G) is continuous, where L, (f)(z) = f(y~'z),
(iv) [ILy(Nllse) = lIflls(q) for every f € S(G) and y € G,

for more information see [13].

Corollary 3.2. Let G be a locally compact group. If S(G)** is approzimately biflat, then
G is amenable.

Proof. 1t is well-known that every Segal algebra has a left approximate identity. Suppose
that ¢ € A(S(G)). It is easy to see that S(G)ker ¢ = ker ¢. Using the Theorem 3.3, the
approximate biflatness of S(G)** implies that S(G) is left ¢-amenable. Now by [2, Corollary
3.4] G is amenable. O
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4. Approximate biflatness of certain semigroup algebras

In this section we study approximate biflatness of some semigroup algebras.

Before giving the following proposition we have to give some backgrounds. Suppose
that A and B are Banach algebras and also suppose that F and F' are Banach A-bimodule
and Banach B-bimodule, respectively. Via the following module actions, one can see that
E ®, F becomes a Banach A ®, B-bimodule:

(@@b)-(z@y)=(a-z)@ (b y), (2ey) (a®d)=(r a)e(y-b),

for each a € A,z € E,b € B,y € F. One can see that B(E, F) (the set of all bounded linear
operator from E into F') is a Banach A ®, B-bimodule via the following actions:

((a@b)*«T)(x)=b-T(x-a), (Tx*x(a®b)(z)=T(a-x)-b,

for each T € B(E,F),a € A,b € B,z € E. We denote this Banach A ®, B-bimodule by
B(E, F). Also we can see that B(F, E) becomes a Banach A®,, B-bimodule via the following
actions:

((a@b)*xT)(x)=a-T(x-b), Tx*x(@axb)(z)=T0b x)-a,
for each T € B(E,F),a € A,b € B,z € E. We denote this Banach A ®, B-bimodule by
B(E, F). Note that for each A € (E®, F)* we can define T\ € B(E, F*) and Ty € B(F,E*)
by

<y Ta()>=<z0y,A> <z,Th(Yy) >=<z0y >,

for each x € E,y € F. The map E: (E@pF)* — B(E,F*) given by g(/\) = T is an isometric
A®yp B-bimodule isomorphism. Also the map ¢: (EQ,F)* — B(F, E*) given by 2()\) =Ty is
an isometric A ®,, B-bimodule isomorphism. Then there exists a bounded isometric A ®,, B-
bimodule isomorphism from B(E, F*) into B (F, E*) which denoted by L. Also we remind
that there exists an isometric A ®, B-bimodule isomorphism from (A ®, A) ®, (B ®, B)
into (A ®, B) ®, (A ®, B) defined by

la®d@beb)=ab®d @V (a,a’ € A,bl € B).
It is clear that 6 is a bounded A ®, B-bimodule morphism.
Proposition 4.1. Let A be a biflat Banach algebra and let B be approximate biflat Banach
algebra. Then A ®, B is approzimate biflat.

Proof. Since A is approximate biflat, there exists a net p, : (A ®, A)* — A* of bounded A-

bimodule morphisms such that p, o’ (f)— f v, 0, for every f € A*. Also since B is biflat,
there exists a bounded B-bimodules from (B ®, B)* into B, say p, such that poni(g) =g¢
for each g € B*. Set

po: (A®, B)®, (A®, B))" %5 (A®, A) @, (B®, B))*

5 B(A®, A, (B, B))
220ty B(A®, A, B*)
L B(B, (A®, A)%)

T peoT E(B,A*)

L (Aw, B)".
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Since p, is a composition of some (A®, B)-bimodule morphisms, then g, is a net of (A®, B)-
bimodule morphism. Take A € (A ®, B)*. Using the following facts

porgoThoma=Thomy

and
LOfAO’/TA:’lTZOT)\,
we have - -
PaoTag,5(N) —A=ETopsomyoTh — A= A=A=0.
This finishes the proof. (]

We show the partial converse of above Proposition in the following theorem.

Theorem 4.1. Let A and B be Banach algebras. Suppose that A has an identity and B has
a non-zero idempotent. If A®, B is approzimately biflat, then A is approzimately biflat, so
A is pseudo-amenable.

Proof. Suppose that A ®, B is approximately biflat. Then by Proposition 3.1 there exists
a net (p) of A-bimodule morphism from A ®, B into ((A ®, B) ®, (A ®, B))** such that
Thw,s © Pa(z) — @ for each x € A ®, B. Take e € A the identity and by € B the non-zero
idempotent. Note that A ®, B becomes a Banach A-bimodule via the following actions:

a1 - (a2 ®b) =a1aa @b, (a2 ®Db)- a1 =asa; ®b (a1,a2 € A,b € B).
For each a, we have
Palaraz ® bo) = pa((ar ® bg)(az @ by))
= (a1 ®bo) - palaz ® bo)
= (a1 (e®bp)) - pa(az @ bo) (5)
= a1 - pa(eaz @ boby)
= a1 - pa(az ® by).
For each «, we can also see that
pa((az @ bg) - a1) = palag @bo) - ay.

For each a set p,(a) = paa ® by). It is easy to see that (p,) is a net of A-bimodule
morphism. Since by is a non-zero element in B, by Hahn-Banach theorem there exists a
functional f € B* such that f(by) = 1. Define T': (A ®, B) ®, (A®, B) > A®, A by

Ta®b®cad) = f(bd)a®c

for each a,c € A and b,d € B. Clearly T is a bounded linear map. One can see that
Ty o T = (ida ® f)™ o7y p, Where

ida @ fla®b) = f(b)a (a€ Abe B).
Set po, = T** op,,. One can see that (p, ) is a net of bounded A-bimodule morphism. Since
f(bg) =1, we have
T4 0 pala) =4 o T 0y (a) = (ma o T)™ o pala @ bo)
= (ida ® f)™ 0Ty, 5 - Pala @ bo) (6)
= (ida © f)" (a @ bo) = a,

for each a € A. Using Proposition 3.1 A is approximately biflat. Since A has an identity by
[14, Theorem 2.4], A is pseudo-amenable. a
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Corollary 4.1. Let A be a Banach algebra. If A is approzimately biflat, then My (A) is
approzimately biflat. Converse is true, provided that A has a unit.

Proof. Let A be approximately biflat. It is well-known that there exists an isometric isomor-
phism between M, (A) and A ®, Ma(C). Using the fact that M, (C) is always biprojective
[12, Proposition 2.7], then M, (C) is biflat. Now by Proposition 4.1, A ®, M (C) is approx-
imately biflat.

For the converse, since A is unital and M (C) has a non-zero idempotent, by the
previous Theorem, approximate biflatness of Mj(A) = A ®, M (C) implies that A is ap-
proximately biflat A, so the converse is clear. O

Theorem 4.2. Let S be an inverse semigroup such that E(S) is uniformly locally finite.
Then €*(S) is approzimately biflat if and only if £*(S) is biflat.

Proof. Suppose that ¢1(S) is approximately biflat. Then by Proposition 3.1 there exists
a net (pa)acr of £1(S)-bimodule morphism from ¢!(S) into (¢1(S) ®, ¢*(S))** such that
Tii(s) © pala) —a — 0 for each a € ¢1(S). Since S is uniformly locally finite, by [12,
Theorem 2.18] we have

01(8) = ' — PMpo,) (1 (Gp,))},

where D), is a D-class and G, is a maximal subgroup at px. Then the map P, : £*(S) —
Mgo,)(¢*(Gp,)) is a continuous homomorphism with a dense range. Define

N : Mp(o,) (('(Gp,)) = Me,) (€1(Gp,)) ®p Mpo,) (€(Gp,)) ™
by Ne = (P®P)**opa|ME(©A)(g1(ka)). It is easy to see that (1) is a net ofME(@A)(El(Gm))-
bimodule morphism. For each a € Mgo,)(¢*(Gp,)) we have
7Tf\r/ﬁkE(i’,\)(él(GPk)) © e (a) - WﬁE(Qx)(el(GPA)) © (PpA ® PP}‘)** °© po‘|ME(ZDA)(€1(GPA))(a) (7)
= Pyl o mii(s) © Paluipeo,, (e1(Gyy ) (@) = a-
Hence Mp(o,)({*(Gp,)) is approximately biflat. By Theorem 4.1, £*(G), ) is approximately
biflat. Since £!(Gp, ) is unital, by [14, Theorem 2.4] ¢!(G,, ) is pseudo-amenable, hence by
[5, Proposition 4.1] Gp,, is amenable. Applying [3, Theorem 3.7] to finish the proof.
The converse is clear. ]

Corollary 4.2. Let S = Ugep(s)Ge be a Clifford semigroup such that E(S) is uniformly
locally finite. If €*(S)** is approximately biflat, then G. is amenable for each e € E(S).

Proof. Suppose that £1(S)** is approximately biflat. It is well-known that ¢*(S) = ¢* —
Beer(s)l*(Ge). Since I*(G,) is unital, then ¢*(S) has an approximate identity. The previous
Theorem, implies that ¢1(S) is pseudo-amenable. Then by [3, Theorem 3.7] G, is amenable,
for each e € E(S). O

5. An application to Triangular Banach algebras

In this section we give some examples of matrix algebras which are never approxi-
mately biflat. Similar results for ¢-biprojectivity of some Matrix algebras have been inves-
tigated in [11].

Let A be a Banach algebra and let X be a Banach A-bimodule. Suppose that ¢ €
A(A). We say that X has a left ¢-character if there exists a non-zero map 1 € X* such that

Y(a-x)=¢la)Y(x), (a€ A zeX).
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Similarly we can define right case and two sided case. It is easy to see that for ¢ € A(A),
p®¢on A®, A is a left ¢-character. Also if A has a closed ideal I C ker ¢, then ¢ on ? is
a left ¢-character, where ¢ : % — C given by ¢(a+ I) = ¢(a) for all a € A.

Let A and B be Banach algebras and let X be a Banach (A, B)-module, that is, X is
a Banach space, a left A-module and a right B-module with the compatible module action
that satisfies (a-z)-b=a-(z-b) and ||a-z-b|| < ||a||||z]|||b]| for every a € A,z € X,b € B.

With the usual matrix operation and || ) | = |lal|+ [|=||+[b]], T = Tri(A, X, B) =

a x |
0 b
A X Do .

0 B becomes a Banach algebra which is called Triangular Banach algebra. Let
x

¢ € A(B). We define a character 1y € A(T) via ¢y ( g b

beBandx € X.

) = ¢(b) for every a € A,

Theorem 5.1. Let A and B be Banach algebras and let X be a Banach (A, B)-module such
that A2 = A and A-X = X. Suppose that ¢ € A(B) with Bker ¢ = ker¢. If one of the
followings hold

(i) B is not left p-amenable;
(ii) X has a right ¢-character;

then T** = Tri(A, X, B)** is not approzimately biflat.

Proof. We go toward a contradiction and suppose that T** is approximately biflat. Let 14
be same as above. It is clear that ker ¢, = Tri(A, X, ker ¢). Since A2=A, A X =X and
Bker¢ = ker ¢, then T'kervy = 1)¢. Then by Theorem 3.3, T' is left 1)4-amenable. Set
I =Tri(0, X, B). It is clear that I is closed ideal and 4|7 # 0. Using [8, Lemma 3.1], one

can see that I is left ¢g-amenable. Thus by [8, Theorem 1.4], there exists a bounded net
(ie) in I such that

fio — (D)ia = 0, (i) =1, (i€l).

Take (z4) in X and (b,) in B such that i, = < 8 ia ) Hence we have

(o i) (o) el i oo i) o

and 1/}4,(( 8 zo‘ )) = ¢(by) =1 for each x € X,b € B. Thus we have

bo — P(b)zq — 0, bby — P(b)by — 0, ¢(ba) =1, (z€ X,be B).
If () holds the facts
bbo — d(b)ba = 0, o(bo) =1, (x€ X,be B)

give us a contradiction (left ¢-amenability condition for B).
Suppose that (ii) happens. Take 7 as a right ¢-character on X. Since xb, — ¢(b)x, —
0, ¢(by) = 1 for each x € X, b € B, then we have

N(wbe — ¢(b)xa) = N(Tba) — A(b)N(70) = ¢(ba)n(x) — G(b)n(T0) — 0

for each z € X,b € B. Thus we have lim ¢(b)n(zo) = n(x). Take b € ker ¢, then we have
n(x) = 0 for each x € X which is a contradiction (7 is a non-zero functional). O
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Corollary 5.1. Let G be a locally compact group. Then Tri(S(G), L (G), S(G))** is not
approximately biflat.

Proof. Suppose that ¢ € A(S(G)). It is well-known that S(G) has a left approximate
identity and is a dense left ideal of L'(G) and also L'(G) has a bounded approximate
identity. Then

S(Q)Z = S(Q), S(GLG) = L(G), S(G)kerd = ker .

Since S(G) is a left ideal in L'(G), by [2, Lemma 2.2] ¢ can be extended to a character
on L'(G), which is a right ¢-character for L'(G). Now apply Theorem 5.1 to show that
Tri(S(G), LY (G), S(G))** is not approximately biflat. O

Corollary 5.2. Let G be a locally compact group. Then Tri(L*(G), S(G) ®, S(G), S(G))**

is not approximately biflat.

Proof. Since L'(G) has a bounded approximate identity, we have L1(G)? = L'(G). Also
using Cohn factorization theorem we have L1(G) - (S(G) ®, S(G)) = S(G) ®, S(G). Since
S(G) has a left approximate identity, then S(G)ker ¢ = ker ¢ for each ¢ € A(S(G)). Note
that for each ¢ € A(S(G)), ¢ ® ¢ which is defined by

¢ @ dla@b) = p(a)p(b) (a,be S(G))

is a right ¢-character on S(G)®,S(G). Then apply Theorem 5.1 to show that Tri(L(G), S(G)®,
S(G), S(G))** is not approximately biflat. O

Similarly one can show the following result.

Corollary 5.3. Let G be a locally compact group. Then Tri(L*(G), M(G), S(G))** is not
approximately biflat.
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