

ON APPROXIMATELY BIFLAT BANACH ALGEBRAS

N. Razi¹, A. Pourabbas², A. Sahami³

*In this paper, we study the notion of approximately biflat Banach algebras for second dual Banach algebras and semigroup algebras. We show that for a locally compact group G , if $S(G)^{**}$ is approximately biflat, then G is an amenable group. Also we give some conditions which the second dual of a Triangular Banach algebra is never approximately biflat. For a uniformly locally finite semigroup S , we show that $\ell^1(S)$ is approximately biflat if and only if $\ell^1(S)$ is biflat.*

Keywords: Approximate biflatness, Triangular Banach algebras, Segal algebras, semigroup algebras.

MSC2010: 46M10, 46H05, 43A07, 43A20

1. Introduction

Helemskii [6] defined the notion of biflat Banach algebras. In fact a Banach algebra A is biflat if there exists a bounded A -bimodule morphism $\rho : (A \otimes_p A)^* \rightarrow A^*$ such that $\rho \circ \pi_A^*(f) = f$ for each $f \in A^*$, where $\pi_A : A \otimes_p A \rightarrow A$ is defined by $\pi_A(a \otimes b) = ab$ for each $a, b \in A$. For a group algebra $L^1(G)$, associated with a locally compact group G , $L^1(G)$ is biflat if and only if G is amenable. For the further details of Banach algebra homology see [6]. Recently Ramsden in [12] characterized the biflatness of semigroup algebras associated to a locally finite inverse semigroup. He showed that for a locally finite inverse semigroup S , $\ell^1(S)$ is biflat if and only if each G_p is amenable group, where p is an idempotent and G_p is a maximal subgroup of S . Also biflatness of Triangular Banach algebras have been studied in [10].

Recently, approximate notions in the homology of Banach algebras have been introduced and improved. A Banach algebra A is approximately biflat if there exists a net of A -bimodule morphism (ρ_α) from $(A \otimes_p A)^*$ into A^* such that $\rho_\alpha \circ \pi_A^* \xrightarrow{W^*OT} id_{A^*}$, where W^*OT is denoted the weak-star operator topology and id_{A^*} is the identity map on A^* . In fact for the discrete Heisenberg group G the Fourier algebra $A(G)$ is approximately biflat but $A(G)$ is not biflat, see [14]. Samei *et al.* also showed that if A is an approximately biflat Banach algebra with an approximate identity, then A is pseudo-amenable.

Motivated by these considerations, we study approximate biflatness of $\ell^1(S)$, where S is a uniformly locally finite semigroup. We show that $\ell^1(S)$ is approximately biflat if and only if $\ell^1(S)$ is biflat. Also we show that approximately biflatness of $\ell^1(S)^{**}$ implies the

¹Faculty of Mathematics and Computer Science, Amirkabir University of Technology, 424 Hafez Avenue, 15914 Tehran, Iran. E-mail: Razina@aut.ac.ir

²Faculty of Mathematics and Computer Science, Amirkabir University of Technology, 424 Hafez Avenue, 15914 Tehran, Iran. E-mail: arpabbas@aut.ac.ir

³Department of Mathematics, Faculty of Basic Sciences Ilam University P.O. Box 69315-516 Ilam, Iran. E-mail: amir.sahami@aut.ac.ir

pseudo-amenable of $\ell^1(S)$. Also for a locally compact group G , we show that approximately biflatness of $S(G)^{**}$, implies that G is amenable, where $S(G)$ is a Segal algebra with respect to G . Finally we give a criteria to study approximately biflatness of Triangular Banach algebras. We show that some second dual of Triangular Banach algebras related to a locally compact groups are never approximately biflat.

2. Preliminaries

Let A be a Banach algebra. We recall that if X is a Banach A -bimodule, then X^* is also a Banach A -bimodule via the following actions

$$(a \cdot f)(x) = f(x \cdot a), \quad (f \cdot a)(x) = f(a \cdot x) \quad (a \in A, x \in X, f \in X^*).$$

Throughout, the character space of A is denoted by $\Delta(A)$, that is, the set of all non-zero multiplicative linear functionals on A . Let $\phi \in \Delta(A)$. Then ϕ has a unique extension $\tilde{\phi} \in \Delta(A^{**})$ which is defined by $\tilde{\phi}(F) = F(\phi)$ for every $F \in A^{**}$.

Let $\{A_\alpha\}_{\alpha \in \Gamma}$ be a collection of Banach algebras. Then we define the ℓ^1 -direct sum of A_α by

$$\ell^1 - \bigoplus_{\alpha \in \Gamma} A_\alpha = \{(a_\alpha) \in \prod_{\alpha \in \Gamma} A_\alpha : \sum_{\alpha \in \Gamma} \|a_\alpha\| < \infty\}.$$

It is easy to verify that

$$\Delta(\ell^1 - \bigoplus_{\alpha \in \Gamma} A_\alpha) = \{\oplus \phi_\beta : \phi_\beta \in \Delta(A_\beta), \beta \in \Gamma\},$$

where $\oplus \phi_\beta((a_\alpha)_{\alpha \in \Gamma}) = \phi_\beta(a_\beta)$ for every $(a_\alpha)_{\alpha \in \Gamma} \in \ell^1 - \bigoplus_{\alpha \in \Gamma} A_\alpha$ and every $\beta \in \Gamma$.

Let A be a Banach algebra and let Λ be a non-empty set. The set of all $\Lambda \times \Lambda$ matrices $(a_{i,j})_{i,j}$ which entries come from A is denoted by $\mathbb{M}_\Lambda(A)$. With the matrix multiplication and the following norm

$$\|(a_{i,j})_{i,j}\| = \sum_{i,j} \|a_{i,j}\| < \infty,$$

$\mathbb{M}_\Lambda(A)$ is a Banach algebra. $\mathbb{M}_\Lambda(A)$ belongs to the class of ℓ^1 -Munn algebras. The map $\theta : \mathbb{M}_\Lambda(A) \rightarrow A \otimes_p \mathbb{M}_\Lambda(\mathbb{C})$ defined by $\theta((a_{i,j})) = \sum_{i,j} a_{i,j} \otimes E_{i,j}$ is an isometric algebra isomorphism, where $(E_{i,j})$ denotes the matrix unit of $\mathbb{M}_\Lambda(\mathbb{C})$. Also it is well-known that $\mathbb{M}_\Lambda(\mathbb{C})$ is a biflat Banach algebra [12, Proposition 2.7].

The main reference for the semigroup theory is [7]. We say that S is an inverse semigroup, if for each $s \in S$ there exists an element $s^* \in S$ with $ss^*s = s$ and $s^*ss^* = s$. An inverse semigroup S is called Clifford if for each $s \in S$, we have $ss^* = s^*s$. Let S be a semigroup and let $E(S)$ be the set of its idempotents. A partial order on $E(S)$ is defined by

$$s \leq t \iff s = st = ts \quad (s, t \in E(S)).$$

If S is an inverse semigroup, then there exists a partial order on S which coincides with the partial order on $E(S)$. Indeed

$$s \leq t \iff s = ss^*t \quad (s, t \in S).$$

For every $x \in S$, we denote $(x] = \{y \in S | y \leq x\}$. S is called locally finite (uniformly locally finite) if for each $x \in S$, $|(x]| < \infty$ ($\sup\{|(x)| : x \in S\} < \infty$), respectively. Suppose that S is an inverse semigroup. Then the maximal subgroup of S at $p \in E(S)$ is denoted by $G_p = \{s \in S | ss^* = s^*s = p\}$. For an inverse semigroup S , it is well-known that there exists an equivalence relation \mathfrak{D} such that $s \mathfrak{D} t$ if and only if there exists $x \in S$ such that

$ss^* = xx^*$ and $t^*t = x^*x$. We denote $\{\mathfrak{D}_\lambda : \lambda \in \Lambda\}$ for the collection of \mathfrak{D} -classes and $E(\mathfrak{D}_\lambda) = E(S) \cap \mathfrak{D}_\lambda$.

3. Approximate biflatness of second dual of Banach algebras

In this section we investigate approximate biflatness dual Banach algebras.

Proposition 3.1. *Let A be a Banach algebra. Then A is approximately biflat if and only if there exists a net (ρ_α) of bounded A -bimodule morphism from A into $(A \otimes_p A)^{**}$ such that $\pi_A^{**} \circ \rho_\alpha(a) \rightarrow a$ for every $a \in A$.*

Proof. Let A be approximately biflat. Then there exists a net $\xi_\alpha : (A \otimes_p A)^* \rightarrow A^*$ of bounded A -bimodule morphism such that $\xi_\alpha \circ \pi_A^*(f) - f \xrightarrow{w^*} 0$, for every $f \in A^*$. Set $\rho_\alpha = \xi_\alpha^*$, hence for each $a \in A$ and $f \in A^*$ with $\|f\| \leq 1$, we have

$$\begin{aligned} \|\pi_A^{**} \circ \rho_\alpha(a) - a\| &= \|\pi_A^{**} \circ \xi_\alpha^*(a) - a\| = \|(\xi_\alpha \circ \pi_A^*)(a) - a\| \\ &= \|(\xi_\alpha \circ \pi_A^*)(a)(f) - a(f)\| \\ &= \|a(\xi_\alpha \circ \pi_A^*(f)) - a(f)\| \\ &= \|a(\xi_\alpha \circ \pi_A^*(f) - f)\| \rightarrow 0. \end{aligned}$$

For the converse, suppose that there exists a net (ρ_α) of bounded A -bimodule morphism from A into $(A \otimes_p A)^{**}$ such that $\pi_A^{**} \circ \rho_\alpha(a) \rightarrow a$ for every $a \in A$. Set $\xi_\alpha = \rho_\alpha|_{(A \otimes_p A)^*}$.

$$\xi_\alpha \circ \pi_A^*(f)(a) - f(a) = f(\pi_A^{**} \circ \rho_\alpha(a) - a) \rightarrow 0,$$

where $f \in A^*$, $a \in A$. Then A is approximately biflat. \square

We recall that a Banach algebra A is called pseudo-amenable if there exists a (not necessarily bounded) net (m_α) in $A \otimes_p A$ such that

$$a \cdot m_\alpha - m_\alpha \cdot a \rightarrow 0, \quad \pi_A(m_\alpha)a \rightarrow a \quad (a \in A),$$

see [5] for further details.

Theorem 3.1. *Let A be a Banach algebra with an approximate identity. If A^{**} is approximately biflat, then A is pseudo-amenable.*

Proof. Suppose that A^{**} is approximately biflat. Then by Proposition 3.1 there exists a net $(\rho_\alpha)_{\alpha \in I}$ of A^{**} -bimodule morphism from A^{**} into $(A^{**} \otimes_p A^{**})^{**}$ such that $\pi_{A^{**}}^{**} \circ \rho_\alpha(a) \rightarrow a$ for each $a \in A^{**}$. It is easy to see that the net $(\rho_\alpha|_A)$ is also a net of A -bimodule morphism satisfies $\pi_{A^{**}}^{**} \circ \rho_\alpha|_A(a) \rightarrow a$ for each $a \in A$. We denote $(e_\lambda)_{\lambda \in J}$ for the approximate identity of A . Consider

$$\begin{aligned} \lim_\alpha \lim_\lambda a \cdot \rho_\alpha(e_\lambda) - \rho_\alpha(e_\lambda) \cdot a &= \lim_\alpha \lim_\lambda \rho_\alpha(ae_\lambda - e_\lambda a) \\ &= \lim_\alpha \rho_\alpha(0) = 0 \quad (a \in A). \end{aligned}$$

Also

$$\lim_\alpha \lim_\lambda \pi_{A^{**}}^{**} \circ \rho_\alpha(e_\lambda)a - a = \lim_\alpha \pi_{A^{**}}^{**} \circ \rho_\alpha(a) - a = 0, \quad (a \in A).$$

Let $E = I \times J^I$ be a directed set with product ordering, that is,

$$(\alpha, \beta) \leq_E (\alpha', \beta') \Leftrightarrow \alpha \leq_I \alpha', \beta \leq_{J^I} \beta' \quad (\alpha, \alpha' \in I, \quad \beta, \beta' \in J^I),$$

where J^I is the set of all functions from I into J and $\beta \leq_{J^I} \beta'$ means that $\beta(d) \leq_J \beta'(d)$ for each $d \in I$. Suppose that $\gamma = (\alpha, \beta_\alpha) \in E$ and $m_\gamma = \rho_\alpha(e_{\lambda_\alpha}) \in (A^{**} \otimes_p A^{**})^{**}$. Applying iterated limit theorem [9, page 69] and above calculations, we can easily see that

$$a \cdot m_\gamma - m_\gamma \cdot a \rightarrow 0, \quad \pi_{A^{**}}^{**}(m_\gamma)a \rightarrow a, \quad (a \in A).$$

There exists a bounded linear map $\psi : A^{**} \otimes_p A^{**} \rightarrow (A \otimes_p A)^{**}$ such that for $a, b \in A$ and $m \in A^{**} \otimes_p A^{**}$, the following holds;

- (i) $\psi(a \otimes b) = a \otimes b$,
- (ii) $\psi(m) \cdot a = \psi(m \cdot a)$, $a \cdot \psi(m) = \psi(a \cdot m)$,
- (iii) $\pi_A^{**}(\psi(m)) = \pi_{A^{**}}(m)$,

see [4, Lemma 1.7]. So $\psi^{**}(m_\gamma)$ is a net in $(A \otimes_p A)^{****}$ such that

$$a \cdot \psi^{**}(m_\gamma) - \psi^{**}(m_\gamma) \cdot a \rightarrow 0, \quad \pi_A^{****}(\psi^{**}(m_\gamma))a = \pi_{A^{**}}^{**}(m_\gamma)a \rightarrow a \quad (a \in A).$$

Put $n_\gamma = \psi^{**}(m_\gamma)$. Suppose that $\epsilon > 0$ and $F = \{a_1, \dots, a_r\} \subseteq A$. Set

$$\begin{aligned} V = & \{(a_1 \cdot n - n \cdot a_1, \dots, a_r \cdot n - n \cdot a_r, \pi_A^{**}(n)a_1 - a_1, \dots, \\ & \pi_A^{**}(n)a_r - a_r) \mid n \in (A \otimes_p A)^{**}\} \\ \subseteq & \left(\prod_{i=1}^r (A \otimes_p A)^{**} \right) \oplus_1 \left(\prod_{i=1}^r A^{**} \right). \end{aligned}$$

It is easy to see that $(0, 0, \dots, 0)$ is a w -limit point of V . Since V is convex set $\overline{V}^{||\cdot||} = \overline{V}^w$, then $(0, 0, \dots, 0)$ is a $||\cdot||$ -limit point of V . Hence there exists a net $(n_{(F, \epsilon)})$ in $(A \otimes_p A)^{**}$ such that

$$||a_i \cdot n_{(F, \epsilon)} - n_{(F, \epsilon)} \cdot a_i|| < \epsilon, \quad ||\pi_A^{**}(n_{(F, \epsilon)})a_i - a_i|| < \epsilon, \quad (i \in \{1, 2, \dots, r\}).$$

Observe that

$$\Delta = \{(F, \epsilon) : F \text{ is a finite subset of } A, \epsilon > 0\},$$

with the following order

$$(F, \epsilon) \leq (F', \epsilon') \implies F \subseteq F', \quad \epsilon \geq \epsilon'$$

is a directed set. It is easy to see that there exists a net $(n_{(F, \epsilon)})_{(F, \epsilon) \in \Delta}$ in $(A \otimes_p A)^{**}$ such that

$$a \cdot n_{(F, \epsilon)} - n_{(F, \epsilon)} \cdot a \rightarrow 0, \quad \pi_A^{**}(n_{(F, \epsilon)})a - a \rightarrow 0,$$

for every $a \in A$. Using the same method as above we can assume that $(n_{(F, \epsilon)})_{(F, \epsilon) \in \Delta}$ is a subset of $A \otimes_p A$. This means that A is pseudo-amenable. \square

Let A be a Banach algebra and $\phi \in \Delta(A)$. We say that A is approximately ϕ -inner amenable if there exists a net $(a_\alpha)_\alpha$ in A such that $aa_\alpha - a_\alpha a \rightarrow 0$ and $\phi(a_\alpha) \rightarrow 1$, for all $a \in A$. Also A is approximately left ϕ -amenable if there exists a net m_α in A such that $am_\alpha - \phi(a)m_\alpha \rightarrow 0$ and $\phi(m_\alpha) \rightarrow 1$, see [1].

The proof of following two results are similar to the proof of Theorem 3.1 which we omit them.

Theorem 3.2. *Suppose that A is an approximately ϕ -inner amenable Banach algebra. If A^{**} is approximately biflat, then A is approximately left ϕ -amenable.*

Corollary 3.1. *Suppose that A is an approximately ϕ -inner amenable Banach algebra. If A is approximately biflat, then A is approximately left ϕ -amenable.*

Theorem 3.3. *Let A be a Banach algebra with $\phi \in \Delta(A)$. Suppose that $\overline{A \ker \phi} = \ker \phi$. If A^{**} is approximately biflat, then A is left ϕ -amenable.*

Proof. Since A^{**} is approximately biflat, there exists a net (ρ_α) of A^{**} -bimodule morphism from A^{**} into $(A^{**} \otimes_p A^{**})^{**}$ such that $\pi_{A^{**}}^{**} \circ \rho_\alpha(a) \rightarrow a$ ($a \in A^{**}$). We denote $id : A \rightarrow A$ for the identity map and $q : A \rightarrow \frac{A}{\ker \phi}$ the quotient map. Also it is well-known that there exists a bounded linear map $\psi : A^{**} \otimes_p A^{**} \rightarrow (A \otimes_p A)^{**}$ such that for $a, b \in A$ and $m \in A^{**} \otimes_p A^{**}$, the following holds;

- (i) $\psi(a \otimes b) = a \otimes b$,
- (ii) $\psi(m \cdot a) = \psi(m \cdot a)$, $a \cdot \psi(m) = \psi(a \cdot m)$,
- (iii) $\pi_{A^{**}}^{**}(\psi(m)) = \pi_{A^{**}}(m)$,

see [4, Lemma 1.7]. Set $\eta_\alpha := (id \otimes q)^{****} \circ \psi^{**} \circ \rho_\alpha|_A : A \rightarrow (A \otimes_p \frac{A}{\ker \phi})^{****}$ for each α . We claim that $\eta_\alpha(l) = 0$ for each $l \in \ker \phi$. To see this let $l \in \ker \phi$ be an arbitrary element. Since $\overline{A \ker \phi} = \ker \phi$, there exist two nets (a_β) in A and (l_β) in $\ker \phi$ such that $l = \lim_\beta a_\beta l_\beta$. Consider

$$\begin{aligned} \eta_\alpha(l) &= (id \otimes q)^{****} \circ \psi^{**} \circ \rho_\alpha(l) = (id \otimes q)^{****} \circ \psi^{**} \circ \rho_\alpha(\lim_\beta a_\beta l_\beta) \\ &= \lim_\beta (id \otimes q)^{****} \circ \psi^{**} \circ \rho_\alpha(a_\beta l_\beta) \\ &= \lim_\beta (id \otimes q)^{****}(\psi^{**} \circ \rho_\alpha(a_\beta) \cdot l_\beta) = 0. \end{aligned} \quad (1)$$

Hence, for each α , η_α induces a map on $\frac{A}{\ker \phi}$ which we again denote it by η_α . We also denote $\overline{\phi}$ for a character which induced by ϕ on $\frac{A}{\ker \phi}$ given by

$$\overline{\phi}(a + \ker \phi) = \phi(a) \quad (a \in A).$$

Set

$$g_\alpha = (id \otimes \overline{\phi})^{****} \circ \eta_\alpha : \frac{A}{\ker \phi} \rightarrow A^{**}.$$

Pick an element $x_0 \in A$ such that $\phi(x_0) = 1$. Define $m_\alpha = g_\alpha(x_0 + \ker \phi)$. We know that (g_α) is a net of left A -module morphisms. Thus

$$\begin{aligned} am_\alpha &= a(id \otimes \overline{\phi})^{****} \circ \eta_\alpha(x_0 + \ker \phi) = (id \otimes \overline{\phi})^{****} \circ \eta_\alpha(ax_0 + \ker \phi) \\ &= \phi(a)(id \otimes \overline{\phi})^{****} \circ \eta_\alpha(x_0 + \ker \phi) \\ &= \phi(a)m_\alpha, \end{aligned} \quad (2)$$

the last equality holds because $ax_0 - \phi(a)x_0 \in \ker \phi$. Since

$$\tilde{\phi} \circ (id \otimes \overline{\phi})^{****} = (\phi \otimes \overline{\phi})^{****}, \quad (\phi \otimes \overline{\phi})^{****} \circ (id \otimes q)^{****} = \tilde{\phi} \circ \pi_A^{****},$$

we have

$$\begin{aligned} \tilde{\phi}(m_\alpha) &= \tilde{\phi} \circ (id \otimes \overline{\phi})^{****} \circ \eta_\alpha(x_0 + \ker \phi) \\ &= \tilde{\phi} \circ (id \otimes \overline{\phi})^{****} \circ \eta_\alpha(x_0) \\ &= \tilde{\phi} \circ (id \otimes \overline{\phi})^{****} \circ (id \otimes q)^{****} \circ \rho_\alpha(x_0) \\ &= \tilde{\phi} \circ \pi_A^{****} \circ \rho_\alpha(x_0) \rightarrow \phi(x_0) = 1. \end{aligned} \quad (3)$$

Replacing (m_α) with $(\frac{m_\alpha}{\phi(m_\alpha)})$ on can find an element $m \in A^{****}$ such that $am = \phi(a)m$ and $\tilde{\phi}(m) = 1$ for every $a \in A$. Let $F = \{a_1, a_2, \dots, a_r\}$ be an arbitrary finite subset of A and $\epsilon > 0$. Set

$$V = \{(a_1n - \phi(a_1)n, a_2n - \phi(a_2)n, \dots, a_rn - \phi(a_r)n, \tilde{\phi}(n) - 1) | n \in A^{**}, \|n\| \leq \|m\|\}.$$

It is easy to see that V is a convex subset of $\prod_{i=1}^r A^{**} \oplus_1 \mathbb{C}$. So $(0, 0, \dots, 0) \in \overline{V}^w = \overline{V}^{\|\cdot\|}$. Thus there exists a bounded net $(n_{(F,\epsilon)})_{(F,\epsilon)}$ in A^{**} such that

$$\|a_i n_{(F,\epsilon)} - \phi(a_i) n_{(F,\epsilon)}\| < \epsilon, \quad |\tilde{\phi}(n_{(F,\epsilon)}) - 1| < \epsilon, \quad a_i \in F.$$

One can show that

$$\Delta = \{(F, \epsilon) : F \text{ is a finite subset of } A, \epsilon > 0\},$$

with the following order

$$(F, \epsilon) \leq (F', \epsilon') \implies F \subseteq F', \quad \epsilon \geq \epsilon'$$

is a directed set. Therefore there exists a bounded net $(n_{(F,\epsilon)})_{(F,\epsilon) \in \Delta}$ in A^{**} such that

$$a n_{(F,\epsilon)} - \phi(a) n_{(F,\epsilon)} \rightarrow 0, \quad \tilde{\phi}(n_{(F,\epsilon)}) - 1 \rightarrow 0, \quad a \in A.$$

Since $(n_{(F,\epsilon)})_{(F,\epsilon)}$ is a bounded net in A^{**} , then $(n_{(F,\epsilon)})_{(F,\epsilon)}$ has a w^* -limit point in A^{**} , say N . It is easy to see that

$$aN = \phi(a)N, \quad \tilde{\phi}(N) = 1 \quad (a \in A).$$

It means that A is left ϕ -amenable. □

The map $\phi_1 : L^1(G) \rightarrow \mathbb{C}$ which is specified by

$$\phi_1(f) = \int_G f(x) dx$$

is called the augmentation character. We know that the augmentation character induces a character on $S(G)$ we denote by ϕ_1 again, see [2].

Let G be a locally compact group. A linear subspace $S(G)$ of $L^1(G)$ is said to be a Segal algebra on G if it satisfies the following conditions:

- (i) $S(G)$ is a dense in $L^1(G)$,
- (ii) $S(G)$ with a norm $\|\cdot\|_{S(G)}$ is a Banach space and $\|f\|_{L^1(G)} \leq \|f\|_{S(G)}$ for every $f \in S(G)$,
- (iii) for $f \in S(G)$ and $y \in G$, we have $L_y f \in S(G)$ and the map $y \mapsto L_y(f)$ from G into $S(G)$ is continuous, where $L_y(f)(x) = f(y^{-1}x)$,
- (iv) $\|L_y(f)\|_{S(G)} = \|f\|_{S(G)}$ for every $f \in S(G)$ and $y \in G$,

for more information see [13].

Corollary 3.2. *Let G be a locally compact group. If $S(G)^{**}$ is approximately biflat, then G is amenable.*

Proof. It is well-known that every Segal algebra has a left approximate identity. Suppose that $\phi \in \Delta(S(G))$. It is easy to see that $\overline{S(G) \ker \phi} = \ker \phi$. Using the Theorem 3.3, the approximate biflatness of $S(G)^{**}$ implies that $S(G)$ is left ϕ -amenable. Now by [2, Corollary 3.4] G is amenable. □

4. Approximate biflatness of certain semigroup algebras

In this section we study approximate biflatness of some semigroup algebras.

Before giving the following proposition we have to give some backgrounds. Suppose that A and B are Banach algebras and also suppose that E and F are Banach A -bimodule and Banach B -bimodule, respectively. Via the following module actions, one can see that $E \otimes_p F$ becomes a Banach $A \otimes_p B$ -bimodule:

$$(a \otimes b) \cdot (x \otimes y) = (a \cdot x) \otimes (b \cdot y), \quad (x \otimes y) \cdot (a \otimes b) = (x \cdot a) \otimes (y \cdot b),$$

for each $a \in A, x \in E, b \in B, y \in F$. One can see that $B(E, F)$ (the set of all bounded linear operator from E into F) is a Banach $A \otimes_p B$ -bimodule via the following actions:

$$((a \otimes b) * T)(x) = b \cdot T(x \cdot a), \quad (T * (a \otimes b))(x) = T(a \cdot x) \cdot b,$$

for each $T \in B(E, F), a \in A, b \in B, x \in E$. We denote this Banach $A \otimes_p B$ -bimodule by $\tilde{B}(E, F)$. Also we can see that $B(F, E)$ becomes a Banach $A \otimes_p B$ -bimodule via the following actions:

$$((a \otimes b) * T)(x) = a \cdot T(x \cdot b), \quad (T * (a \otimes b))(x) = T(b \cdot x) \cdot a,$$

for each $T \in B(E, F), a \in A, b \in B, x \in E$. We denote this Banach $A \otimes_p B$ -bimodule by $\widehat{B}(E, F)$. Note that for each $\lambda \in (E \otimes_p F)^*$ we can define $\tilde{T}_\lambda \in B(E, F^*)$ and $\widehat{T}_\lambda \in B(F, E^*)$ by

$$\langle y, \tilde{T}_\lambda(x) \rangle = \langle x \otimes y, \lambda \rangle, \quad \langle x, \widehat{T}_\lambda(y) \rangle = \langle x \otimes y, \lambda \rangle,$$

for each $x \in E, y \in F$. The map $\tilde{\xi} : (E \otimes_p F)^* \rightarrow \tilde{B}(E, F^*)$ given by $\tilde{\xi}(\lambda) = \tilde{T}_\lambda$ is an isometric $A \otimes_p B$ -bimodule isomorphism. Also the map $\widehat{\xi} : (E \otimes_p F)^* \rightarrow \widehat{B}(F, E^*)$ given by $\widehat{\xi}(\lambda) = \widehat{T}_\lambda$ is an isometric $A \otimes_p B$ -bimodule isomorphism. Then there exists a bounded isometric $A \otimes_p B$ -bimodule isomorphism from $\tilde{B}(E, F^*)$ into $\widehat{B}(F, E^*)$ which denoted by L . Also we remind that there exists an isometric $A \otimes_p B$ -bimodule isomorphism from $(A \otimes_p A) \otimes_p (B \otimes_p B)$ into $(A \otimes_p B) \otimes_p (A \otimes_p B)$ defined by

$$\theta(a \otimes a' \otimes b \otimes b') = a \otimes b \otimes a' \otimes b' \quad (a, a' \in A, b, b' \in B).$$

It is clear that θ is a bounded $A \otimes_p B$ -bimodule morphism.

Proposition 4.1. *Let A be a biflat Banach algebra and let B be approximate biflat Banach algebra. Then $A \otimes_p B$ is approximate biflat.*

Proof. Since A is approximate biflat, there exists a net $\rho_\alpha : (A \otimes_p A)^* \rightarrow A^*$ of bounded A -bimodule morphisms such that $\rho_\alpha \circ \pi_A^*(f) - f \xrightarrow{w^*} 0$, for every $f \in A^*$. Also since B is biflat, there exists a bounded B -bimodules from $(B \otimes_p B)^*$ into B , say ρ , such that $\rho \circ \pi_B^*(g) = g$ for each $g \in B^*$. Set

$$\begin{aligned} \bar{\rho}_\alpha : ((A \otimes_p B) \otimes_p (A \otimes_p B))^* &\xrightarrow{\theta^*} ((A \otimes_p A) \otimes_p (B \otimes_p B))^* \\ &\xrightarrow{\tilde{\xi}} \tilde{B}(A \otimes_p A, (B \otimes_p B)^*) \\ &\xrightarrow{T \mapsto \rho \circ T} \tilde{B}(A \otimes_p A, B^*) \\ &\xrightarrow{L} \widehat{B}(B, (A \otimes_p A)^*) \\ &\xrightarrow{T \mapsto \rho_\alpha \circ T} \widehat{B}(B, A^*) \\ &\xrightarrow{\widehat{\xi}^{-1}} (A \otimes_p B)^*. \end{aligned} \tag{4}$$

Since $\bar{\rho}_\alpha$ is a composition of some $(A \otimes_p B)$ -bimodule morphisms, then $\bar{\rho}_\alpha$ is a net of $(A \otimes_p B)$ -bimodule morphism. Take $\lambda \in (A \otimes_p B)^*$. Using the following facts

$$\rho \circ \pi_B^* \circ \tilde{T}_\lambda \circ \pi_A = \tilde{T}_\lambda \circ \pi_A$$

and

$$L \circ \tilde{T}_\lambda \circ \pi_A = \pi_A^* \circ \hat{T}_\lambda,$$

we have

$$\bar{\rho}_\alpha \circ \pi_{A \otimes_p B}^*(\lambda) - \lambda = \widehat{\xi^{-1}} \circ \rho_\alpha \circ \pi_A^* \circ \hat{T}_\lambda - \lambda \rightarrow \lambda - \lambda = 0.$$

This finishes the proof. \square

We show the partial converse of above Proposition in the following theorem.

Theorem 4.1. *Let A and B be Banach algebras. Suppose that A has an identity and B has a non-zero idempotent. If $A \otimes_p B$ is approximately biflat, then A is approximately biflat, so A is pseudo-amenable.*

Proof. Suppose that $A \otimes_p B$ is approximately biflat. Then by Proposition 3.1 there exists a net (ρ_α) of A -bimodule morphism from $A \otimes_p B$ into $((A \otimes_p B) \otimes_p (A \otimes_p B))^{**}$ such that $\pi_{A \otimes_p B}^{**} \circ \rho_\alpha(x) \rightarrow x$ for each $x \in A \otimes_p B$. Take $e \in A$ the identity and $b_0 \in B$ the non-zero idempotent. Note that $A \otimes_p B$ becomes a Banach A -bimodule via the following actions:

$$a_1 \cdot (a_2 \otimes b) = a_1 a_2 \otimes b, \quad (a_2 \otimes b) \cdot a_1 = a_2 a_1 \otimes b \quad (a_1, a_2 \in A, b \in B).$$

For each α , we have

$$\begin{aligned} \rho_\alpha(a_1 a_2 \otimes b_0) &= \rho_\alpha((a_1 \otimes b_0)(a_2 \otimes b_0)) \\ &= (a_1 \otimes b_0) \cdot \rho_\alpha(a_2 \otimes b_0) \\ &= (a_1 \cdot (e \otimes b_0)) \cdot \rho_\alpha(a_2 \otimes b_0) \\ &= a_1 \cdot \rho_\alpha(e a_2 \otimes b_0 b_0) \\ &= a_1 \cdot \rho_\alpha(a_2 \otimes b_0). \end{aligned} \tag{5}$$

For each α , we can also see that

$$\rho_\alpha((a_2 \otimes b_0) \cdot a_1) = \rho_\alpha(a_2 \otimes b_0) \cdot a_1.$$

For each α set $\bar{\rho}_\alpha(a) = \rho_\alpha(a \otimes b_0)$. It is easy to see that $(\bar{\rho}_\alpha)$ is a net of A -bimodule morphism. Since b_0 is a non-zero element in B , by Hahn-Banach theorem there exists a functional $f \in B^*$ such that $f(b_0) = 1$. Define $T : (A \otimes_p B) \otimes_p (A \otimes_p B) \rightarrow A \otimes_p A$ by

$$T(a \otimes b \otimes c \otimes d) = f(bd)a \otimes c$$

for each $a, c \in A$ and $b, d \in B$. Clearly T is a bounded linear map. One can see that $\pi_A^{**} \circ T^{**} = (id_A \otimes f)^{**} \circ \pi_{A \otimes_p B}^{**}$, where

$$id_A \otimes f(a \otimes b) = f(b)a \quad (a \in A, b \in B).$$

Set $\tilde{\rho}_\alpha = T^{**} \circ \bar{\rho}_\alpha$. One can see that $(\tilde{\rho}_\alpha)_\alpha$ is a net of bounded A -bimodule morphism. Since $f(b_0) = 1$, we have

$$\begin{aligned} \pi_A^{**} \circ \tilde{\rho}_\alpha(a) &= \pi_A^{**} \circ T^{**} \circ \bar{\rho}_\alpha(a) = (\pi_A \circ T)^{**} \circ \rho_\alpha(a \otimes b_0) \\ &= (id_A \otimes f)^{**} \circ \pi_{A \otimes_p B}^{**} \cdot \rho_\alpha(a \otimes b_0) \\ &\rightarrow (id_A \otimes f)^{**}(a \otimes b_0) = a, \end{aligned} \tag{6}$$

for each $a \in A$. Using Proposition 3.1 A is approximately biflat. Since A has an identity by [14, Theorem 2.4], A is pseudo-amenable. \square

Corollary 4.1. *Let A be a Banach algebra. If A is approximately biflat, then $\mathbb{M}_\Lambda(A)$ is approximately biflat. Converse is true, provided that A has a unit.*

Proof. Let A be approximately biflat. It is well-known that there exists an isometric isomorphism between $\mathbb{M}_\Lambda(A)$ and $A \otimes_p \mathbb{M}_\Lambda(\mathbb{C})$. Using the fact that $\mathbb{M}_\Lambda(\mathbb{C})$ is always biprojective [12, Proposition 2.7], then $\mathbb{M}_\Lambda(\mathbb{C})$ is biflat. Now by Proposition 4.1, $A \otimes_p \mathbb{M}_\Lambda(\mathbb{C})$ is approximately biflat.

For the converse, since A is unital and $\mathbb{M}_\Lambda(\mathbb{C})$ has a non-zero idempotent, by the previous Theorem, approximate biflatness of $\mathbb{M}_\Lambda(A) \cong A \otimes_p \mathbb{M}_\Lambda(\mathbb{C})$ implies that A is approximately biflat. \square

Theorem 4.2. *Let S be an inverse semigroup such that $E(S)$ is uniformly locally finite. Then $\ell^1(S)$ is approximately biflat if and only if $\ell^1(S)$ is biflat.*

Proof. Suppose that $\ell^1(S)$ is approximately biflat. Then by Proposition 3.1 there exists a net $(\rho_\alpha)_{\alpha \in I}$ of $\ell^1(S)$ -bimodule morphism from $\ell^1(S)$ into $(\ell^1(S) \otimes_p \ell^1(S))^{\ast\ast}$ such that $\pi_{\ell^1(S)}^{\ast\ast} \circ \rho_\alpha(a) - a \rightarrow 0$ for each $a \in \ell^1(S)$. Since S is uniformly locally finite, by [12, Theorem 2.18] we have

$$\ell^1(S) \cong \ell^1 - \bigoplus \{\mathbb{M}_{E(\mathfrak{D}_\lambda)}(\ell^1(G_{p_\lambda}))\},$$

where \mathfrak{D}_λ is a \mathfrak{D} -class and G_{p_λ} is a maximal subgroup at p_λ . Then the map $P_{p_\lambda} : \ell^1(S) \rightarrow \mathbb{M}_{E(\mathfrak{D}_\lambda)}(\ell^1(G_{p_\lambda}))$ is a continuous homomorphism with a dense range. Define

$$\eta_\alpha : \mathbb{M}_{E(\mathfrak{D}_\lambda)}(\ell^1(G_{p_\lambda})) \rightarrow (\mathbb{M}_{E(\mathfrak{D}_\lambda)}(\ell^1(G_{p_\lambda})) \otimes_p \mathbb{M}_{E(\mathfrak{D}_\lambda)}(\ell^1(G_{p_\lambda})))^{\ast\ast}$$

by $\eta_\alpha = (P \otimes P)^{\ast\ast} \circ \rho_\alpha|_{\mathbb{M}_{E(\mathfrak{D}_\lambda)}(\ell^1(G_{p_\lambda}))}$. It is easy to see that (η_α) is a net of $\mathbb{M}_{E(\mathfrak{D}_\lambda)}(\ell^1(G_{p_\lambda}))$ -bimodule morphism. For each $a \in \mathbb{M}_{E(\mathfrak{D}_\lambda)}(\ell^1(G_{p_\lambda}))$ we have

$$\begin{aligned} \pi_{\mathbb{M}_{E(\mathfrak{D}_\lambda)}(\ell^1(G_{p_\lambda}))}^{\ast\ast} \circ \eta_\alpha(a) &= \pi_{\mathbb{M}_{E(\mathfrak{D}_\lambda)}(\ell^1(G_{p_\lambda}))}^{\ast\ast} \circ (P_{p_\lambda} \otimes P_{p_\lambda})^{\ast\ast} \circ \rho_\alpha|_{\mathbb{M}_{E(\mathfrak{D}_\lambda)}(\ell^1(G_{p_\lambda}))}(a) \\ &= P_{p_\lambda}^{\ast\ast} \circ \pi_{\ell^1(S)}^{\ast\ast} \circ \rho_\alpha|_{\mathbb{M}_{E(\mathfrak{D}_\lambda)}(\ell^1(G_{p_\lambda}))}(a) \rightarrow a. \end{aligned} \quad (7)$$

Hence $\mathbb{M}_{E(\mathfrak{D}_\lambda)}(\ell^1(G_{p_\lambda}))$ is approximately biflat. By Theorem 4.1, $\ell^1(G_{p_\lambda})$ is approximately biflat. Since $\ell^1(G_{p_\lambda})$ is unital, by [14, Theorem 2.4] $\ell^1(G_{p_\lambda})$ is pseudo-amenable, hence by [5, Proposition 4.1] G_{p_λ} is amenable. Applying [3, Theorem 3.7] to finish the proof.

The converse is clear. \square

Corollary 4.2. *Let $S = \cup_{e \in E(S)} G_e$ be a Clifford semigroup such that $E(S)$ is uniformly locally finite. If $\ell^1(S)^{\ast\ast}$ is approximately biflat, then G_e is amenable for each $e \in E(S)$.*

Proof. Suppose that $\ell^1(S)^{\ast\ast}$ is approximately biflat. It is well-known that $\ell^1(S) \cong \ell^1 - \bigoplus_{e \in E(S)} \ell^1(G_e)$. Since $\ell^1(G_e)$ is unital, then $\ell^1(S)$ has an approximate identity. The previous Theorem, implies that $\ell^1(S)$ is pseudo-amenable. Then by [3, Theorem 3.7] G_e is amenable, for each $e \in E(S)$. \square

5. An application to Triangular Banach algebras

In this section we give some examples of matrix algebras which are never approximately biflat. Similar results for ϕ -biprojectivity of some Matrix algebras have been investigated in [11].

Let A be a Banach algebra and let X be a Banach A -bimodule. Suppose that $\phi \in \Delta(A)$. We say that X has a left ϕ -character if there exists a non-zero map $\psi \in X^*$ such that

$$\psi(a \cdot x) = \phi(a)\psi(x), \quad (a \in A, x \in X).$$

Similarly we can define right case and two sided case. It is easy to see that for $\phi \in \Delta(A)$, $\phi \otimes \phi$ on $A \otimes_p A$ is a left ϕ -character. Also if A has a closed ideal $I \subseteq \ker \phi$, then $\bar{\phi}$ on $\frac{A}{I}$ is a left ϕ -character, where $\bar{\phi} : \frac{A}{I} \rightarrow \mathbb{C}$ given by $\bar{\phi}(a + I) = \phi(a)$ for all $a \in A$.

Let A and B be Banach algebras and let X be a Banach (A, B) -module, that is, X is a Banach space, a left A -module and a right B -module with the compatible module action that satisfies $(a \cdot x) \cdot b = a \cdot (x \cdot b)$ and $\|a \cdot x \cdot b\| \leq \|a\| \|x\| \|b\|$ for every $a \in A, x \in X, b \in B$. With the usual matrix operation and $\left\| \begin{pmatrix} a & x \\ 0 & b \end{pmatrix} \right\| = \|a\| + \|x\| + \|b\|$, $T = \text{Tri}(A, X, B) = \left(\begin{array}{cc} A & X \\ 0 & B \end{array} \right)$ becomes a Banach algebra which is called Triangular Banach algebra. Let $\phi \in \Delta(B)$. We define a character $\psi_\phi \in \Delta(T)$ via $\psi_\phi \left(\begin{pmatrix} a & x \\ 0 & b \end{pmatrix} \right) = \phi(b)$ for every $a \in A, b \in B$ and $x \in X$.

Theorem 5.1. *Let A and B be Banach algebras and let X be a Banach (A, B) -module such that $\overline{A^2} = A$ and $\overline{A \cdot X} = X$. Suppose that $\phi \in \Delta(B)$ with $\overline{B \ker \phi} = \ker \phi$. If one of the followings hold*

- (i) B is not left ϕ -amenable;
- (ii) X has a right ϕ -character;

*then $T^{**} = \text{Tri}(A, X, B)^{**}$ is not approximately biflat.*

Proof. We go toward a contradiction and suppose that T^{**} is approximately biflat. Let ψ_ϕ be same as above. It is clear that $\ker \psi_\phi = \text{Tri}(A, X, \ker \phi)$. Since $\overline{A^2} = A$, $\overline{A \cdot X} = X$ and $\overline{B \ker \phi} = \ker \phi$, then $\overline{T \ker \psi_\phi} = \psi_\phi$. Then by Theorem 3.3, T is left ψ_ϕ -amenable. Set $I = \text{Tri}(0, X, B)$. It is clear that I is closed ideal and $\psi_\phi|_I \neq 0$. Using [8, Lemma 3.1], one can see that I is left ψ_ϕ -amenable. Thus by [8, Theorem 1.4], there exists a bounded net (i_α) in I such that

$$ii_\alpha - \psi_\phi(i)i_\alpha \rightarrow 0, \quad \psi_\phi(i_\alpha) = 1, \quad (i \in I).$$

Take (x_α) in X and (b_α) in B such that $i_\alpha = \begin{pmatrix} 0 & x_\alpha \\ 0 & b_\alpha \end{pmatrix}$. Hence we have

$$\begin{pmatrix} 0 & x \\ 0 & b \end{pmatrix} \begin{pmatrix} 0 & x_\alpha \\ 0 & b_\alpha \end{pmatrix} - \psi_\phi \left(\begin{pmatrix} 0 & x \\ 0 & b \end{pmatrix} \right) \begin{pmatrix} 0 & x_\alpha \\ 0 & b_\alpha \end{pmatrix} \rightarrow 0$$

and $\psi_\phi \left(\begin{pmatrix} 0 & x_\alpha \\ 0 & b_\alpha \end{pmatrix} \right) = \phi(b_\alpha) = 1$ for each $x \in X, b \in B$. Thus we have

$$xb_\alpha - \phi(b)x_\alpha \rightarrow 0, \quad bb_\alpha - \phi(b)b_\alpha \rightarrow 0, \quad \phi(b_\alpha) = 1, \quad (x \in X, b \in B).$$

If (i) holds the facts

$$bb_\alpha - \phi(b)b_\alpha \rightarrow 0, \quad \phi(b_\alpha) = 1, \quad (x \in X, b \in B)$$

give us a contradiction (left ϕ -amenability condition for B).

Suppose that (ii) happens. Take η as a right ϕ -character on X . Since $xb_\alpha - \phi(b)x_\alpha \rightarrow 0, \phi(b_\alpha) = 1$ for each $x \in X, b \in B$, then we have

$$\eta(xb_\alpha - \phi(b)x_\alpha) = \eta(xb_\alpha) - \phi(b)\eta(x_\alpha) = \phi(b_\alpha)\eta(x) - \phi(b)\eta(x_\alpha) \rightarrow 0$$

for each $x \in X, b \in B$. Thus we have $\lim \phi(b)\eta(x_\alpha) = \eta(x)$. Take $b \in \ker \phi$, then we have $\eta(x) = 0$ for each $x \in X$ which is a contradiction (η is a non-zero functional). \square

Corollary 5.1. *Let G be a locally compact group. Then $\text{Tri}(S(G), L^1(G), S(G))^{\ast\ast}$ is not approximately biflat.*

Proof. Suppose that $\phi \in \Delta(S(G))$. It is well-known that $S(G)$ has a left approximate identity and is a dense left ideal of $L^1(G)$ and also $L^1(G)$ has a bounded approximate identity. Then

$$\overline{S(G)^2} = S(G), \quad \overline{S(G)L^1(G)} = L^1(G), \quad \overline{S(G)\ker\phi} = \ker\phi.$$

Since $S(G)$ is a left ideal in $L^1(G)$, by [2, Lemma 2.2] ϕ can be extended to a character on $L^1(G)$, which is a right ϕ -character for $L^1(G)$. Now apply Theorem 5.1 to show that $\text{Tri}(S(G), L^1(G), S(G))^{\ast\ast}$ is not approximately biflat. \square

Corollary 5.2. *Let G be a locally compact group. Then $\text{Tri}(L^1(G), S(G) \otimes_p S(G), S(G))^{\ast\ast}$ is not approximately biflat.*

Proof. Since $L^1(G)$ has a bounded approximate identity, we have $\overline{L^1(G)^2} = L^1(G)$. Also using Cohn factorization theorem we have $\overline{L^1(G) \cdot (S(G) \otimes_p S(G))} = S(G) \otimes_p S(G)$. Since $S(G)$ has a left approximate identity, then $\overline{S(G)\ker\phi} = \ker\phi$ for each $\phi \in \Delta(S(G))$. Note that for each $\phi \in \Delta(S(G))$, $\phi \otimes \phi$ which is defined by

$$\phi \otimes \phi(a \otimes b) = \phi(a)\phi(b) \quad (a, b \in S(G))$$

is a right ϕ -character on $S(G) \otimes_p S(G)$. Then apply Theorem 5.1 to show that $\text{Tri}(L^1(G), S(G) \otimes_p S(G), S(G))^{\ast\ast}$ is not approximately biflat. \square

Similarly one can show the following result.

Corollary 5.3. *Let G be a locally compact group. Then $\text{Tri}(L^1(G), M(G), S(G))^{\ast\ast}$ is not approximately biflat.*

Acknowledgments. The authors would like to thank the anonymous reviewers for their valuable comments and suggestions.

REFERENCES

- [1] H. P. Aghababa, L. Y. Shi and Y. J. Wu, Generalized notions of character amenability, *Act. Math. Sin.*, **29** (2013) 1329-1350.
- [2] M. Alaghmandan, R. Nasr Isfahani and M. Nemat, Character amenability and contractibility of abstract Segal algebras, *Bull. Aust. Math. Soc.*, **82** (2010) 274-281.
- [3] M. Esmaili, M. Rostami and A. Pourabbas, Pseudo-amenability of certain semigroup algebras, *Semigroup Forum* (2011) 478-484.
- [4] F. Ghahramani, R. J. Loy and G. A. Willis, Amenability and weak amenability of second conjugate Banach algebras, *Proc. Amer. Math. Soc.* **124** (1996) 1489-1497.
- [5] F. Ghahramani and Y. Zhang, Pseudo-amenable and pseudo-contractible Banach algebras, *Math. Proc. Camb. Phil. Soc.* **142** (2007) 111-123.
- [6] A. Ya. Helemskii, The homology of Banach and topological algebras, Kluwer, Academic Press, Dordrecht, 1989.
- [7] J. Howie, Fundamental of Semigroup Theory, London Math. Soc Monographs, vol. **12**. Clarendon Press, Oxford (1995).
- [8] E. Kaniuth, A. T. Lau and J. Pym, On ϕ -amenability of Banach algebras, *Math. Proc. Cambridge Philos. Soc.* **144** (2008) 85-96.
- [9] J. L. Kelley, General topology, D. Van Nostrand Company, Inc., Toronto-New York- London, 1955.

- [10] *A. R. Medghalchi and M. H. Sattari*, Biflatness and biprojectivity of triangular Banach algebras. *Bull. Iran. Math. Soc.* **34**, 115-120 (2008).
- [11] *A. Pourabbas and A. Sahami*, On character biprojectivity of Banach algebras, *Politehn. Univ. Bucharest Sci. Bull. Ser. A Appl. Math. Phys.* **78** no. 4, (2016) 163-174.
- [12] *P. Ramsden* Biflatness of semigroup algebras, *Semigroup Forum* **79**, (2009) 515-530.
- [13] *H. Reiter*, *L^1 -algebras and Segal Algebras*, Lecture Notes in Mathematics **231** (Springer, 1971).
- [14] *E. Samei, N. Spronk and R. Stokke*, Biflatness and pseudo-amenability of Segal algebras, *Canad. J. Math.* **62** (2010) 845-869.