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n-ARY H,-MODULES WITH EXTERNAL n-ARY
P-HYPEROPERATION

B. Davvaz', T. Vougiouklis?

The class of (m,n)-ary Hy-modules is larger than the well known class
H,-modules. A wide subclass of (m,n)-ary H,-modules is n-ary P-H,-modules.
In this paper, we consider and study a module over a ring and we define three kinds
of external n-ary P-hyperoperations. By using external n-ary P-hyperoperations
and certain conditions, we construct several (m,n)-ary H,-modules.
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1. Introduction and basic definitions

Hyperstructure theory was born in 1934 when Marty [19] defined hypergroups
as a generalization of groups. Let H be a non-empty set and let p*(H) be the set of
all non-empty subsets of H. A hyperoperation on H is a map o: H x H — p*(H)
and the couple (H, o) is called a hypergroupoid. If A and B are non-empty subsets of
H, then we denote AoB = J,c 4 pep @0b, 70 A ={z}oAand Aox = Ao{z}. Under
certain conditions, we obtain the so-called semihypergroups and hypergroups . Basic
definitions and results about the hyperstructures are found in [2, 3]. Hyperrings are
essentially rings with approximately modified axioms. There are several kinds of
hyperrings that can be defined on a non-empty set . In 2007, Davvaz and Leoreanu-
Fotea [9] published a book titled Hyperring Theory and Applications. Sometimes,
external hyperoperation is considered. An example of a hyperstructure, endowed
both with an internal hyperoperation and an external hyperoperation is the so-called
hypermodule.

The theory of H,-structures has been introduced by Vougiouklis [25]. The
concept of H,-structures constitutes a generalization of the well-known algebraic
hyperstructures (hypergroups, hyperrings, hypermodules). Actually, some axioms
concerning the above hyperstructures are replaced by their corresponding weak ax-
ioms. Basic definitions and results about the H,-structures are found in [6, 24].
A hypergroupoid (H,o) is called an H,-semigroup if for all z,y,z of H we have
zo(yoz)N(zoy)oz # P, which means that |J,cpo,u 02 N Uyeyo, 7 0v # 0.
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We say that an H,-semigroup (H,o) is an H,-group [25] if for all z € H, we have
roH=Hozx=H.
A multivalued system (R, +,-) is an H,-ring [24] if

(1) (R,+) is an H,-group,

(2) (R,-) is an H,-semigroup,

(3) (+) is weak distributive with respect to (+), i.e., for all x,y,z in R we have
r-(y+z2)Ne-y+x-z#0and (z+y)- 2Nz -2+y-2#0.

An H,-ring may be commutative with respect either to (+) or (-). If H is commu-
tative with respect to both (4) and (-), then we call it a commutative H,-ring. If
there exists u € R such that - u = u-x = {z} for all z € R, then u is called the
scalar unit of R, which obviously is unique, and is denoted by 1.

A non-empty set M is an H,-module over an H,-ring R, if (M,+) is a (com-
mutative) H,-group and there exists a map - : R x M — p*(M), (r,x) — rx, such
that

(1) r@+y) N (re+ry) #0,
(2) (r+s)xN(rz+sz)#0
(3) (rs)xNr(sz) #10,
for all r;s € R and z,y € M.
The notion of P-hyperoperations introduced for hypergroups in [26] and gen-
eralized in [23], also see [27]. A wide class of H,-rings is the class of H,-rings with
P-hyperoperations [22]. A nice application of P-hyperstructures appeared in [10].
Let (M, +) be a module over the ring R. According to [28], three kinds of external
P-hyperoperations, for all (A\,v) € R x M, can be defined as follows:

(1) If P is a non-empty subset of R, then AP*v = (AP)uv.

(2) If P is a non-empty subset of M, then AP,v = A\(P + v).

(3) If P, is a non-empty subset of R and P, is a non-empty subset of M, then
)\PiQU = ()\Pl)(PQ + U).

Note that P* is a special case of Py, because it is obtained by setting P> = {0} and
P =P.
Our aim in this paper is to give generalizations of following theorems:

9

Theorem 1.1. [28] Let M be a module over the ring R. Let P be a non-empty
subset of R and a € PN Z(R) such that a> € P. Then, (M, +, P*) is an H,-module
over R.

Theorem 1.2. [28] Let M be a module over the ring R. Let P be a non-empty
subset of M such that 0 € P. Then, (M,+, P,) is an H,-module over R.

Theorem 1.3. [28] Let M be a module over the ring R, Py be a non-empty subset
of R and P, be a non-empty subset of M. If there exists a € P1 N Z(R) such that
a? = a and there exists b € Py such that a-b =0, then (M, +, P,) is an H,-module
over R.
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2. n-ary H,-modules

The notion of an n-ary group was introduced by Dérnte [12], which is a natural
generalization of group. One can find the basic results on n-ary groups in Post [21].
The notion of n-ary hypergroup was first introduced by Davvaz and Vougiouklis as
a generalization of n-ary group [7], and studied mainly in [8, 13, 14, 16, 17, 18].

In general, a mapping f : H" — p*(H) is called an n-ary hyperopera-
tion [7]. Let f be an n-ary hyperoperation on H and Aj,---, A, be non-empty
subsets of H. We define f(Ay, -, An) = Ugea, f(#1, -+, 7). The sequence

Ti, Tiy1,- -+ ,2; is denoted by J;f For j < i, :EZ is the empty set. In this con-
vention f(x1, -, Ti, Yit1, * , Yj, Zjt1, "+ »2n) IS written as f(a:zi,ny, ;‘_H) Also,
for y € H and 1 < i < n we denote the f(z%,y, -+ ,y) by f(z},y.). A non-empty set
n—i
H with an n-ary hyperoperation f : H" — ©*(H) is called an n-ary H,-semigroup
[13] if the weak associativity is valid, i.e., for every xy,--- ,zo,_1 € H,
1y .2n—1
N ST I £
1<i<n
If for every x1,--- ,x9,—1 € H and 4,5 € {1,--- ,n}
1 i—1y . 2n+i—1 1 +j—1y _2n—1
f(le ) (:Uni—H ),$ er_ll ) = f( ]1 ) (:Unj ! )7anJLrj )7

then (H, f) is called an n-ary semihypergroup [7]. An n-ary H,-semigroup (H, f) in
which, for every ay,--- ,a;—1,ai4+1, - ,a,,b € H and 1 < i < n, there exists x; € H
such that b € f(ail_l,xi, aiy 1) is called an n-ary H,-group. This condition can be
formulated by f(a’™!, H, aj'.) = H. Moreover, if for all (z1,---,2,) € H", the set
f(z) is singleton, then f is an n-ary operation and (H, f) is an n-ary semigroup or
n-ary group.

The notion of (m,n)-rings introduced by Crombez [4], Crombez and Timm [5],
and Dudeck [11]. Recently, the notation of (m,n)-hyperrings studied by Mirvakili
and Davvaz [20] and obtained (m,n)-rings from (m,n)-hyperrings by fundamental
relations. The following definition is a general form of the concept that investigated
n [15].

Definition 2.1. An (m,n)-ary H,-ring is an algebraic structure (R, f,g) which
satisfies the following axioms:

(1) (R, f) is an m-ary H,-group,

(2) (R,g) is an n-ary H,-semigroup,

(3) the n-ary hyperoperation g is weak distributive with respect to the hyperopera-

tion f, i.e.,

g(a1117 f<$71n>7 aiil) N f(g(aiIl, Iy, ai—?—l)7 U 7g<ai117 Tm, a?—&-l)) 7é ¢7
for every sequence a’:l, a;Yy, of" i R and 1 <i<mn.

When (R, f) is an m-ary hypergroup, (R, g) is an n-ary semihypergroup and
g is distributive with respect to f, then (R, f,g) is called an (m,n)-ary hyperring.
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Also, if f and g are m-ary and n-ary operations, respectively, then (R, f) is an n-
ary group, (R, g) is an n-ary semigroup, the n-ary operation ¢ is distributive with
respect to the m-ary operation f and in this case (R, f,g) is an (m,n)-ary ring.

n [1], Anvariyeh et al. studied the class of (m,n)-ary hypermodules and they
gave several properties and examples of them. Now, we introduce the concept of
(m,n)-ary H,-module over an (m,n)-ary H,-ring R as follows:

Definition 2.2. Let M be a non-empty set. Then, M = (M, h,k) is an (m,n)-
ary H,-module over an (m,n)-ary Hy-ring R, if (M,h) is a (commutative) m-ary
H,-group and the map

E:Rx...x RxM — o"(M)
n—1
satisfies in the following conditions:
(1) k(ry™ L h(at ))ﬂh(k( Pl ), k(ﬂ‘ 1,ﬂcm)) #0,
( ) ( af(sl )) ’H—l 9 )mh(k( 1 515 14,_1 ) ))' "7k(riilasma’r?_;117x)) 7é 0}
(3) k(ri ™t g(ry ™), 2 2 ) O k(T k(a2 ) # 0.

If k is a scalar n-ary hyperoperation, S1,...,S,—1 are non-empty subsets of R
and M7 C M, we set

k(Sl,...,Sn_l,Ml) :U{k(rl,...,rn_l,x)\ rm€e€S,i=1,...,n—1,x € Ml}.

An (m,n)-ary Hy-module M is an H,-module, if n = 2.

3. n-ary P-hyperoperations

Definition 3.1. Let (M,+) be a module over the ring R. Then, three kinds of
external n-ary P-hyperoperations can be defined as follows:

(1) If P is a non-empty subset of R, then
Pr:RXx...Xx RxM — (M
i BX . X B XM — g (M)

n—1
(T?_17$) = (ry...rpo1 P)x.

(2) If P is a non-empty subset of M, then

MR X ... X RXM — o*(M)
n—1
(r L a) o (P4 2).

(3) If Py is a non-empty subset of R and Py is a non-empty subset of M, then

P TRX...XRxM — o*(M
RM X Xy X p* (M)
n—1

(7"711_1, 1’) — (7’1 . Tn_lpl)(PQ + {E)
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Remark 3.1. Let M be a module over the ring R. We define

f:Rx...xR— R, f7")=r1+...+7m,
g:Rx...xR— R, g(r}") =71...7p,
h:Mx...x M — M, h(z{") =z1 4+ ...+ =,
k:RX...xRx M — M, k(r7™'z) = (r...1rn_1)x.

Then, (M, h, k) is an (m,n)-ary module over the (m,n)-ary ring (R, f,g).

Note that every (m,n)-ary module can consider as an (m,n)-ary H,-module.
By consideration the above remark, we have the following results:

Theorem 3.1. Let M be a module over the ring R. Let P be a non-empty subset of
R and a € PNZ(R) such that a®> € P. Then, (M, h, Pr) is an (m,n)-ary H,-module
over (R, f,g).

Proof. Indeed, we have

Pg (r} (2 ) =(r1...rp 1 P)(z1+ ... + zm)
(ri...rp—1p)(x1+...+2m) | p € P}

(r1 .rn_lp):cl +...4+(r1... D)y | p € P}

( - Tn— 1p1)$1+ JF(7"1---7“11712977"0)1‘771 ’p17~--,Pm€P}
.. o1 P)er+ .o+ (r1. o1 Py,

(( Tn 1P)3}1,...,(T1...Tn_lp)l’m)

(Pr x1), ...,PR(T?fl,xm)) ;

Ihin

{
{
{
(r
h
h (P

Pg (ri_l, f(s), T;:__ll, z) = (r1...ri f(s7)rig1 ...t Pz
= (T1 ce ri,l(sl + ...+ Sm)T‘i+1 .. .Tn,1P)1E
= (7’1 ce 71817 - rn_lP)x + ...+ (7’1 e Ti—1SmT il - - Tn_lp)m
=h(ri...ric1817i41 - T Pz, oo i 1SmTig1 - - T 1 P)T)
=h (PR(rifl, s1, r;:fll, x), ..., PR(rlfl, Sm, r?_;ll, iL‘)) ;

also, we have

T2n ZP)J:—PR( il (Tz- - Titn— 1)7 7,2_?7127*7:)

(7‘1 .. .rgn_2a2)x S (
:P( ’g(z+n1)r2n2$)
(r1

+n
. .rgn_gPP)a: =(ri...rp—1rn...T2n_oPP)x
(ri...rp—1Pry...1o9n_oP)x
= Pr(r{™", Pr(r2"=2,z)).

(r1...79n_2a%)x €

Therefore,

PR(r’fl, g(r“”*l), T?ﬂ;z, x) N PR(T?A, PR(T‘?L”_2, x)) # 0.

1

0

Theorem 3.2. Let M be a module over the ring R. Let P be a non-empty subset
of M such that 0 € P. Then, (M, h, Pr) is an (m,n)-ary H,-module over (R, f,g).
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Proof. Indeed, we have

P (r} 1h(xl)):(rl...rn_l)(P—i—xl—i—...—i—a;m)
={(r1...rn—1)(p+x1+...+2p) | p € P}
:{(Tl...Tnfl)(p—l—xl)+(T1...Tn,1)(0+x2)—|-...
+(7’1...7"n_1)(0+1’m) |p € P}
C{(ri...rp—1)p1+z1)+ ...+ (r1...rn—1)(Pm +Tm) | P1,---,Pm € P}
=(r1...rp1)(PH+z)+ ...+ (r1...mnm1) (P + )
=h((r.. rn DP+z1),...,(r1...r—1)(P+ xm))
h(PM( xl) ,PM(T? l,ajm));

Py ( LF(sT), e Z+1 ) (ri.c.rici f(sT)rig1 . orp—1) (P + )
=(ri...ri—1(s1+ ...+ Sm)Tit1 .. Tn—1)(P + )
= (ry...7—181Ti+1 - - .rn_l)(P +x)+ ...+ (. ric1Smrigl - T—1) (P + 2)

=h ((7“1 .. ."r'i,181’l°i+1 C. Tnfl)(P + :L‘) (7‘1 CTi—1SmTid1 - - - ’I“nfl)(P + l‘))
=h (PM(rll_l,sl,rZr_ll,x), ooy Py (ryT Losm,r fﬂl,m)) :
and finally
PM( 79( Z+n 1),7’%:;2,.%) = PM(Ti_ly (T - Titn— 1)7 12$n2,1')

( .Ton— 2)(P + .73) = (Tl . .Tn_l)(rn
(r1...mp—1)(0+ 7y ... 72—2(P + x))
(r1 rn (P +ry...r9n—2(P+x))

Py ( , n...TQn_Q(P-i-.T)) PM( -1 PM( _2,x)) .

Tzn_Q)(P + )

1N

O

Theorem 3.3. Let M be a module over the commutative Boolean ring R, P be
a non-empty subset of R and P» be a non-empty subset of M such that there exist
a € R and b € M such that ab= 0. Then, (M, h, Prar) is an (m,n)-ary Hy,-module
over (R, f,g).

Proof. Indeed, we have

(ri...rp_1@)x1+ .o+ (r1. . rp—1a) Ty,

=(ri...rp—10)b+ (r1...rp_1a)x1 + ...+ (1. Tp_10) T,
e{(ri...rpo1s)u+ (r1...mp—18)x1+ ...+ (1. . Tp—18) T | S € Pryu € P}
{(ri...tp218)(u+ 21+ ...+ 2m) | s € Pr,uc P}

= (7"1 .. Tnflpl)(Pg +z1+...+ .’Em)

= Pru(ri ™ h(aT"),

(ri...rp1a)x1 4+ ...+ (r1 ... rp_1a) T,

1...tp—1a)(b+z1) + ...+ (r1...rp—10) (b + x4)

€ {(7“1 coetpe181) (U Fx1) + oo+ (11 Te1Sm) (U + X)) | 8 € Pryug € Po}

1... Tn_lpl)(Pg + x1> + ...+ (7‘1 .. .’I"n_lpl)(PQ + $m)
h((ri...rn_1P)(Pa+x1),...,(r1...1—1P1) (P + )

= h(Prar(r? Y 21), oo, PRas (P ).
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Therefore,
PRM<T?_1, h(xT)) N h(PRM('f‘?_l, 1‘1), RN PRM(T?_l, xm)) % 0.

Pruys (ri_l, f(s), rﬁ_ll, w) =(ri...ric1 f(sT)riz1...rn1P1) (P2 + )
= (7"1 .. -Tz‘—l(sl + ...+ 3m>7"i+1 ce Tn_lpl)(PQ + .%')
= (T‘l o Ti—181T41 - - - Tnflpl)(PQ + .T) + ...
—|—(7”1 e Ti—18mT i1 - - .’I”n_lpl)(PQ + $)
= h(?"l e Ti—181T 41 - - - T’n_lpl)(PQ + IL’), ey
T1...Ti—1SmTi+1 - - .’I“nflpl)(PQ + l’))
=h (PRM(Ti_l, sl,r;:f,x), A PRM(Ti_l, Sm, r?ﬁl,x)) :

(r1...79n—2a)(b+ )

S (Tl . Tgn_gpl)(PQ + .CC)

= PRM(rifl, (i« Titn—-1), r?ﬁ;% x)

- PRM(Ti_la g(rz’—&-n—l)’ 741,'247:7:27 )
(r1...79n2a)(b+2x) = (r1...7n_10)b+ (11 ... 790 _20°) (b + )
€ (Tl .. .’I“n_lpl)PQ + (7’1 e TQn_2P1P1)(P2 + l‘)
= (7“1 c.. ’I"nflpl)(PQ + (Tn .. .’I“Qn,QPl)(PQ + .%'))

M (T?_l, (Tn e Tgn_gpl)(PQ + x))
= Prym (’I“?il,PRM(T%n_Q,fL‘)) .
Therefore,

Pra(rih g(rit ), r20 2, 1) 0 Prag(rY ™, Prar(re 2, 2)) # 0.

Corollary 3.1. Let N be an H,-submodule of the (m,n)-ary Pr-H,-module (M, h, PR).
We define
h*: M/N x ...x M/N —s M/N

m
(x1+N,...,2;u+ N)—» 21+ ...+ 2 + N,
Py:Rx..x RxM/N — o*(M/N
RiBRX .. X BXM/ p*(M/N)

n—1
(7”?_1,354-]\7) —{y+ N |ye(ri...r_1P)x}.
Then, (M/N, h*, Py) is an (m,n)-ary H,-module over (R, f,g).
Corollary 3.2. Let N be an H,-submodule of the (m,n)-ary Pyr-Hy,-module (M, h, Pyy).

We define
h* : M/N x...x M/N — M/N

m
(x1+N,....,2;m+ N)—»z1+ ...+ 2 + N,
Py Rx.. xRxM/N — @*(M/N
v B X X BX M) p*(M/N)

n—1
e+ Ny {y+N|yer...rma(P+x)}
Then, (M/N,h*, Py;) is an (m,n)-ary H,-module over (R, f,g).
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Corollary 3.3. Let N be an H,-submodule of the (m,n)-ary Pryr-Hy-module (M, h, Prar).
We define

h*: M/N x ... x M/N — M/N

(t1+N,...,2m+N)—z1+ ... +2m + N,
Ph M/N *(M/N
v P B X X RXM/N — " (M/N)

n—1

(P e+ N) = {y+ N |ye€(ri...ra1P) (P +2)}.
Then, (M/N,h*, Pg,,) is an (m,n)-ary H,-module over (R, f,g).
Remark 3.2. Let (M1, h1,k) and (Ma, ha, k) be two (m,n)-ary H,-modules over
an (m,n)-ary Hy,-ring R. A strong homomorphism from M; to My is a mapping
w: My — M>s such that
(1) @(hl(ala e 7am)) = hQ(@(al)v ) ¢(am))7
(2) o(k(r1,...,rn—1,0)) = k(r1,...,mn—1,p(a)),
forall ay,...,am,a € M andry,...,m7h_1 € R.
@ is called a weak homomorphism if in (1) and (2) we have empty intersection
instead of equality.
Theorem 3.4. Let (M, h, Py) and (M, b/, Py,,) be two (m,n)-ary H,-modules over
(R,f,g) and 1 € R. Let ¢ : M — M’ be an ordinary homomorphism of modules.
Then, ¢ : (M,h,Py) — (M}, P},) is a weak homomorphism if and only if
e(P)N P #0, and it is strong homomorphism if and only if o(P) = P’.
Proof. Assume that  is a weak homomorphism. Then, @(Py(r?~ 1, 2))N Py, (r? ™t o(2)) #
0, for all r1,...7p—1 € Rand & € M. So, o(Py;(1,...,1,0)) NPy, (1,...1,0(0)) #0
which implies that p((1...1)(P+0)) N (1...1)(P"+0) # (0. Thus, p(P) NP # 0.
Conversely, suppose that y € ¢(P) N P’. Then,

(1o Tue ) (@) +9) € (11 ) (@) + 9(P)) O (11 11) (@) + P,
for all r1,...,7,_1 € R and z € M. Hence,

o((r1...rn_)(@+P)N(r1...rn_1)((x) + P') # 0.
Therefore,
p(Par(ry ™t @) N Py (r7 1 () # 0.
Now, suppose that ¢ is a strong homomorphism. Then, cp(PM(r?_l,x)) =
P, (ri 1t p(x)), for all r1,...,7,—1 € R and @ € M. So, p(Py(1,...,1,0)) =
P (1,...,1,¢(0)) which implies that ¢((1...1)(P +0)) = (1...1)(P"+0). Thus,
o(P) =P
Conversely, suppose that ¢(P) = P’. Then,
(1. mn-1)(p(@) + 0(P)) = (r1...Tn-1)((z) + P'),

for all 1,...,7,_1 € R and z € M. Hence,
o((r1...rn—1)(x+ P)) = (r1...m—1)((z) + P').
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Therefore, cp(PM(r’f*l,:lr)) = ]/\4/ (T?fla o(z)). O
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