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REINFORCEMENT LEARNING FOR THE CONTROL 
OF BLOOD PRESSURE IN POST CARDIAC SURGERY 

PATIENTS 

Ciprian SANDU1, Dumitru POPESCU2 

This paper addresses the problem of automatic control of the blood pressure 
in post cardiac surgery patients. The focus of this study is on showing that 
reinforcement learning may be suitable for the blood pressure regulation in post 
cardiac surgery patients, using directly the clinical data, without the need of an 
accurate patient model. A detailed and realistic model of a hypertensive patient is 
successfully developed and implemented. Firstly, we use this model in order to 
create closed loop control with a classical PID controller. Secondly, we use the 
model only as a source of pseudo-clinical data with reinforcement learning. 
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1. Introduction 

Since some of the natural control systems of the body are disrupted during 
a cardiac surgical intervention, the patients need drug administration in order to 
keep their mean arterial pressure within safe limits. There are many benefits to 
including automatic control in the regulation of mean arterial pressure (MAP) in 
post cardiac surgery patients. In such patients, we have the blood pressure 
measured and the infusion of the fast-acting vasodilator - sodium nitroprusside 
(SNP) is adjusted as necessary.  

One of the benefits is that the precision of the amount and of the rate of 
the administrated vasodilator is significantly increased. 

As a result, the goals of safety, reducing costs and human effort are met 
more rapidly and naturally. 

The human body involves many complex feedback control systems that 
are collectively called as homeostasis, some of which may be disrupted during 
surgery (the term homeostasis is used by physiologists to mean maintenance of 
nearly constant conditions in the internal environment. 
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Essentially all organs and tissues of the body perform functions that help 
maintain these constant conditions. For instance, the lungs provide oxygen to the 
extracellular fluid to replenish the oxygen used by the cells, the kidneys maintain 
constant ion concentrations, and the gastrointestinal system provides nutrients).  

Hence, postsurgery patients require intravenous administration of suitable 
drugs to maintain key physiological variables such as blood pressure within 
desired limits. These allowable limits are rather narrow and small excursions 
beyond them may lead to undesirable outcomes. Hence, introducing automatic 
control of key physiological variables is beneficial for better patient care and 
reducing workload of healthcare staff. The simplest and potent type of automatic 
controllers is based on the feedback concept. Automatic feedback control systems 
are designed to control crucial variables by adjusting manipulated variables such 
as drug infusion rate based on the measured feedback signal. 

The standard approach in such a control problem is the use of classical 
PID control. The main disadvantage is that it requires a mathematical model. The 
system identification for accurately modeling human functions is far from easy. 
This paper focuses on presenting an alternative to the classical PID control, 
namely reinforcement learning. The main advantage is that a mathematical model 
of the involved human functions is not required. We verify that the important 
parameters or performances of the system are within satisfying ranges - when 
reinforcement learning is used in a closed loop (feedback based control). The 
regulation of mean arterial pressure (MAP) in post cardiac surgery patients is an 
example where automation is particularly attractive. In such patients, patient's 
blood pressure is measured and the infusion of the fast-acting vasodilator - 
sodium nitroprusside (SNP) is adjusted as necessary.  

The paper is structured as follows: Section 2 presents the motivation of 
using automatic control for blood pressure regulation and reinforcement learning, 
the problem formulation, as well as the algorithm chosen.  

Section 3 presents: how the clinical data is generated (instead of actual 
clinical data we have used synthetic data obtained with a simulated model of the 
patient), without the need of an accurate patient model for the regulation itself and 
the simulation results obtained by using the reinforcement learning algorithm for 
the control of the blood pressure, based on the clinical data. The model as a 
source of artificial data (that we use here) is not the same thing with the model as 
a part of the control strategy (which reinforcement learning makes unnecessary – 
in this context). Section 4 presents the conclusions. 

2. Problem formulation 

In this section we first show the motivation for using automatic control for 
blood pressure regulation.  
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Then we present the problem formulation and the way to overcome the 
inherent difficulties of the classical approach. Finally, we detail the solution in 
terms of the algorithms we used. 

2.1. Motivation 

The reasons for using automatic control of blood pressure in post cardiac 
surgery patients are obvious and range from reducing costs and work effort to 
enhancing the safety level for the patients: an automatic controller keeps the 
arterial pressure between desired limits much longer even than an experienced 
clinician. Our final goal is to control the arterial pressure of a patient who suffered 
cardiac surgery. For reaching this goal we use a regular feedback loop control. 
The standard approach in such a control problem is the use of classical PID 
control. The main disadvantage is that it requires a mathematical model. The 
system identification for accurately modeling human functions is far from easy. 

We will present an example of such mathematical model. We will propose 
an improvement to it, we will use it in a closed feedback loop with a PID 
controller. Then we will formulate the problem in such way that will allow the use 
of reinforcement learning; the mathematical model will serve only as a source of 
artificial clinical data. 

2.2. PID Control 
 
A realistic model of patient in the context of blood pressure regulation has 

the following components: a drug response model, models for internal reflexes, 
measurement dynamics, random noise due to respiration, patient movements etc. 

 
2.2.1. Drug response model 
 
In this study the drug response model of Slate et al. (1980) is used: 
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where:  ΔPd(s) is the change in MAP (mmHg)  
I(s) is the infusion rate of SNP (ml h-1),  
K gives the patient’s sensitivity (a high value of K->sensitive patient),  
α is a recirculation index,  
τ is a time constant,  
Ti is the initial transport delay and  
Tc is the recirculation time.  
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2.2.2. Models for internal reflexes 
 
There are internal reflexes in the human body to regulate blood pressure. 

Lee et al. (2005) identified that RAS (renin-angiotensin system) and BRS 
(baroreceptor reflex system) are necessary for a complete model of a patient for 
good blood pressure control. The former, as shown by Lee et al. (2005), “is an 
internal blood pressure buffering system that is activated when MAP drops below 
a threshold value. Through a series of chemical reactions from renin to 
angiotensin II, RAS can alter the total peripheral resistance of arterioles and hence 
increase blood pressure”. 

The typical range of threshold for activation of RAS is between 70 to 75 
mmHg for the general population. Hahn et al. (2002) noted the existence of the 
threshold and range for RAS, but he did not use them. Lee’s model used the 
threshold value 72 mmHg and the range of 50-110: the “switch” simulates the 
RAS threshold of 72 mmHg whereas the saturation block represents the range of 
MAP (50 - 110 mmHg) where RAS remains effective.  

The model for RAS proposed by Lee is shown in Fig. 1: 
 

 
 

Fig. 1. Lee’s model for RAS 
 
The model for RAS proposed in a previous paper that will be used here in 

the feedback control loop for blood pressure regulation is shown in Fig. 2. 

 
Fig. 2: The improved model for RAS 

 
 

The closed loop used for this study is shown in Fig. 3: 
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Fig. 3: The feedback control loop including the improved RAS model 

 
The classical PID controller is shown in Fig. 4: 

 
 

Fig. 4: The PI(D) controller used in the feedback control loop 
 

In this example we will use a simpler PI controller, so the derivative part 
of the controller will be 0. This simplification does not affect in any way the 
relevance of our point. For the proportional part of the controller we will use the 
value 1 and for the integrator, 0.01.  

When we plot the structure shown in Fig. 3, with the RAS block 
disconnected from the system, we obtain the result a detail of which is shown in 
Fig. 5 – we focused on the relevant part, the transition of the MAP (Mean Arterial  
Pressure) when the setpoint P_ref changes from 130 to 60 mmHg.  

When we plot the structure shown in Fig. 3, since the 72 mmHg threshold 
is reached, the RAS system will become active – the new behavior is shown in 
Fig. 6. 

 
In both responses one can notice that the stability of the system is not 

affected. 
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Fig. 5: The response of the system when the RAS block is disconnected 

 
When the RAS block is connected, one can notice a slight negative 

overshoot of about 5 mmHg (is acceptable from a medical point of view: Lee 
argued that even a variation of 10 mmHg is acceptable from a medical point of 
view). 

The settling time is about the same in both cases, therefore the presence of 
the RAS block does not affect this particular parameter. 

 

 
Fig. 6: The response of the system when the RAS block is connected (just as shown in Fig. 3) 

 

2.3. Problem formulation 
 
The control problem is easy to formulate as being defined by a set of states 

in which the environment (in this case the patient) may be observed, a set of 
actions that can be taken in order to influence the environment (the patient), a 
transition function linking actions to changes in state and a reward function 
(which evaluates the immediate control performance). The purpose is to make 
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sure the system reaches certain optimum states – with an acceptable error and 
overshoot. 

So we have all the ingredients for formulating our problem as an optimal 
control problem, specifically a Markov Decision Process (a mathematic 
framework for optimal decision making in systems with uncertainty): a set of 
states of the environment, a set of actions to influence it, the transition function 
for linking the two and the reward function. 

We have formulated the problem as a Markov Decision Process. We 
propose an alternative to the classical PID control, namely Reinforcement 
Learning (RL). The Markov property is essential in providing theoretical 
guarantees about RL algorithms.  

Reinforcement Learning is an intelligent systems technique. It represents a 
mathematically robust method of achieving optimal control in systems challenged 
with noise, nonlinearity, time delay, and uncertainty. The main advantage is that a 
mathematical model of the involved human functions is not required. 

The controller will be represented by a Reinforcement Learning agent. 
The Reinforcement Learning controller applies its commands (actions) on 

a (simulated) patient. The policy within the agent receives 1 input: the control 
error, which is the difference between the measured arterial pressure and the 
pressure reference (or setpoint).  

The states set x is defined by the error (the difference between the 
measured arterial pressure and the pressure reference) and it is represented as a 
discrete set of values: 

 
,200]…[1,2, = X         (2) 

We provide the controller with a discrete set of SNP infusion rates (in ml 
per hour) u (actions); we call this set “the action set”: 

 
350] ,… 2, [1, = U         (3) 

These are all the theoretical possible values. In practice, the actual action 
values will be much below 100. 

As a result of the action uk, applied in the state xk, the state changes to xk+1, 
according to the transition function: 

 
:X   x UX : f →         

)u ,f(x = 1+x kkk        (4) 
In order to train the RL controller, we need some measure of the utility of 

the states: the reward function provides the mechanism for deciding the state 
value. The controller receives the scalar reward signal rk+1, according to the 
reward function r : X x U -> R 
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)u ,r(x = 1+r kkk        (5) 
The reward evaluates the immediate effect of action uk, namely the 

transition from xk to xk+1, but in general does not say anything about its long-term 
effects. 

The controller chooses the actions according to its policy  
 U X :h → , using: 

 
)h(x = u kk         (6) 

Given f and r, the current state xk and the current action uk are sufficient to 
determine both the next state xk+1 and the reward rk+1. This is the Markov property, 
which is essential in providing theoretical guarantees about RL algorithms. 

2.4. The solution 
 
The main reason for using RL (reinforcement learning) control is that it 

uses the clinical data alone, without relying on the identification of an accurate 
model of the patient (which is a complex process). 

The policy is the dependency between action and state and is defined 
(after an intense trial and error session to cover as many scenarios as possible) as 
follows: 

 
* x+ 145 - ref =u        (7) 

 
where ref is the pressure reference and x* is an artificial parameter that 

depends on the state x, that can take the following values: 
[x/10], [x/5], x, 2x, 3x, 4x, 5x, 6x 
where “[ ]” means the nearest integer upwards 
 
To avoid the so-called “tunnel vision” problem in which the agent revisits 

a neighborhood of states and chooses the same actions repetitively, the action 
takes one of these values a random value 20% of the time and the value that 
maximizes the reward – 80% of the time. 

The equation below summarizes the reward function we used for the 
closed loop arterial pressure control problem to penalize the agent when the 
measured arterial pressure was off target (the reasons for choosing this particular 
reward function are complex, they range from detailed calculations to empirical 
results observed for a large number of scenarios and they are not to be detailed 
here): 

 

       
 x-  xx"-10u  + 1000             

)/2 xx"+1000(x - 120000 = u) r(x,          (8) 
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where x” is the previous state. 
The two values depend on how large the state we are in is. The first one is 

for small values (lower than 10), the second one for big values (10 or above). 
We applied a SARSA algorithm to estimate the value function for each of 

the SNP infusion rates. 
Equation 9 presents the SARSA update rule: 

)]','(),([),()1(),( uxQuxruxQuxQ γαα ++−=          (9) 
where u’, x’ are the next action and respectively the next state. 
Each time the agent completes one experiment with its environment (i.e., 

chooses an action and receives a reward), the Q function is incrementally 
adjusted. 

The duration of an action is set to 100 seconds (best results being obtained 
this way). We mention that the way the algorithm has been built, it permits total 
control over the duration of each action (so one can modify it freely if desired). 

 
3. Results 
 
In this section we present the results we have obtained by using the 

reinforcement learning approach on artificially generated data. Firstly we show 
how the data is generated and secondly we discuss the performances of the 
control loop. 

 
3.1. Artificial generation of the clinical data  
We use the same model of a patient as earlier, but this time with the only 

purpose of generating the input data (instead of gathering the data from a real 
patient). This is why we call the generation of the data “artificial”. 

The closed loop used for this study is shown in fig. 7: 
 

 
 

Fig. 7. The feedback control loop including the RAS model 
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3.2. Results 
 
In Fig. 8 we show the behavior of the arterial pressure when controlled 

with the SARSA algorithm: 
 

 
Fig. 8. The arterial pressure when controlled with the SARSA algorithm 

 
On the vertical axis we have the arterial pressure. 
On the horizontal axis we have the time.  
 
We have highlighted 2 important moments with circles and with vertical 

lines: 
5000 seconds – when the agent switching from learning (random actions) 

to applying what it learned (20% rand actions, 80% intelligent actions) 
8000 seconds – when the pressure reference changes from 90 to 70 

mmHg. 
We have highlighted 
The upper horizontal line the 90 mmHg level, 
The middle horizontal line the 85 mmHg level, 
The lower horizontal line the 80 mmHg level. 
Between the 5000 and the 8000 seconds moments, the error is greater than 

5 mmHg only once, and not with much (it is acceptable from a medical point of 
view). The behavior after 8000 seconds is due to the RAS reflex: when the 
pressure goes below 72 mmHg, the reflex increases the pressure. Again, the error 
is acceptable and the overshoot within desired limits. 
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4. Conclusions 

Control of blood pressure regulation in post cardiac surgery patients using 
reinforcement learning is studied. We used reinforcement learning algorithms for 
the controller in order to control the mean arterial pressure in post cardiac surgery 
patients. Such an approach does not require a mathematical model of the patient 
as part of the regulation approach. A detailed and realistic model for blood 
pressure regulation is used for generating clinical data by including the drug 
response model of Slate et al. (1980) and models for internal reflexes (namely 
RAS) of the body.  

The purpose of this report is to highlight the state of art in automatic blood 
pressure regulation, to propose alternative techniques to do it and the 
performances obtained with these alternative techniques. 

The state of art of blood pressure regulation consists in the classical 
feedback control loop using a PID controller. PID control is suitable for this 
context, as it meets the requirements of being simple and easy to implement. But 
it does require a mathematical model of the patient, which is rather difficult to 
implement. We showed that we can obtain good results using Reinforcement 
Learning, which does not require a mathematical model of the patient. Therefore, 
Reinforcement Learning is an elegant solution, as by adopting it, the difficult 
modelling is no longer necessary, but the desired performances are still met. 

The research continues in the direction of refining the algorithms and of 
finding even more methods that have good results in controlling the blood 
pressure for patients who have suffered heart surgery. 
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