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A MONOTONE PRECONDITIONED GRADIENT METHOD BASED ON

A BANDED TRIDIAGONAL INVERSE HESSIAN APPROXIMATION

Saman Babaie–Kafaki1

Based on a tridiagonal memoryless inverse Hessian approximation in a

least–squares approach, a preconditioned gradient method is proposed. Conducting an
eigenvalue analysis, it is shown that the method possesses the sufficient descent prop-

erty independent of the line search. Without the convexity assumption on the objective

function, the method is established to be globally convergent under the Wolfe line search
conditions. Using a set of unconstrained optimization test problems from the CUTEr

library, the method is numerically compared with the two–point stepsize gradient method

proposed by Barzilai and Borwein. The results of comparisons show that the method is
computationally promising in the sense of the Dolan–Moré performance profile.
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1. Introduction

Unconstrained optimization deals with the problem of minimizing an objective func-
tion f : Rn → R with no restriction on its variables, that is

min
x∈Rn

f(x). (1.1)

Here, we assume that f is continuously differentiable and its gradient is available. The
problem (1.1) not only directly arises in some applications but also indirectly arises in
reformulations of constrained optimization problems; often it is practical to replace the
constraints of an optimization problem with penalized terms in the objective function and
to solve an unconstrained problem.

As practical tools for solving (1.1), iterative methods define a sequence of approxi-
mations that are expected to be closer and closer to the exact solution in a given norm,
stopping the iterations using some predefined criterion, and obtaining a vector which is only
an approximation of the solution. In a class of such methods, the iterative formula is given
by

x0 ∈ Rn, xk+1 = xk + sk, sk = αkdk, k = 0, 1, ..., (1.2)

where αk ∈ R is a step length to be computed by a line search along the search direction
dk ∈ Rn which is often assumed to satisfy the sufficient descent condition, that is

dTk gk ≤ −c||gk||2, k = 0, 1, ..., (1.3)

where gk = ∇f(xk), c is a positive constant and ||.|| stands for the Euclidean norm. In-
equality (1.3) plays an important role in the convergence analysis of the iterative method
(1.2) [24,25].

Being a first–order optimization algorithm with the attractive features of satisfying
(1.3) as well as converging globally, the most fundamental iterative method for solving (1.1)
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is the gradient (or steepest descent) method [6] with the simplest choice dk = −gk in (1.2).
In spite of such strong theoretical features, the method performs poorly, converges slowly
and is badly affected by the ill–conditioning of the Hessian [1, 13,25].

In an attempt to make a modification on the gradient method based on the quasi–
Newton aspects, Barzilai and Borwein [4] (BB) dealt with an effective scaled gradient method
with the following search directions:

d0 = −g0, dk = −θkgk, k ≥ 1, (1.4)

in which the positive scalar θk is computed based on a two–point approximation of the
(standard) secant equation [25], that is

Hkyk = sk, (1.5)

where yk = gk+1−gk, and Hk ∈ Rn×n is an approximation of the inverse Hessian∇2f(xk)−1.
More precisely, θk is obtained by solving the following least–squares problem:

min
θ>0
||sk − θyk||. (1.6)

This yields

θk =
sTk yk
yTk yk

, (1.7)

being positive when the line search fulfills the popular Wolfe conditions [25], i.e.

f(xk+1)− f(xk) ≤ δαkd
T
k gk, (1.8)

dTk gk+1 ≥ σdTk gk, (1.9)

with the constants δ and σ satisfying 0 < δ < σ < 1. By symmetry, another choice for θk in
(1.4) has been proposed in [4] by solving the following least–squares problem:

min
θ>0
||1
θ
sk − yk||,

which yields

θk =
sTk sk
sTk yk

,

being positive under the Wolfe conditions.
A brief review of the literature reveals an abundance of works related to the modified

BB methods. As examples, Raydan [22] employed the nonmonotone line search procedure
suggested by Grippo et al. [15] and developed a globally convergent modified BB method
which is competitive and sometimes preferable to some efficient nonlinear conjugate gradient
methods. Instead of using the standard secant equation (1.5) which only employs the gra-
dient information, Dai et al. [8] used the modified secant equations proposed by Yuan [28]
and Zhang et al. [29], and Babaie–Kafaki and Fatemi [2] adaptively used the modified se-
cant equations proposed by Li and Fukushima [17], and Zhang et al. [29]. As an interesting
feature, the modified BB methods of [2, 8] employ the objective function values in addition
to the gradient information. Convergence properties of the BB method have been studied
by Raydan [21], Dai and Liao [7], and Fletcher [12]. The interested reader can also study
the references [5, 9, 10,16,18,19,27].

Here, we deal with a tridiagonal memoryless inverse Hessian approximation as exten-
sion of the diagonal approximation proposed by Barzilai and Borwein [4]. The method is
discussed in Section 2, together with a brief global convergence analysis. In Section 3, the
method is numerically compared with the BB method, using the Dolan–Moré performance
profile. Conclusions are drawn in Section 4.
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2. A tridiagonally preconditioned gradient method

From a matrix point of view, it can be seen that in the BB method with the scaling
parameter θk given by (1.7), the inverse Hessian is approximated by the diagonal matrix
Dk = θkI in (1.6). Extending the approach of [4], here we consider a banded tridiagonal
approximation Tk ∈ Rn×n for the inverse Hessian as follows:

[Tk]ij =

 ξak, i = j,
ak, |i− j| = 1,
0, otherwise,

where ξ is a positive constant and ak > 0 is a parameter to be computed based on the secant
equation (1.5).

As seen, Tk can be easily saved with a low memory requirement. Also, for an arbitrary
vector b ∈ Rn with the ith element b(i), i = 1, 2, ..., n, Tkb can be effectively computed as
follows:

Tkb = Tk


b(1)

b(2)

...
b(n−1)

b(n)

 =


ξakb

(1) + akb
(2)

akb
(1) + ξakb

(2) + akb
(3)

...
akb

(n−2) + ξakb
(n−1) + akb

(n)

akb
(n−1) + ξakb

(n)

 .
Especially, if we let b(0) = b(n+1) = 0, then the ith element of the vector Tkb can be generally
written as akb

(i−1) + ξakb
(i) + akb

(i+1), i = 1, 2, ..., n.
Now, considering the secant equation (1.5), ak is computed as a solution of the fol-

lowing least–squares problem:

min
ak
||sk − Tkyk||.

That is,

ak =
sTk pk
pTk pk

, (2.1)

in which [pk]i = y
(i−1)
k + ξy

(i)
k + y

(i+1)
k , i = 1, 2, ..., n, with y

(0)
k = y

(n+1)
k = 0. However, ak

given by (2.1) may be nonpositive. So, to guarantee positiveness of the parameter ak here
we let

ak =
|sTk pk|
pTk pk

. (2.2)

Note that since

sTk pk =

n∑
i=1

s
(i)
k (y

(i−1)
k + y

(i+1)
k ) + ξsTk yk,

and also, since the Wolfe conditions ensure that sTk yk > 0, for enough large values of ξ we
have sTk pk > 0 and so, (2.1) and (2.2) are equivalent. As will be shown, large values of ξ are
more reasonable in the perspective of the conditioning of Tk. In order to avoid computational
errors related to the small or large (positive) numbers, in a further modification we consider
the following truncation of the parameter ak given by (2.2) [8, 22]:

ak = max

{
ε,min

{
1

ε
,
|sTk pk|
pTk pk

}}
, (2.3)

where ε is a small positive constant. Here, the iterative method (1.2) with the search
directions

d0 = −g0, dk = −Tkgk, k ≥ 1, (2.4)

in which ak is computed by (2.3) is called a tridiagonal modification of the BB (TMBB)
method. Next, we discuss the descent property of the TMBB method.
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As shown in [23], the eigenvalues of Tk are given by

λki = ξak + 2ak cos
iπ

n+ 1
, i = 1, 2, ..., n. (2.5)

Hence, from (2.3) we get

min{λki}ni=1 = λkn = ξak + 2ak cos
nπ

n+ 1
≥ (ξ − 2)ak ≥ (ξ − 2)ε. (2.6)

So, if ξ > 2, then from (2.4) for the TMBB method we have

dTk gk = −gTk Tkgk ≤ −(ξ − 2)ε||gk||2.
The following theorem is now immediate.

Theorem 2.1. For the TMBB method with ξ > 2 the sufficient descent condition (1.3)
holds.

Here, we discuss the global convergence of the TMBB method for which the following
preliminaries are needed.

Assumption 2.1. The level set L = {x| f(x) ≤ f(x0)}, with x0 to be the starting point of
the iterative method (1.2), is bounded. Also, in a neighborhood N of L, f is continuously
differentiable and its gradient is Lipschitz continuous; that is, there exists a positive constant
L such that

||∇f(x)−∇f(y)|| ≤ L||x− y||, ∀x, y ∈ N.

Lemma 2.1. [24] Suppose that Assumption 2.1 holds. Consider any iterative method in
the form of (1.2) for which the sufficient descent condition (1.3) holds and the step length
αk satisfies the Wolfe conditions (1.8) and (1.9). If∑

k≥0

1

||dk||2
=∞,

then the method converges in the sense that

lim inf
k→∞

||gk|| = 0. (2.7)

Now, we can prove the following global convergence theorem for the TMBB method,
using Lemma 2.1.

Theorem 2.2. Suppose that Assumption 2.1 holds. For the TMBB method with ξ > 2, if
the step length αk is determined such that the Wolfe conditions (1.8) and (1.9) are satisfied,
then the method converges in the sense that (2.7) holds.

Proof. At first, note that from Theorem 2.1 and the Wolfe condition (1.8), we have {xk}k≥0 ⊆
L. Also, dk 6= 0, ∀k ≥ 0, and consequently, using Lemma 2.1, to complete the proof it is
enough to show that ||dk|| is bounded above.

Assumption 2.1 implies that there exists a positive constant γ such that

||∇f(x)|| ≤ γ, ∀x ∈ L, (2.8)

(See Proposition 3.1 of [3].) and from (2.5), we have

||Tk|| = max{λki}ni=1 = λk1 = ξak + 2ak cos
π

n+ 1
≤ (ξ + 2)ak ≤

ξ + 2

ε
. (2.9)

Thus,

||dk|| = || − Tkgk|| ≤ ||Tk||||gk|| ≤
ξ + 2

ε
γ,

which completes the proof.
�
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Table 1. Test problems data

Function n Function n

BROYDN7D 500 ENGVAL1 5000
BROYDN7D 1000 SCHMVETT 100
BROYDN7D 5000 SCHMVETT 500
BROYDN7D 10000 SCHMVETT 1000
COSINE 1000 SCHMVETT 5000
COSINE 10000 SPARSQUR 1000
DIXMAANF 1500 SPARSQUR 5000
DIXMAANF 3000 SPARSQUR 10000
DIXMAANF 9000 SPMSRTLS 1000
DIXMAANG 1500 SPMSRTLS 4999
DIXMAANG 3000 SPMSRTLS 10000
DIXMAANG 9000 SROSENBR 1000
DIXMAANJ 1500 SROSENBR 5000
DIXMAANJ 3000 SROSENBR 10000
DIXMAANJ 9000 TOINTGSS 1000
DIXMAANL 1500 TOINTGSS 5000
DIXMAANL 3000 TOINTGSS 10000
DIXMAANL 9000 VAREIGVL 100
ENGVAL1 100 VAREIGVL 500
ENGVAL1 1000 VAREIGVL 1000

As known, an essential factor which plays an important role in the sensitivity analysis
of a numerical problem related to a matrix, is the matrix condition number [26]. A matrix
with a large condition number is called an ill–conditioned matrix since instability may occur
in the computations related to the matrix. About the computational stability of the TMBB
method with ξ > 2, note that from (2.6) and (2.9) the spectral condition number of the
matrix Tk is given by

κ(Tk) =
λk1
λkn

=
ξ + 2 cos

π

n+ 1

ξ + 2 cos
nπ

n+ 1

.

As seen, for large values of ξ, κ(Tk) tends to 1. That is, large values of ξ make Tk to be a
well–conditioned matrix, enhancing the numerical stability of the TMBB method.

3. Numerical experiments

Here, we present some numerical results obtained by applying MATLAB implemen-
tations of the TMBB method with ξ = 100 and ε = 10−10, and the BB method with the
parameter (1.7). The runs were performed on a set of 40 unconstrained optimization test
problems of the CUTEr collection [14] with the minimum dimension being equal to 100, as
specified in Table 1, using a computer Intel(R) Core(TM)2 Duo CPU 2.00 GHz with 1 GB
of RAM. In the line search procedure, the Wolfe conditions (1.8) and (1.9) were used with
δ = 0.0001 and σ = 0.9, and the step length αk was computed using Algorithm 3.5 of [20].
All attempts for finding an approximation of the solution were terminated by reaching max-
imum of 10000 iterations or achieving a solution with ||gk||∞ < 10−6(1 + |f(xk)|).

Efficiency comparisons were drawn using the Dolan–Moré performance profile [11],
on the running time and the total number of function and gradient evaluations being equal
to Nf + 3Ng, where Nf and Ng respectively denote the number of function and gradient
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Figure 1. Total number of function and gradient evaluations performance profiles

Figure 2. CPU time performance profiles

evaluations. The performance profile gives, for every ω ≥ 1, the proportion p(ω) of the
test problems that each considered algorithmic variant has a performance within a factor
of ω of the best. Figures 1 and 2 demonstrate the results of comparisons. As the figures
show, TMBB outperforms BB with respect to the total number of function and gradient
evaluations while BB is at times preferable to TMBB with respect to the running time. This
seems reasonable since in contrast to BB, the search direction computation in TMBB needs
more time.

4. Conclusions

As an extension of the Barzilai–Borwein approach, a preconditioned gradient method
is proposed using a banded tridiagonal memoryless approximation of the inverse Hessian.
Based on an eigenvalue analysis, a sufficient descent property has been established for the
method which leads to the global convergence. Preliminary numerical experiments on a set
of CUTEr unconstrained optimization test problems showed that the method turns out to
be computationally promising, especially with respect to the number of function evaluations.
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