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SCALARIZATION AND OPTIMALITY CONDITIONS FOR
GENERALIZED VECTOR EQUILIBRIUM PROBLEMS

UNDER IMPROVEMENT SETS IN REAL LINEAR SPACES

Hongwei Liang1, Qilong He2, Litao Zhang3

In this paper, we investigate linear scalarization results for
weakly efficient solutions and Benson proper efficient solutions for gener-
alized vector equilibrium problems under improvement sets in real linear
spaces. Meanwhile, using standard separation theorem for convex sets, we
establish optimality conditions for Henig proper efficient solutions for con-
strained generalized vector equilibrium problems. Our results extend several
results of some literature.
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1. Introduction

In recent years, many researchers paid attention to unify different kind-
s of solution notions of vector optimization problems, such as the efficiency,
weak efficiency, proper efficiency and ε-efficiency. Chicco et al. [1] proposed
a new concept of improvement set E and defined E-optimality in finite di-
mensional spaces. E-optimality unifies some known concepts of exact and
approximate solutions of vector optimization problems. Gutiérrez et al. [2]
extended the notions of improvement set and E-optimal solution to a gener-
al topological linear space. Many follow-on works about the aspect one can
look up [3, 4, 5, 6, 7, 8, 9]. Chen et al. [10] introduced a new vector equilibri-
um problem by virtue of an improvement set E, scalarization characterizations
have been established and some stability conclusions of parametric vector equi-
librium problems under improvement sets were obtained. Solution concepts,
approximate solution concepts and their characterizations of vector optimiza-
tion problems have been generalized to real linear spaces not equipped with
any topology in [11, 12, 13, 14, 15, 16, 17]. Gutiérrez et al. [18] obtained some
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characterizations of E-optimal solutions, weak E-optimal solutions and proper
E-optimal solutions of constrained vector optimization problems in terms of
linear scalarizations and Lagrange multiplier rules in real linear spaces.

Vector equilibrium problems (shortly, VEP) provided a unified model of
many problems (see [19, 20, 21]). An important topic of the optimality condi-
tions for VEP with constraints have been investigated in [22, 23, 24, 25, 26].
Through nolinear scalarization, Gutiérrez et al.[27] characterized weak efficient
solutions for a class of VEP in real linear spaces. Gutiérrez et al.[28] obtained
existence result of weak efficient solutions for VEP by means of algebraic ver-
sion of the Gerstewitz’s functional in real linear spaces.

As far as we know, there are few papers consider generalized VEP under
improvement sets in real linear spaces. Inspired by the preceding work [10,
18, 22, 23, 24, 25, 26, 27], firstly, we give linear scalarization results of some
efficiency for unified generalized vector equilibrium problems (UGVEP) with
generalized convexity assumptions in real linear spaces, these results include
the corresponding ones in [10, 18] as particular cases. Secondly, we establish
optimality conditions of Henig proper efficient solutions for unified generalized
vector equilibrium problems with constrains (UGVEPC) in real linear spaces.

The remaining of this article is organized as follows. Section 2 provides
some basic definitions we need in the paper. In Section 3, we give linear s-
calarization results for weakly efficient solutions and Benson proper efficient
solutions for (UGVEP). Then, by using standard separation theorem for con-
vex sets, we provide optimality conditions for Henig proper efficient solutions
for (UGVEPC) in Section 4.

2. Preliminaries

Throughout the paper, let X, Y and Z be real linear spaces, C and
D be nontrivial pointed convex cones in Y and Z, respectively. Let K be a
nonempty subset in Y , 0Y denotes the zero element of Y . We denote by

cone(K) := {λk|k ∈ K,λ ≥ 0},

span(K) := {
n∑
i=1

λiki|∀i ∈ {1, . . . , n}, ki ∈ K, λi ∈ R},

L(K) := span(K −K),

the generated cone, linear hull and linear subspace of K, respectively. K is
called a cone if λK ⊆ K for any λ ≥ 0. A cone K is said to be pointed if
K ∩ (−K) = {0Y }. A cone K ⊆ Y is said to be nontrivial if {0Y } 6= K 6= Y .
Let Y ∗ and Z∗ stand for the algebraic dual spaces of Y and Z, respectively.
The algebraic dual cone C+ and strictly algebraic dual cone C+i of C are
defined as

C+ := {y∗ ∈ Y ∗ | y∗(y) ≥ 0, ∀y ∈ C},
and

C+i := {y∗ ∈ Y ∗ | y∗(y) > 0, ∀y ∈ C \ {0Y }}.
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Definition 2.1 ([30]). Let K be a nonempty subset in Y .
(i)The algebraic interior of K is the set

cor(K) := {k ∈ K | ∀v ∈ Y, ∃λ′ > 0,∀λ ∈ [0, λ′], k + λv ∈ K}.
(ii)The relative algebraic interior of K is the set

icr(K) := {k ∈ K | ∀v ∈ L(K),∃λ′ > 0,∀λ ∈ [0, λ′], k + λv ∈ K}.
We say that K is solid (relatively solid) if cor(K) 6= ∅ (icr(K) 6= ∅).

Clearly, cor(K) ⊆ icr(K).

Definition 2.2 ([11]). Let K be a nonempty subset in Y . The vector closure
of K is the set

vcl(K) := {k ∈ Y | ∃v ∈ Y, ∀λ′ > 0, ∃λ ∈ [0, λ′], k + λv ∈ K}.
It is clear that k ∈ vcl(K) if and only if there exist v ∈ Y and a sequence

λn → 0+ such that k + λnv ∈ K for all n ∈ N, where N denotes the set of
positive integers.

The set K is called vectorially closed (v-closed) if K = vcl(K).

Lemma 2.1 ([11]). Let K ⊂ Y be convex. Then cor(K) and vcl(K) are
convex. Moreover, if K is relatively solid, then vcl(K) is v-closed and icr(K) =
icr(vcl(K)).

Lemma 2.2 ([11]). Let K ⊂ Y and C ⊂ Y be a nontrivial convex cone. Then,
(i)vcl(cone(K) + C) = vcl(cone(K + C)).
(ii) If icr(C) 6= ∅, then vcl(K + C) = vcl(K + icr(C)).
(iii) If C is solid, then cor(K + C) = cor(vcl(K + C)) = K + cor(C) = cor(K +
cor(C)).

Lemma 2.3 ([18]). Let ∅ 6= A,B ⊂ Y and suppose that B is solid and convex.
Then, A ∩ cor(B) = ∅ if and only if vcl(A) ∩ cor(B) = ∅.
Definition 2.3 ([2]). A nonempty set E ⊂ Y is said to be an improvement set
with respect to C if 0Y /∈ E and E + C = E. The family of the improvement
sets in Y is denoted by =Y .

Definition 2.4 ([18]). Let ∅ 6= E ⊂ Y . The mapping F : X ⇒ Y is said to
be v-nearly E-subconvexlike on a nonempty set A ⊂ X if vcl(cone(F (A)+E))
is a convex set.

Definition 2.5 ([18]). Let ∅ 6= E ⊂ Y and icr(C) 6= ∅. The mapping F : X ⇒
Y is said to be E-subconvexlike (respectively, generalized E-subconvexlike) on
a nonempty set A ⊂ X (with respect to C) if F (A) +E+ icr(C) (respectively,
cone(F (A) + E) + icr(C)) is a convex set.

Definition 2.6 ([18]). Let ∅ 6= E ⊂ Y and icr(C) 6= ∅. The mapping F : X ⇒
Y is said to be relatively solid E-subconvexlike (respectively, relatively solid
generalized E-subconvexlike) on a nonempty set A ⊂ X(with respect to C) if
F is E-subconvexlike (respectively, generalized E-subconvexlike) on A (with
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respect to C) and F (A) +E + icr(C) (respectively, cone(F (A) +E) + icr(C))
is relatively solid.

Lemma 2.4 ([18]). Let M,K be two v-closed convex cones in Y such that M
is relatively solid and K+ is solid. If M ∩K = {0Y }, then there exists a linear
functional l ∈ Y ∗ \ {0Y ∗} such that ∀k ∈ K,m ∈ M , l(k) ≥ 0 ≥ l(m) and
furthermore, ∀k ∈ K \ {0Y }, l(k) > 0, i.e., l ∈ K+i.

Lemma 2.5. Let E ∈ =Y and C ⊂ Y be a solid convex cone. Then cor(E) =
E + cor(C).

Proof. It follows directly from that E ∈ =Y and Lemma 2.2 (iii). �

Lemma 2.6 ([29]). Let S and T be nonempty convex subsets of a real linear
space X with cor(S) 6= ∅. Then cor(S)∩T = ∅ if and only if there are a linear
functional l ∈ X∗ \ {0X∗} and a real number α with l(s) ≤ α ≤ l(t) for all
s ∈ S and all t ∈ T , and l(s) < α for all s ∈ cor(S).

From now on, we assume that A ⊂ X is nonempty, F : A× A ⇒ Y is a
set-valued mapping and E ∈ =Y .

We consider the following unified generalized vector equilibrium problem
(for short, (UGVEP)) of finding x̄ ∈ A such that

(UGVEP) F (x̄, x) ∩ (−E) = ∅, ∀x ∈ A.
For x ∈ A, we define

F (x,A) :=
⋃
y∈A

F (x, y).

Definition 2.7. An element x̄ ∈ A is a weakly efficient solution of the
(UGVEP) iff,

F (x̄, x) ∩ (−cor(E)) = ∅, ∀x ∈ A.

We denote by WE(F,A;E) the set of weakly efficient solutions of the
(UGVEP).

Definition 2.8. An element x̄ ∈ A is an E-Benson proper efficient solution of
the (UGVEP) iff,

vcl(cone(F (x̄, A) + E)) ∩ (−C) = {0Y }.

We denote by BE(F,A,C;E) the set of weakly efficient solutions of the
(UGVEP).

3. Linear scalarization

In this section, we will discuss linear scalarization results of the weak
efficiency and the Benson proper efficiency for (UGVEP), respectively. For
ϕ ∈ Y ∗, we denote σE(ϕ) := infe∈E ϕ(e). It is easy to check that if ϕ ∈ E+,
then σE(ϕ) ≥ 0.
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For each ϕ ∈ E+ \{0Y ∗ }, let Sϕ(F, A; E) denote the set of σE(ϕ)-efficient
solutions to (UGVEP), i.e.,

Sϕ(F,A;E) := {x ∈ A | inf
z∈F (x,y)

ϕ(z) ≥ −σE(ϕ), ∀y ∈ A}.

Lemma 3.1 ([18]). Let K ⊂ Y be solid, ϕ ∈ Y ∗, k ∈ cor(K), if miny∈K ϕ(y) =
ϕ(k), then ϕ = 0Y ∗ .

Theorem 3.1. Assume that for each x ∈ A, F (x, ·) is v-nearly E-subconvexlike
on A and C is solid. If 0Y ∈ F (x, x), ∀x ∈ A. Then

WE(F,A;E) =
⋃

ϕ∈E+\{0Y ∗}

Sϕ(F,A;E).

Proof. Necessity. Let x0 ∈WE(F,A;E), then x0 ∈ A and F (x0, x)∩(−cor(E)) =
∅, ∀x ∈ A. Thus, F (x0, A) ∩ (−cor(E)) = ∅. It follows from Lemma 2.5 that

(F (x0, A) + E) ∩ (−cor(C)) = ∅. (1)

We assert that

cone(F (x0, A) + E) ∩ (−cor(C)) = ∅. (2)

Otherwise, there exist α > 0, x ∈ A, z ∈ F (x0, x), e ∈ E, c ∈ cor(C) such
that

α(z + e) = −c,
that is,

z + e = − c
α
∈ −cor(C).

Which contradicts (1). Therefore, (2) holds. From Lemma 2.3, we note that

vcl(cone(F (x0, A) + E)) ∩ (−cor(C)) = ∅. (3)

It follows from F (x, ·) is v-nearly E-subconvexlike onA that vcl(cone(F (x0, A)+
E)) is a convex set. By Lemma 2.6, there exist ϕ̄ ∈ Y ∗ \ {0Y ∗} and a real
number β such that

ϕ̄(z + e) ≥ β ≥ −ϕ̄(c), ∀x ∈ A, z ∈ F (x0, x), c ∈ C, e ∈ E. (4)

Taking x = x0, z = 0Y ∈ F (x0, x0) and c = 0Y in (4), this yields ϕ̄(e) ≥ 0 for
all e ∈ E. Hence ϕ̄ ∈ E+ \ {0Y ∗}.

Letting c = 0Y in (4), it results ϕ̄(e) ≥ −ϕ̄(z), ∀x ∈ A, z ∈ F (x0, x), e ∈
E. Then,

σE(ϕ̄) ≥ −ϕ̄(z), ∀x ∈ A, ∀z ∈ F (x0, x).

In consequence, ϕ̄(z) ≥ −σE(ϕ̄), ∀x ∈ A, z ∈ F (x0, x). Thus,

inf
z∈F (x0,x)

ϕ̄(z) ≥ −σE(ϕ̄), ∀x ∈ A.

Therefore, x0 ∈ Sϕ̄(F,A;E) ⊂
⋃
ϕ∈E+\{0Y ∗} Sϕ(F,A;E).
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Sufficiency. Let x0 ∈
⋃
ϕ∈E+\{0Y ∗} Sϕ(F,A;E), then there exists ϕ̂ ∈

E+ \ {0Y ∗} such that x0 ∈ Sϕ̂(F,A;E). Thus x0 ∈ A and

inf
z∈F (x0,x)

ϕ̂(z) ≥ −σE(ϕ̂), ∀x ∈ A. (5)

Suppose that x0 /∈WE(F,A;E), then there exist x̂ ∈ A and ê ∈ cor(E)
such that −ê ∈ F (x0, x̂). By applying (5) to x = x̂ it results

−ϕ̂(ê) ≥ inf
z∈F (x0,x̂)

ϕ̂(z) ≥ −σE(ϕ̂). (6)

namely, σE(ϕ̂) ≥ ϕ̂(ê), i.e., infe∈E ϕ̂(e) ≥ ϕ̂(ê) and mine∈E ϕ̂(e) = ϕ̂(ê). By
Lemma 3.1, it means that ϕ̂ = 0Y ∗ , a contradiction. Hence, x0 ∈WE(F,A;E).

�

Remark 3.1. (i) If F : A×A→ Y is a vector-valued mapping and we choose
F (x, y) = g(y) − g(x), where g : X → Y , then Theorem 3.1 reduces to the
corresponding result stated in Corollary 4.6 of [18].

(ii)By Proposition 2.9 of [18], when cor(C) 6= ∅, the assumption of v-
nearly E-subconvexlikeness is weaker than v-closely C-convexlikeness. So, if
F : A×A→ Y is a vector-valued mapping, Theorem 3.1 extends Theorem 3.1
of [10] which was stated in the topological setting. Moreover, if E = εq + C,
ε ≥ 0, q ∈ cor(C), Theorem 3.1 reduces to Theorem 3.2 of [26] which was
done in the framework of topological linear spaces.

Theorem 3.2. Let E ∈ =Y , C be v-closed and C+ be solid. Assume that for
∀x ∈ A, F (x, ·) is relatively solid generalized E-subconvexlike on A. Then

BE(F,A,C;E) =
⋃

ϕ∈C+i

Sϕ(F,A;E).

Proof. Necessity. Let x0 ∈ BE(F,A,C;E), then

vcl(cone(F (x0, A) + E)) ∩ (−C) = {0Y }. (7)

Since ∀x ∈ A, F (x, ·) is relatively solid generalized E-subconvexlike on A, then
cone(F (x0, A) + E) + icr(C) is a relatively solid, convex set in Y . It follows
from Lemma 2.1 that vcl(cone(F (x0, A) + E) + icr(C)) is v-closed, relatively
solid and convex. From Lemma 2.2 (i), (ii) and E ∈ =Y that

vcl(cone(F (x0, A)+E))+icr(C)) = vcl(cone(F (x0, A)+E)+C)) = vcl(cone(F (x0, A)+E)).

As C+ be solid, according to Proposition 2.3 of [12], C is relatively solid. By
Lemma 2.4, there exists a linear functional ϕ̄ ∈ C+i such that

ϕ̄(y) ≥ 0, ∀y ∈ vcl(cone(F (x0, A) + E)).

Since F (x0, A) + E ⊂ vcl(cone(F (x0, A) + E)), we get

ϕ̄(z + e) ≥ 0, ∀y ∈ A, z ∈ F (x0, y), e ∈ E. (8)

(8) is equivalent to

ϕ̄(e) ≥ −ϕ̄(z), ∀y ∈ A, z ∈ F (x0, y), e ∈ E,
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that is,

σE(ϕ̄) ≥ −ϕ̄(z), ∀y ∈ A, z ∈ F (x0, y),

i.e.,

ϕ̄(z) ≥ −σE(ϕ̄), ∀y ∈ A, z ∈ F (x0, y).

Thus,

inf
z∈F (x0,y)

ϕ̄(z) ≥ −σE(ϕ̄), ∀x ∈ A.

Therefore, x0 ∈ Sϕ̄(F,A;E) ⊂
⋃
ϕ∈C+i Sϕ(F,A;E).

Sufficiency. Let x0 ∈
⋃
ϕ∈C+i Sϕ(F,A;E), then there exists ϕ̂ ∈ C+i such

that x0 ∈ Sϕ̂(F,A;E). Thus x0 ∈ A and

inf
z∈F (x0,y)

ϕ̂(z) ≥ −σE(ϕ̂), ∀y ∈ A. (9)

In what follows, we show that x0 ∈ BE(F,A,C;E).
Let c ∈ vcl(cone(F (x0, A)+E))∩(−C), then c ∈ vcl(cone(F (x0, A)+E)).

Because of E ∈ =Y , then

c ∈ vcl(cone(F (x0, A) + E + C))

By Definition 2.2, there exist v ∈ Y and a sequence λn → 0+ such that
c+λnv ∈ cone(F (x0, A)+E+C) for all n ∈ N. Therefore, there exist sequences
{µn} ⊂ R+, {cn} ⊂ C, {en} ⊂ E and {yn} ⊂ A such that

c+ λnv = µn(zn + en + cn), ∀zn ∈ F (x0, yn).

Hence,

ϕ̂(c) + λn(ϕ̂(v)) = µn(ϕ̂(zn) + ϕ̂(en) + ϕ̂(cn)), ∀zn ∈ F (x0, yn). (10)

By (9), ϕ̂(zn) ≥ −σE(ϕ̂) ≥ −ϕ̂(en) and ϕ̂(zn) + ϕ̂(en) ≥ 0. As ϕ̂(cn) ≥ 0 for
all n ∈ N, then the right-hand side of (10) is nonnegative and

ϕ̂(c) + λn(ϕ̂(v)) ≥ 0. (11)

Taking λn → 0+ in (11), we have

ϕ̂(c) ≥ 0.

On the other hand, since c ∈ −C and ϕ̂ ∈ C+i, we obtain

ϕ̂(c) ≤ 0.

Thus, ϕ̂(c) = 0, c = 0Y and

vcl(cone(F (x0, A) + E)) ∩ (−C) = {0Y }.

Hence, x0 ∈ BE(F,A,C;E). �
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4. Optimality conditions for (UGVEPC)

Let A ⊂ X, G : A⇒ Z and F : A×A⇒ Y be two set-valued mappings.
We consider the following unified generalized vector equilibrium problem

with constraints (for short, (UGVEPC)) of finding x̄ ∈ S such that

(UGVEPC) F (x̄, x) ∩ (−E) = ∅, ∀x ∈ S.

The constraint set is defined by S = {x ∈ A | G(x) ∩ (−D) 6= ∅}.

Definition 4.1 ([30]). Let K be a nonempty subset in Y . K is called balanced
iff ∀k ∈ K, ∀λ ∈ [−1, 1], λk ∈ K. K is called absorbent iff 0Y ∈ cor(K).

Definition 4.2 ([15]). Let B be a nonempty convex subset in Y . B is a base
of C iff C = cone(B) and there exists a balanced, absorbent and convex set V
such that 0Y /∈ B + V in Y .

Let B be a base of C and write Bst := {y∗ ∈ Y ∗ | there exists t >
0 such that y∗(b) ≥ t, ∀b ∈ B}. Let V ⊆ Y be a balanced, absorbent and
convex set with 0Y /∈ B + V . Write CV (B) := cone(B + V ).

Remark 4.1. We observe that CV (B) is a nontrivial, pointed and convex cone
in Y . Moreover, 0Y /∈ cor(CV (B)) and C \ {0Y } ⊆ cor(CV (B)).

Lemma 4.1. Let B be a base of C and y∗ ∈ Y ∗\{0Y ∗}. Then y∗ ∈ Bst if
and only if there exists a balanced, absorbent and convex set V such that
y∗(v − b) ≤ 0, ∀v ∈ V, ∀b ∈ B.

Proof. Sufficiency. Let there exists a balanced, absorbent and convex set V
such that y∗(v − b) ≤ 0, ∀v ∈ V, ∀b ∈ B, by the absorption of V , there exists
v0 ∈ V such that t = y∗(v0) > 0. Hence y∗(b) ≥ y∗(v0) = t > 0, ∀b ∈ B, which
means that y∗ ∈ Bst.

Necessity. Assume that y∗ ∈ Bst, let V = {v ∈ Y | y∗(v) ≤ t}, then V is a
balanced, absorbent and convex set. For all y ∈ V −B, there exist v ∈ V, b ∈ B
such that y = v − b, y∗(y) = y∗(v − b) = y∗(v)− y∗(b) ≤ t− t = 0. �

Definition 4.3. Let B be a base of C and E ∈ =Y . An element x̄ ∈ S is said
to be an E-Henig proper efficient solution of the (UGVEPC) with respect to
B iff, there exists a balanced, absorbent and convex set V with 0Y /∈ B + V
such that

cone(F (x̄, S) + E) ∩ (−CV (B)) = {0Y }.

We denote by HE(F,S,B;E) the set of all E-Henig proper efficient solu-
tions of the (UGVEPC).

Theorem 4.1. Assume that the following conditions hold:
(i)B is a base of C and E ∈ =Y .
(ii) x̄ ∈ S and there exists x0 ∈ A such that G(x0) ∩ (−cor(D)) 6= ∅.
(iii) H(y) = (F (x̄, y), G(y)) is v-nearly E ×D-subconvexlike on A.
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Then x̄ ∈ HE(F,S,B; E) if and only if there exists ϕ ∈ Bst and ψ ∈ D+

such that

inf
y∈A
{ϕ(F (x̄, y)) + ψ(G(y))} ≥ −σE(ϕ). (12)

Proof. Necessity. Let x̄ ∈HE(F,S,B;E), by Definition 4.3, there exists a bal-
anced, absorbent and convex set V with 0Y /∈ B + V such that

cone(F (x̄, S) + E) ∩ (−CV (B)) = {0Y }.
By Remark 4.1, cone(F (x̄, S) + E) ∩ (−cor(CV (B))) = ∅.

Then,

(F (x̄, S) + E) ∩ (−cor(CV (B))) = ∅. (13)

Note that H(y) = (F (x̄, y), G(y)), ∀y ∈ A. By (13), we get

(H(A) + E ×D) ∩ (−cor(CV (B)))× (−cor(D)) = ∅. (14)

Otherwise, there exists ȳ ∈ A such that

(F (x̄, ȳ) + E,G(ȳ) +D) ∩ (−cor(CV (B)))× (−cor(D)) 6= ∅.
Then,

(F (x̄, ȳ) + E) ∩ (−cor(CV (B))) 6= ∅, (15)

and

(G(ȳ) +D) ∩ (−cor(D)) 6= ∅. (16)

According to (16), G(ȳ) ∈ −D− cor(D) = −cor(D) ⊂ −D, that is, ȳ ∈ S. By
(15), we obtain (F (x̄, S) + E) ∩ (−cor(CV (B))) 6= ∅. Which contradicts (13).
Hence, (14) holds.

Since cor(CV (B)), cor(D) are both algebraic open convex sets, then

cone(H(A) + E ×D) ∩ (−cor(CV (B)))× (−cor(D)) = ∅.
From Lemma 2.3, it follows that

vcl(cone(H(A) + E ×D)) ∩ (−cor(CV (B)))× (−cor(D)) = ∅.
Moreover, by condition (iii), vcl(cone(H(A) + E ×D)) is a nonempty convex
set in Y × Z . By Lemma 2.6, there exists (ϕ, ψ) ∈ (Y ∗ × Z∗) \ {0Y ∗ × 0Z∗}
and α ∈ R such that

(ϕ, ψ), (vcl(cone(H(A) + E ×D))) ≥ α ≥ ϕ(−CV (B)) + ψ(−D). (17)

Since vcl(cone(H(A) +E×D)) is a cone, then ∀z ∈ vcl(cone(H(A) +E×D))
and λ > 0, furthermore, λz ∈ vcl(cone(H(A)+E×D)). By (17), (ϕ, ψ)(z) ≥ α

λ
.

Letting λ→∞, we obtain (ϕ, ψ)(z) ≥ 0. Therefore,

(ϕ, ψ)(vcl(cone(H(A) + E ×D))) ≥ 0.

Since H(A) + E ×D ⊂ vcl(cone(H(A) + E ×D)) and 0Y ∈ D, then,

ϕ(z1 + e) + ψ(z2) ≥ 0, ∀y ∈ A, z1 ∈ F (x̄, y), z2 ∈ G(y), ∀e ∈ E,
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implying,

ϕ(e) ≥ −(ϕ(z1) + ψ(z2)), ∀y ∈ A, z1 ∈ F (x̄, y), z2 ∈ G(y), ∀e ∈ E. (18)

Thus, we have

σE(ϕ) ≥ −(ϕ(z1) + ψ(z2)), ∀y ∈ A, z1 ∈ F (x̄, y), z2 ∈ G(y),

then,

ϕ(z1) + ψ(z2) ≥ −σE(ϕ), ∀y ∈ A, z1 ∈ F (x̄, y), z2 ∈ G(y),

i.e.,
inf
y∈A
{ϕ(F (x̄, y)) + ψ(G(y))} ≥ −σE(ϕ).

Therefore, (12) holds.
On the other hand, it follows from (0Y , 0Z) ∈ vcl(cone(h(A) + E ×D))

and (17) that,

ϕ(−CV (B)) + ψ(−D) ≤ 0. (19)

For ∀y ∈ CV (B), ∀λ > 0, we have λy ∈ CV (B), by (19), one obtains

ϕ(y) ≥ 1

λ
ψ(−d), ∀y ∈ CV (B), ∀λ > 0, ∀d ∈ D. (20)

Letting λ→∞ in (20), we obtain

ϕ(y) ≥ 0, ∀y ∈ CV (B).

Then,
ϕ(v + b) ≥ 0, ∀b ∈ B, ∀v ∈ V,

that is,
ϕ(b− v) ≥ 0, ∀b ∈ B, ∀v ∈ V.

By Lemma 4.1, ϕ ∈ Bst. A similar proof to ϕ ∈ Bst, we can prove that
∈ D+.

Sufficiency. If x̄ /∈ HE(F,S,B; E), then there exists a balanced, absorbent
and convex set V with 0Y /∈ B + V such that

cone(F (x̄, S) + E) ∩ (−CV (B)) 6= {0Y }.
Let 0Y 6= z ∈ cone(F (x̄, S) +E)∩ (−CV (B)), then z ∈ −CV (B), so there exist
λ > 0, v ∈ V, b ∈ B such that

z = −λ(−v + b),

i.e.,
z = λ(v − b).

By ϕ ∈ Bst, then

ϕ(z) < 0. (21)

Since 0Y 6= z ∈ cone(F (x̄, S) + E), then there exists t > 0, ȳ ∈ S, z̄ ∈
F (x̄, ȳ), e ∈ E such that z = t(z̄ + e). By (21),

t(ϕ(z̄ + e)) < 0,
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then,
ϕ(e) < −ϕ(z̄).

Since σE(ϕ) = infe∈E ϕ(e) ≤ ϕ(e), then,

ϕ(z̄) < −σE(ϕ). (22)

Moreover, note that ȳ ∈ S and ∈ D+, then there exists ẑ ∈ G(ȳ) ∩ (−D)
such that

ψ(ẑ) ≤ 0. (23)

By (22) and (23), we have ϕ(z̄) + ψ(ẑ) < −σE(ϕ). Which contradicts (12).
Therefore, x̄ ∈ HE(F, S,B;E). �

Remark 4.2. Theorem 4.1 obtains a scalar Lagrange multiplier rule, similar
results for vector-valued Lagrange multiplier rule are given in Theorem 5.1 of
[14]. Meanwhile, Theorem 4.1 extends Theorem 3.1 in [24] for the exact notion
of Henig solution in the setting of locally convex spaces.
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