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SOLUTIONS OF A COUPLED WAVE EQUATION

E. V. Krishnan', Ghodrat Ebadi?, Anjan Biswas®

This paper obtains the traveling wave solution to a nonlinearly coupled
wave equation. Subsequently, the mapping method and its extended and modified
versions are also employed to obtain additional solutions to this equation. Finally,
the exponential function method and the G'/G-expansion method are employed
to extract more solutions to this coupled system of equations. The parameter
constraints are also given in order for the solutions to exist.

MSC2010: 35Q51, 35QQ53, 37K10.

1. Introduction

The traveling wave solution is one of the most fundamental approaches to
solving nonlinear evolutions equations (NLEEs). This method is also applicable to
nonlinearly coupled NLEEs as well as to complex valued NLEEs. However, there
are various other approaches to handling NLEEs [1-10]. One of them is the most
powerful method that is known as the Inverse Scattering Transform (IST) that
obtains soliton solutions as well as soliton radiations. In the last couple of decades,
there was an abundance of new mathematical approaches that was available to deal
with NLEEs. Some of these methods are Adomian decomposition method, Riccati
equation method, Fan’s F-expansion method, G'/G expansion method, He’s semi-
inverse variational principle and many others. In this paper, besides the traveling
wave hypothesis, the mapping method, variational iteration method (VIM) as well
as the homotopy perturbation method (HPM) are all going to be employed to study
the coupled nonlinear wave equation.

The dimensionless form of the coupled nonlinear wave equation that is going
to be studied in this paper is given by

(1) q: + (IT‘27’x + bQQQx + @z + dgrer = 0,
(2) re+alqr)e + Brirg = 0.

In (1), the first term is the evolution term, while the second and third terms are
the nonlinear terms, the fourth term is the advection term and finally the last term
is the dispersion term. In (2), the first term is the evolution term while the second
term is the nonlinear coupled term and finally the third term is the nonlinear term.
The coefficients a, b, ¢, d, @ and 3 are all constants.

! Department of Mathematics and Statistics, Sultan Qaboos University, P. O. Box 36, Al Khod
123, Muscat, Oman

2 Faculty of Mathematical Sciences, University of Tabriz, Tabriz, 51666-14766, Iran

3 Department of Mathematical Sciences, Delaware State University, Dover, DE 19901-2277,
USA

57



58 E. V. Krishnan, Ghodrat Ebadi, Anjan Biswas

2. Traveling wave solution

In order to solve this coupled system of equations given by (1) and (2), for
solitary waves, the traveling wave hypothesis is taken to be

(3) q(z,t) = g(z —vt) = g(s)
and

(4) r(z,t) = h(x — vt) = h(s)
where

(5) s=x—uvt

while g and h are the solitary wave profiles of (1) and (2) respectively moving with
a velocity v. Now substituting (3) and (4) into (1) and (2) respectively gives

(6) —Ug/ +ah2h/ 4 ngg/ + cgl + dg/// — O
and
(7) —vh! + a(gh) + Bh3K =0

Integrating (6) and (7) once, with respect to s and taking the integration constants
to be zero, since the search is for a soliton solution, gives

3 ba3
(8) —vg—i—%%—%—i—cy—i—dg”:o
and
3
9) —v—}-ozg+ﬂz:0

respectively. Now, eliminating h between (8) and (9) and simplifying gives

ag , ac  pv  cf b3 3 av

1 Ly ==+ ) g s

(10) 19 371 1) Y 3
Multiplying both sides of (10) by ¢’ and integrating gives, after simplification

dg\* b [ 4 8aax  6v  6c\ o, 16av

11 =] =—— N ==

(11) (d5> Gd{g By ) T e Y
For integrability, it is necessary to choose

(12) a=0

which simplifies the above equation further. Thus separating variables and integrat-
ing gives

(13) /Njfif - \/gs

which gives

1 -1(9\ _ i
(14) Xsech <X) =\’
where
(15) A\ = 6(v—c

b
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and (14) imposes the restriction
bd > 0.

Equation (14) then finally yields
(16) g(x — vt) = g(s) = Asech[B(z — vt)]
where the amplitude of the soliton is given by

6(v—c)

(17) A==

and the inverse width of the soliton is

v—c
d

Finally the soliton profile can be obtained from

(18) B=

(19) MﬁZh@—U”:[Mv;mﬁF

which is obtained from (9). Thus equations (15) and (18) pose constraint conditions
given by

(20) d(v—c)>0
and
(21) b(v—c) >0

Thus, finally, the 1-soliton solution to (1) and (2) is given by (16) and (19) where
the amplitude and width of the g profile are given by (17) and (18) respectively.
These relations introduce the integrability conditions given by (20) and (21) that
needs to hold in order for the soliton solutions to exist.

3. Mapping methods

Now, we solve eq. (10) by a mapping method, a modified mapping method
and an extended mapping method [1-4] which generate a variety of periodic wave
solutions (PWSs) in terms of Jacobi elliptic functions and we subsequently derive
their infinite period counterparts in terms of hyperbolic functions which are either
solitary wave solutions (SWSs) or explode decay mode solutions.

Now, eq. (10) can be written as

(22) Ag" + Bg+ Cg® + K =0,
where
(23) A= p BB avy o 08 av

12 3
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3.1. Mapping method

We assume that eq. (22) has a solution in the form

(24) g =4+ AL f,
where
1
(25) f=pf+aft =0+ gaft

Eq. (24) is the mapping relation between the solution to eq. (25) and that of eq.
(22).

We substitute eq. (24) into eq. (22), use eq. (25) and equate the coefficients of
like powers of f to zero to arrive at the set of equations

(26) qAA; + CAY =0,

(27) 3C AgA? =0,

(28) (pA+ B)A; +3C A3 A, =0,
(29) BAy+ CA} + K =0,

from which we obtain
qB

(30) Ag =0, Ay =+4/—, pA+B=0,K =0.
pC

Since K = 0, a automatically becomes 0.

Using eq. (23), we obtain the exact solution of eq. (22) as

3q(c — v)

(31) o(s) =+ 20

f(s)
Now, we consider the specific expressions of f according to eq. (25).
Casel.p=—-2 ¢g=2,7r=1.

In this case, the solution of eq. (25) is f(s) = tanh(s).

So, we have the shock wave solution of eq. (22) as

(32) g(s) = = 7v)tanh(s).

Case2.p=1,qg= -2, r=0.

Here, the solution of eq. (25) is f(s) = sech(s).
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(33)

(35)

(36)

Now, we have the SWS of eq. (22) as

9(s)

Case 3.p = —(1+m?), ¢ =2m?, r = 1.

+

_3(c—v)

2b

sech(s).

The solution of eq. (25) is f(s) = sn(s) or f(s) = cd(s).

Thus, we have the PWSs of eq. (22) as

and

g(s) = i\/

As m — 1, the shock wave solution (32) is recovered from eq. (34).

_ 3(c—v)
2b(1 + m?)

mcd(s)

Cased.p=2—-—m? qg=—-2,r=m?— 1.

Now, the solution of eq. (25) is f(s) = dn(s)

So, the PWSs of eq. (22) is

3(c —v)
= :l: __
9(s) \/ 26(2 — m?)
As m — 1, the SWS (33) is recovered from eq. (36).

Case 5. p = — (1 + m?), ¢ = 2, r = m?.

Here, the solution of eq. (25) is f(s) = ns(s) or f(s)

So, the PWSs of eq. (22) are

g(s)

dn(s)

de(s)
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and

B 3(c —v)
(38) g(s) = = \/— 0+ md) de(s)

As m — 0, egs. (37) and (38) degenerate as

and

3(c —v)
4b

When m — 1, we obtain from eq. (37) the solution in the form

(40) g(s) = £4/— sec(s)

_3(e—w

_ )
(41) g(s) = = D coth(s)

3.2. Modified mapping method

Now, we use the modified mapping method in which we assume a solution of
eq. (22) in the form

(42) g=Ao+ A f+B [
where f satisfies eq. (25).

We substitute eq. (42) into eq. (22), use eq. (25) and equate the coefficients of
like powers of f to zero to arrive at a set of equations from which it can be found
that

A
(43) Ay = 0, Alzi,/—%
2r A
(44) Blzi,/—%, pA+ B+ 3CA B = 0.

Thus for real solutions of eq. (22) to exist, when ¢ and r are both positive, A and
C should be of opposite signs and when ¢ and r are both negative, A and C' should
be of same signs.

So, we have another set of new exact solutions of eq. (22) which is given by

3qd 6rd

(45) 9(s) = £/~ () £ - 5 1)
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Casel.p=-2,q¢g=2,r=1.
Here, the solution of eq. (25) is f(s) = tanh(s).

So, the solution of eq. (22) is
6d
(46) g(s) =1/ — > {ztanh(s) £ coth(s)}.

Case 2. p= — (1 +m?), ¢ =2m?, r = 1.
So, the solution of eq. (25) is f(s) = sn(s) or f(s) = cd(s).

Thus, the PWSs of eq. (22) are

(47) g(s) =/ — % {£msn(s) £ ns(s)}.
and
(48) o(s) = /- % {4med(s) + de(s)} .

When m — 0, egs. (47) and (48) will give rise respectively to the solutions

(49) g(s) = £4/— %cosec(s).

and

(50) g(s) = £4/— % sec(s).

and, when m — 1, eq. (47) degenerates to eq. (46).
Case3.p=2-m? qg=2,1r=1—m?
So, the solution of eq. (25) is f(s) = cs(s).

Hence, the PWS of eq. (22) is

(51) g(s) = —% {:l:cs(s) + V1 - mzsc(s)}.

When m — 0, eq. (51) will reduce to

(52) o(s) = /- (lbd {2 tan(s) % cot(s)},
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and when m — 1, eq. (51) will give rise to the explode decay mode solution

(53) g(s) = £4/— %cosech(s).

Cased.p=2-m? qg= -2, r=—(1 — m?).
Here, the solution of eq. (25) is f(s) = dn(s).

So, the PWS of eq. (22) is
(54) g(s) = /- 6% {i dn(s) £ V1 —m? nd(s)}.

When m — 1, eq. (54) will give rise to the SWS

(55) g(s) = £4/— G—bd sech(s).

3.3. Extended mapping method

Now, we use the extended mapping method in which we assume a solution of
equation (22) in the form

(56) g=4 +Af+Bf
where f satisfies eq. (25) and f* satisfies
(57) = et el U=t alf

We substitute eq. (56) into eq. (22), use eqgs. (25) and (57) and equate the co-
efficients of like powers of f to zero to arrive at a set of equations from which we
obtain

(58) Ao = 0,

(59) A :i\/304(pd+cv)303qd
c3b ’

v—pd—c
60 By =+ ———.
( ) ! Cgb

By this method, the new exact solution of eq. (22) is given by

(61 g(s) :i\/304(pd+ch_bv)_gcquf(s)i /v—ii—cf*@).
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Case 1.

p:2m2—1,q:—2m2,r:1—m2,

ci=m% g = —2m? 3 =1 —m? ¢4 = m?
In this case, f(s) = cn(s) and f*(s) = dn(s). Thus the PWS of eq. (22) is

(62) g(s) = £ W—i_—c_v)mcn(s) + \/v —c - (@m?-1)d dn(s).

(1—m2)b (1—m?)b
Case 2.
p=2-m? qg=-201-m?), r=-1
c—lc——2(1—m2)c——ic—L
1 =4, €2 = , 63 — mg? 4_m2'

In this case, f(s) = nd(s) and f*(s) = sd(s). So, the PWS of eq. (22) is

(63)g(s) = i\/?’(” — 2dm?) | i(s) + \/(2 —mAd ez v ).

b

Case 3.
p:2—m2,q:2,r:1—m2,

2

6121,0222,03:1—m764:1.

In this case, f(s) = cs(s) and f*(s) = ds(s). Thus the PWS of eq. (22) is

(64) g(s) = i\/ A ) \/ R Ly

When m — 0, eq. (64) will reduce to the solution

(65) g(s) = + 3(cb_v)cot(s) +4/ L{)_Qdcsc(s).

4. G'/G-expansion method

In this section, we carry out integration of the egs. (1) and (2) with G'/G
method which provides hyperbolic, trigonometric and rational function traveling
wave solutions. For solving egs (1) and (2) here, we consider eq. (11) as the converted
form of them. We assume that eq.(11) has a solution in the form of

m l
(66) o)=Y a(G) - an o
=0
where
(67) G"(s) + A\G'(s) + uG(s) =0
and a;, I =0,1,--- ,m, A and p are unknown constants to be determined later, and

to obtain the integer m in eq. (66), we balance (¢'(s))? with g*(4). So we have
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2m + 2 = 4m, hence m = 1. Therefore we can suppose that eq. (11) has a solution

in the form
!

(68) g(s) = ap + @ <Z> , a1 # 0.

Substituting eq. (68) with (67) in the eq. (11) and collecting all terms of the same
powers of % to gether gets a polynomial in % Then setting each coefficient of its
to zero gives a system of algebraic equations for ag, a1, A, 4 and v that solving it by
Maple gets the following solutions:

,\2 —3/\d /—6
(69) V=60 =
i\/

Since in eq. (69), A = A? — 4, = 0, so we obtain only the following traveling wave
solution of rational function type.
dﬂﬁ)()\cl + )\028 — 62)

b(c1 + c28) _Fb

(70) qz,t) = g(s) = +
and

(71) r(x,t) = h(s) = f(s), r(z,t) = h(s) = —f(s) £
where f(s) = %@))52)% and s = x — ct.

5. EXP-function method

In this section, we want to solve eqs. (1) and (2) with the exp-function
method. For this, we consider eq. (11) as their converted form. Now, we solve eq.
(11) with exp-function method which provides traveling wave solutions of the form

P2 ns

—_,, Qpe
(72) 9(s) = S

m=—p3 M

where p1,p2,ps and py are unknown positive integers. Using the ansatz (72) for
¢'(s)? and g*(s) gets
(73) (9")%(s) =

616_2(p1+p3)5 + -+ 0262(p2+p4)8

036_41735 + .+ c4e4p45

and
dye %P5 4 ... 4 doetr2s
(74) 9'(s) = 7= Tors
d3e=P3s ... 4 dyePa
where ¢;,d;, t =1,--- ,4 are obtained easily by calculations.

Balancing the highest order of exp-function in the egs. (73) and (74) gives
2p2 + 2ps — 4ps = 4p2 — 4ps
which leads

P2 = P4.
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Similarly, for determining p; and ps in eq.(72), balancing the lowest order of exp-
function in the eqgs. (73) and (74) gives

—2p1 — 2p3 +4ps = —4p1 + 4p3
which leads

b1 = Dp3.
Since the final solution dose not depend on the values of p1,p2,ps and py, so for
simplicity we let p; = p3 = 1 and pa = py = 1. Therefore eq. (74) becomes

a_1e %+ ap+ a€®
75 = .
(75) 9(s) b_1e~% 4 by + bye?
Substituting eq. (75) into eq. (11), and equating the coefficients of all powers of

€™ to zero yields a system of algebraic equations for a_1,ag,a1,b_1,bp,b; and v.
Solving the system with the Maple gives the following solutions.

bo =0, b bag d+
a1 =a_1=by= = v = c
1 1 0 s Ul 24b71d’ )
SO
ap
a(a, 1) = gs) = -
bore™® + g€’
and

r(z,t) = h(s) = f(s), r(z,t) = h(s) = - f(s) +

are the solution of egs. (1) and (2) where f(s) = % and s = x — (d+c)t.

6. CONCLUSIONS

This paper studied a coupled nonlinear wave equation that arises in the
study of nonlinear wavre equations. The traveling wave hypothesis was used to
extract the solitary wave solutions with restrictions on the parameters that are all
enlisted. The mapping method, modified mapping method and the extended map-
ping method are then subsequently and succesfully applied to obtain cnoidal wave,
snoidal wave and other doubly-periodic solutions to the coupled wave equations.
Finally the G’'/G and the exp-function method are used to obtain more solutions to
the coupled wave equations.

These solutions are going to be extremely useful in further studies of this equa-
tion. In fact, these results will be used to extract the conserved quantities of this
coupled system. Furthermore, the perturbation terms will be turned on and the soli-
ton perturbation theory will be utilized to obtain the adiabatic parameter dynamics
of the soliton parameters. These results will be reported in future publications.
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