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COMPARATIVE EVALUATION OF EVOLUTIONARY 

LEARNING FITNESS FUNCTIONS IN MODEL FITTING FOR 

HUMAN HEART RATE DURING TREADMILL EXERCISE 

Andreea ION1, Adrian PATRASCU2, Monica PATRASCU1,3,4 

With the prevalence of new wearable devices and personal sensing, model 

fitting from real-world human-generated data has become a topic of interest in the 

fields of bioengineering, sports science, and medical engineering. In this study we 

analyze a fitting procedure based on evolutionary learning for human heart rate 

during treadmill exercise. We propose a new fitness function for the genetic algorithm 

based on the Pearson correlation coefficient and the coefficient of determination. This 

study utilizes real-world experimental data collected for linearity analysis, baseline 

model fitting, and validation, and includes statistical analysis of validation data. 

Results show that compared with a classical fitness function based on the root mean 

of square error, the proposed function is suitable for model fitting.    
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1. Introduction 

Model fitting from real-world data is a crucial approach in the fields of 

sports and medicine that involves calibrating mathematical models to empirical data 

gathered from the performance of athletes, training regimens, and physiological 

responses. This process aids in optimizing training programs, injury prevention, and 

performance enhancement [1]. Similarly, in medicine, model fitting using real-

world patient data informs the understanding of physiological processes, disease 

progression, and treatment responses, ultimately leading to personalized healthcare 

interventions and improved patient outcomes [2]. 

The increase in wearable technology is currently enabling new methods of 

symptom assessment through digital phenotyping, which is defined as the on-line 

quantification of physiological responses using sensors and mobile devices [3]. 
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This trend increased the need for both computationally fast models obtained from 

raw data suitable for implementation on wearables (e.g., smartwatches), as well as 

fast, reliable fitting methods to be applied in on-line contexts (e.g., during exercise).  

For machine learning, this is a compelling challenge supported by recent 

interests of reducing dataset sizes required for learning. This research direction is 

called data-centric AI and advocates for data quality over quantity [4]. Ultimately, 

this aligns with the new ubiquitous computing individualized model fitting needs.  

Few studies regarding data-driven analysis and modeling of human heart 

rate (HR) response to physical exercise have been carried out in recent years. In [5, 

6] the authors modeled the HR response during exercise and recovery situations. 

The models contain feed-forward and feedback components and are trustworthy for 

short duration exercises. A non-switching, non-linear anti-windup integral control 

for the long duration heart rate response to treadmill exercise was developed in [7]. 

In [8], the authors show that HR will continue to increase during prolonged 

exercise, due to causes such as increased body temperature, dehydration, 

accumulation of metabolites. 

The identification and control of Hammerstein systems with the purpose of 

achieving a desired HR profile by tracking performances for an automated treadmill 

system is realized in [9], where the authors found a first order process for the HR 

model. A nonlinear system that models the HR response during and after treadmill 

walking exercise is developed in [10], as an interconnected system which consists 

of components that describe the central and peripheral local responses to exercise 

and their interactions. The model parameters were identified experimentally from 

subjects walking on treadmill at different speeds. Some studies focus on the 

dynamics of the HR response during exercises [11], for instance in [12] the model 

is formed of two coupled ordinary differential equations, for the HR kinetics in 

response to exercise. More recently, first and second order linear models have been 

explored [13]. 

Because human HR response to exercise is highly heterogenous, widely 

varying across categories (age, health status, neurological disorders, nutrition, time 

of day, circadian rhythm, physical fitness levels, lifestyle, etc.) [14], model fitting 

over real-world data is a problem that must result in individualized models. In this 

study, we explore HR model fitting with evolutionary learning, more specifically 

genetic algorithms [15]. These meta-heuristic optimization methods have been used 

in data-driven modelling with promising results [16].  

For genetic algorithms, the fitness function describes the problem to be 

solved, i.e., the criterion to be optimized. During the artificial evolution process, 

the potential solutions to the problem are tested against the fitness function and a 

level of their fit to solve the problem is calculated. For modelling, the fitness 

function returns a measure of how well the model output matches the real-world 

collected data. In [17], we presented several fitness functions as performance 
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indexes for real-coded genetic algorithms, which ascertain the level of fit based on 

the approximation error between the model output and the real-world data.  

The aim of this study is to determine whether fitness functions based on the 

root mean of square error, the Pearson coefficient of correlation, and the coefficient 

of determination are feasible to use for model fitting of HR response.  

The rest of the paper is organized as follows: Section 2 describes the 

method, Section 3 the results and discussion, and finally Section 4 the conclusions. 

 

2. Method 

Evolutionary learning model fitting. The basic principle of model fitting 

with evolutionary learning (Fig. 1) requires computing an approximation error ε 

between heart rate as experimental data yexp and model output ym for the model 

excited with the same treadmill speed as input u. The learning procedure (a genetic 

algorithm) optimizes criterion J to find a fit model M. The output of the genetic 

algorithm is a vector of model parameters MP that are coded into chromosomes as 

potential solutions of the fitting problem.  

 

 

Fig. 1. Model fitting with evolutionary learning on experimental real-world data. 

In this study, we employ a real-coded genetic algorithm that fits the data to 

a first order linear model given by: 

 

𝑀(𝑠) =
𝐾

𝑇𝑠+1
 ,              (1) 

 

where K is the model gain (adimensional) and T is the time constant (measured in 

seconds). Thus, the chromosome is given by: 

 
[𝐾 𝑇].              (2) 

 

The evolution mechanisms are: uniform mutation, which replaces a 

randomly selected gene with a random value within the specified gene boundaries; 

arithmetic crossover, which generates two children based on a linear combination 
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of two parents as described in [18]; normalized ranking selection, introduced in 

[19], which is based on the probability of selecting an individual based on a ranked 

list. The termination is at either 100 generations or performance of J = 0.0005.  

In this study, we propose a criterion JPR based on the Pearson correlation 

coefficient 𝜌 and the coefficient of determination 𝑅2 [20, 21]: 

 

𝜌 =
cov(𝑦𝑒𝑥𝑝,𝑦𝑚)

𝜎𝑦𝑒𝑥𝑝𝜎𝑦𝑚

and 𝑅2 = 1 −
∑ 𝜀𝑘

2𝑛
𝑘=1

∑ (𝑦𝑒𝑥𝑝𝑘
−𝑦̅𝑒𝑥𝑝𝑘

)𝑛
𝑘=1

 ,         (3) 

 

where n is the number of data samples, 𝜀 = 𝑦𝑒𝑥𝑝 − 𝑦𝑚 is the approximation error, 

and 𝑦̅𝑒𝑥𝑝 is the mean of the experimental data. Both 𝜌 and 𝑅2 measure the predictive 

power of the model and are defined over [-1, 1], where positive values are for 

increasingly better fits (0 is worst and 1 is best), while the negative values are for 

opposing signal variations. The proposed fitness function becomes: 

 

{
min

𝑘
𝐽𝑃𝑅(𝑘) =  min

𝑘

𝜌

𝑅2

0 < 𝜌, 𝑅2 ≤ 1
 .            (4) 

 

We then use a fitness function criterion JRMSE based on the classic root mean 

of square error (RMSE), defined as:  

 

min
𝑘

𝐽𝑅𝑀𝑆𝐸(𝑘) = min
𝑘

√
1

𝑛
∑ 𝜀𝑘

2𝑛
𝑘=1  .           (5) 

 

We also test the fitness functions given by (4) and (5) against two fitness 

functions with a criterions equal to either 𝜌 or 𝑅2 and the limit conditions: 

 

{
min

𝑘
𝐽𝑃(𝑘) =  min

𝑘
𝜌

0 < 𝜌, 𝑅2 ≤ 1
and {

min
𝑘

𝐽𝑅(𝑘) =  min
𝑘

𝑅2

0 < 𝜌, 𝑅2 ≤ 1
 .           (6) 

 

The search space of the model parameters has pre-defined boundaries given 

by: 𝐾 ∈ [𝐾𝑚𝑖𝑛, 𝐾𝑚𝑎𝑥] and 𝑇 ∈ [𝑇𝑚𝑖𝑛, 𝑇𝑚𝑎𝑥].  
Experimental setup and data acquisition. The experiment consisted of a 

series of HR measurements using a portable heart rate sensor during running on a 

treadmill. The subject was a fit male adult (35 years) that has at least 12 hours of 

training during his weekly schedule. For this experiment we used a Kettler Boston 

XL treadmill (Fig. 2) for controlling the running speed and a Polar Wearlink 

Bluetooth heart rate monitor to record their output (Fig. 2). The signal from the HR 

monitor was fed into a Labview VI that records the heart rate and then saved as an 

Excel Worksheet file. The treadmill can generate speeds between 0 and 16 km/h, 
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while the sensor measures HR between 20 and 250 beats per minute (bpm). 

 

 
Fig. 2. Equipment for data acquisition: treadmill (left) and sensor (right). 

Two data collection experiments were performed: for linearity analysis and 

for dynamic model fitting.  

Experiment 1: linearity analysis. The protocol for this experiment used a 

gradual increase in treadmill speed: 15 minutes warm-up; 7 minutes at 4 km/h; 7 

minutes at 6 km/h; 5 minutes at 8 km/h; 5 minutes at 10 km/h; 5 minutes at 12 km/h; 

5 minutes at 14 km/h; 15 minutes cool-down. 

Experiment 2: model fitting. The protocol for this experiment was split into 

two stages spanning over 8 weeks, to allow for variations in the response of the 

exercise. First, a baseline measurement was collected at week 1. During week 8, six 

measurements were collected once a day. The measurement protocol is: 15 minutes 

warm-up; 5 minutes at 6 km/h; 5 minutes at 12 km/h; 10 minutes cool-down. 

Analysis. Data from Experiment 1 informs the linearity analysis, through 

which we test the time invariance of the HR response for speeds in the [4, 14] km/h 

interval. Thus, we can determine the running speeds for which model M described 

in (1) will be valid. Data for Experiment 2 informs the model fitting with 

evolutionary learning. To obtain an adimensional model gain K, we first normalize 

input and output data to [0, 1]: a) conversion to percentages, b) vertical shift to 

initialize the response in 0, and c) scaling by step size. The normalization procedure 

is standard for data-driven dynamic model identification [17].  

In our study, we conducted an analysis of variance (ANOVA) test to analyze 

the differences among the four fitness functions. To account for the increased risk 

of errors resulting from multiple comparisons, we applied a post-hoc Bonferroni 

test. This test adjusts the significance level for each individual comparison, ensuring 

a more rigorous threshold and reducing the likelihood of false positives.  

All fitting, optimization, analyses, and visualizations are obtained using 

Matlab 16 and SPSS 17.0b. Results are considered significant for 𝑝 < 0.05. 

Implementation. The evolutionary learning procedure is available as a case 

study included in the MATLAB/Simulink GAOT-ECM (Genetic Algorithm 
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Optimization Toolbox: Extension for Control and Modeling) software package, 

which is available for download at [22] and includes test data. A detailed 

description of the toolbox extension is given in [17]. The toolbox is based on the 

GAOT implementation by [23]. The example for this study includes: 

1. Level 1: inexperienced users can customize the demonstration script 

configuration using the "HRidentification.m" file: 

• name of a Simulink implementation (*.mdl file) of the model to be 

fitted; GAOT-ECM provides several model structures. 

• name of a *.mat file that is used in identification process, containing:  

o initial and general boundaries for each model parameter. 

o an array containing the input and output experimental data. 

o name of the fitness function (*.m file). 

o name of performance criterion (from [17]). 

2. Level 2: allows more advanced configuration settings in the main 

function "GAOT ECM ModelIdentification.m" [23]: 

• evalFN: name of the *.m file that represents the fitness function. 

• termFNOptimalValue: scalar representing a termination constraint 

(satisfactory fitness chosen by user). 

• initBounds, varBounds: arrays containing the initial and general 

search domains for each parameter (one line per parameter). 

• populationSize: scalar number of individuals per generation. 

3. Level 3: configurations of the GA itself in file "GAOT ECM 

ModelIdentificationGA.m": number of generation, accepted tolerance, 

selection methods, crossover and mutation operators [23]. 

Note: the GAOT-ECM package provides several configuration options for 

model identification. Depending on the model structure, the effects of these 

parameters can vary or be inconsistent over several runs of the algorithm. 

Ethics approval is in accordance with ethical guidelines under Romanian 

Law No. 206 27/05/2004. The data collection took place at and was approved by 

the departmental review board of the Center for Interdisciplinary Research in 

Physical Education and Sport, at Babes-Bolyai University, Cluj-Napoca, Romania. 

The study participant gave written consent for participation and publication. 

 

3. Results and discussion 

Linearity analysis. The data from Experiment 1 is illustrated in Fig. 3 (left). 

The linearity interval is between [6-14] km/h, obtained by least-squares first-order 

polynomial fitting over sets of the data points (pairs of heart rate and input speed) 

and selecting the interval with best fit.  

Model fitting. The baseline measurement of Experiment 2 (not normalized) 

is presented in Fig. 3 (right). The heart rate response to a step input from 6 to 12 
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km/h treadmill speed has a shape suitable for fitting over a first order linear model 

as described in (1). 

 
Fig. 3. Experiment 1 data (left) and Experiment 2 baseline data (right) 

The results of the evolutionary learning for the four fitness functions are 

presented in Table 1 and Fig. 4. The genetic algorithm procedure was run 10 times 

for each fitting. All Pearson correlation calculations had 𝑝 ≪ 0.001 and all runs 

terminated at the 100 generations conditions. The mean elapsed time for each run 

was between 2 and 3 seconds (on a system equipped with an Intel Core i5 CPU 

@2.60 GHz and 16 GB of installed memory), which means that the evolutionary 

learning procedure, with proper code optimization, would be able to run on portable 

devices, such as smartwatches. This also means that individualized models can be 

fitted with low computing time expenses.   

Results show that the performances of the proposed ρ/R2 fitness function are 

comparable with the classic RMSE criterion, with small parameter variance and 

comparable, very high predictive power (both ρ and R2 higher than 95%). The 

fitness function based on ρ alone produced the worst fit; this is because the Pearson 

correlation coefficient is a good indicator of shape, but not of scale. The fitness 

function based on the coefficient of determination produced satisfactory results, but 

the with low correlation and large parameter variation. 
Table 1 

Mean model parameters and fitting performances. 

Fitness 

function 

K 

[Kmin; Kmax] 

T [s] 

[Tmin; Tmax] 
RMSE 

Pearson 

coefficient ρ  

Coefficient of 

determination R2 

Elapsed 

time [s] 

1. ρ/R2 
0.594 

[0.586; 0.603] 

24.12 

[24.28; 28.01] 
0.022 0.973 0.988 2.270 

2. RMSE 
0.592 

[0.585; 0.598] 

24.68 

[23.26; 25.66] 
0.021 0.974 0.990 2.138 

3. ρ 
0.518 

[0.484; 0.566] 

1.71 

[1.04; 2.92] 
0.124 0.144 0.473 2.649 

4. R2 
0.6 

[0.439; 0.824] 

42.41 

[4.78; 67.42] 
0.133 0.011 0.911 2.557 
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Fig. 4. Results of the evolutionary model fitting on Experiment 2 baseline data 

We use the remaining six measurements of Experiment 2 for validation. 

Table 2 shows the performances of the four models against these measurements as 

means for RMSE, Pearson correlation coefficient ρ and coefficient of determination 

R2. Fig. 5 presents the response of the four models fitted on the baseline data 

overlaid onto each of the six measurements.  
Table 2 

Validation results means and standard deviations (SD) over six measurements. 

Fitness 

function 
K T [s] 

RMSE 

Mean (±SD) 

Pearson coeff. ρ  

Mean (±SD) 

Coeff. det. R2 

Mean (±SD) 

1. ρ/R2 0.594 24.12 0.047 (±0.019) 0.990 (±0.005) 0.901 (±0.060) 

2. RMSE 0.592 24.68 0.050 (±0.017) 0.988 (±0.006) 0.888 (±0.067) 

3. ρ 0.518 1.71 0.151 (±0.015) 0.456 (±0.039) 0.062 (±0.111) 

4. R2 0.6 42.41 0.056 (±0.044) 0.984 (±0.009) 0.854 (±0.204) 
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Fig. 5. Responses of the four fitted models against the six validation measurements  

A one-way ANOVA between experiments was conducted to compare the 

model fitting outcomes calculated for the validation data (RMSE, coefficient of 

determination R2 and Pearson correlation coefficient ρ) for the four heart rate 

models obtained with the four fitness functions: ρ/R2, ρ, RMSE and R2. We found 

a significant statistical difference (𝑝 < 0.05) for all three conditions: RMSE [F(3, 

20) = 3.19, 𝑝 ≪ 0.001], coefficient of determination R2 [F(3, 20) = 109.35, 𝑝 ≪
0.001] and Pearson correlation coefficient ρ [F(3, 20) = 1963.82, 𝑝 ≪ 0.001].  

 

Table 3 

Results of the post-hoc Bonferroni test for the ANOVA test  

Dependent 

Variable 
Pair 

Mean 

Difference 

Standard 

Error 
p-value 

RMSE 

ρ/R2 vs. RMSE -0.00322 0.01150 1 

ρ/R2 vs. ρ -0.10416* 0.01150 ≪ 0.001 

ρ/R2 vs. R2 -0.00858 0.01150 1 
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RMSE vs. ρ -0.10094* 0.01150 ≪ 0.001 

RMSE vs. R2 -0.00536 0.01150 1 

ρ vs. R2 0.09558* 0.01150 ≪ 0.001 

Coefficient of 

determination R2 

ρ/R2 vs. RMSE 0.01257 0.05545 1 

ρ/R2 vs. ρ 0.83873* 0.05545 ≪ 0.001 

ρ/R2 vs. R2 0.04655 0.05545 1 

RMSE vs. ρ 0.82616* 0.05545 ≪ 0.001 

RMSE vs. R2 0.03398 0.05545 1 

ρ vs. R2 -0.79218* 0.05545 ≪ 0.001 

Pearson correlation 

coefficient ρ 

ρ/R2 vs. RMSE 0.00216 0.00847 1 

ρ/R2 vs. ρ 0.53355* 0.00847 ≪ 0.001 

ρ/R2 vs. R2 0.00557 0.00847 1 

RMSE vs. ρ 0.53139* 0.00847 ≪ 0.001 

RMSE vs. R2 0.00341 0.00847 1 

ρ vs. R2 -0.52798* 0.00847 ≪ 0.001 

 

Upon conducting post-hoc comparisons using the Bonferroni test (Table 3), 

we found that among the three outcomes (RMSE, coefficient of determination R2 

and Pearson correlation coefficient ρ), the third fitness function (ρ) demonstrated 

significant statistical differences. Conversely, no significant statistical differences 

were observed when comparing any combination of the remaining three fitness 

functions outcomes. These results highlight that the fitness function based on the 

Pearson coefficient alone does not provide consistent results, in the context of the 

evaluated outcomes, while emphasizing the consistency of the other three fitness 

functions in their statistical performance. A non-significant outcome from the 

Bonferroni test indicates that the performance of each fitness function in the 

comparison pair is practically indistinguishable. Accordingly, these favorable 

results support the adoption of our proposed fitness function (ρ/R2) for model fitting 

of human heart rate during treadmill exercise. 

 

4. Conclusions 

In this paper we study human heart rate model fitting with genetic 

algorithms, in which we defined fitness functions based on the root mean of square 

error, the Pearson correlation coefficient, and the coefficient of determination. The 

purpose is to determine if these fitness functions are feasible to use for model fitting 

of heart rate response during treadmill exercise. The implemented genetic algorithm 

fits the data to a first order linear model. An example of model fitting with various 

fitness functions is available as part of the GAOT-ECM toolbox.  
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The proposed fitness functions are (1) minimization of the ratio ρ/R2 

between the Pearson correlation coefficient ρ and the coefficient of determination 

R2; (2) minimization of the classic root mean of square error (RMSE); (3) 

minimization of the Pearson correlation coefficient ρ, and (4) minimization of the 

coefficient of determination R2.  

We performed two data collection experiments, for linearity analysis and 

for dynamic model fitting. Results show that the performances of the proposed 

fitness function based on ρ/R2 are comparable with the classic RMSE criterion. The 

fitness function based on ρ alone produced the worst fit, while the one based on R2 

produced satisfactory results, but with lower correlation.  
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