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In this paper we obtain a Tauberian condition in terms of the weighted
classical control modulo for the weighted mean method of summability. Some ad-
ditional results are also given.
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1. Introduction

Let p = (p,) be a sequence of nonnegative real numbers with

n
po >0 and Pn::Zpk—>oo (n — o00). (1)
k=0

The n-th weighted mean of u = (uy,) are defined by

1 n
07(11,;)0(“) = P, Zpkuk-
k=0

A sequence (u,) is said to be summable by the weighted mean method (N, p) to £,
written as u, — £ (N,p), if

lim o) (u) = ¢. (2)

n—oo WP

Let X and Y be two sequence spaces and A = (a,) be an infinite matrix.
If for each € X the series A, (z) = Y po,anky converges for each n and the
sequence Ax = (Apx) € Y we say that the matrix A maps X into Y. By (X,Y) we
denote the set of all matrices which map X into Y. Let ¢ be the set of all convergent
sequences. A matrix A is called regular if A € (¢, ¢) and lim,, 00 Apx = limg_, oo Tk
for all x € c.

The matrix representation of weighted mean method (N,p) is denoted by
W = (wpk), where wyy, is defined by w,; = %: if k <n and wy,; = 0 otherwise.

It is known that (N,p) summability method is regular, i. e, W € (c,¢)yeq if
and only if (1) holds.
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The Silverman-Toeplitz theorem states that A = (a,) is regular if and only
if
(R1) [[A]] = sup,, 3, |ank| < oo,
(R2) limy,—y00 ang = 0 for each k,
(R3) limy o0 D g @nk = 1.
If the limit
lim w, = ¢ (3)

n—oo

exists, then (2) is satisfied. However, the converse is not always true. Notice that (2)
implies (3) under certain condition(s), which is called a Tauberian condition. Any
theorem which states that convergence of sequences follows from (N, p) summability
method and some Tauberian condition is said to be a Tauberian theorem for (N, p)
summability method. If p, = 1 for all nonnegative n, then (N,p) summability
method reduces to Cesaro summability method. The backward difference of (uy,)
is defined by Au, = u, — up—1 for all nonnegative n, where u_; = 0. The differ-
ence between u,, and its n-th weighted mean ag{%(u), which is called the weighted
Kronecker identity [2] is given by the identity

where

1 n
" k=1

The weighted classical control modulo of (u,) is denoted by wﬁl%(u) = %Aun and
the weighted general control modulo of integer order m > 1 of (u,) is defined in [2]
by
I .
wg;)(u) = wg’;_l)(u) ~5 Zpkw,(g; )(u)
" k=0
For each integer m > 0, we define a,(ff;,) (u) by

n

1 _
= mopn V) m>1

oy ()= Po k=0
Unp, om=20

A sequence (uy,) is said to be slowly oscillating [5] if

lim  (xy —x,) =0.
1< —=1n—o00
In terms of € > 0 and §, this definition is equivalent to the following: for any given
€ > 0, there exist 6 = J(e) > 0 and the positive integer N = N(e¢) such that
|Tm — xn| < eif n > N(e) and n < m < (1 + 0)n.
Our aim in this paper is to obtain a Tauberian condition in terms of the

weighted classical control modulo for (/V,p) summability method. Some additional
results are also given.
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2. The Result

We prove the following Tauberian theorem for (IV, p) summability method.

Theorem 2.1. Let (p,) be a sequence of nonnegative numbers such that pg > 0,

P, _
- =0(n), n— oo, (5)
Pn
N
lim inf >1 for every X\ > 1, (6)

n—00 -

where [An] denotes the integral part of the product An, and let u, — ¢ (N,p). Then
(up) converges to £ if for some t > 1

[n]
(A-1)" lllﬂsogp S @)t = o(1), A1t (7)
j=n+1

Note that the condition (6) imposed on the sequence (p,,) was used in [4].

Remark 2.1. We note that if
n
th_1|w](-g)) (u)|" = logwy,, t>1 (8)
for some O-Regularly varying sequence (vy,), then (8) is equivalent to (see [6])

LSt Ot
nz_:lj jwio (w)|" = O(1), n— oo t>1.

We remind the reader that a positive sequence (u,) is O-Regularly varying [1]
if

lim sup Hhxn }<oo for A > 1.

n—oo  Up

3. Lemmas

We need the following Lemmas for the proof of Theorem 2.1.
Lemma 3.1. ([2]) Let u = (uy,) be a sequence of real numbers.
For A\ > 1 and sufficiently large n,

[An]

P
CoW) = (W)
Unp, U'n,p(u) P[/\n] — Pn (O-[An]vp(u) O-nyp(u)) P[,\n] - P kalpk 7 ;—1 Auj’

where [An] denotes the integer part of An.
Lemma 3.2. ([2]) For a sequence (uy,),

Pn—l
Pn

Aot (w) = VO (Auw).

n,
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For a sequence u = (u, ), we define

(PnlA) Uy = (Pnl A) <Pn1AUn> _ PnflA <(Pn1 A> Un) ’
Pn m Dn m—1 Pn Pn Pn m—1

where

<Pn_1 A) Uy = Unp,
Pn 0

P, _ P,_
< n 1A> Up = — 1Aun.
Pn 1 Pn

, and

Lemma 3.3. ([3]) For a sequence (uy) and any integer m > 1,

(™) () = <Pn1 A) Vm D (Au).

4. Proof of Theorem 2.1

By Lemma 3.1,
[An]

P
_ 5 _ el () ey ‘
Up, — 0 (u)| < o — P a[/\n]’p(u) anyp(u)‘ +j:§n+1 | Al

By (6), we have
-1

(11)

limsupﬁz 1—;]3 < 00
nooo Pag = Fa lim inf it
n—oo n
Hence, we have
. P/\n
lim sup 7}3[/\ ][ ]P O-[(;’I)'L],p<u) — a,(ll,l))(u)
n—00 n| — 4in
< limsup P lim sup ‘0(1) (u) — 6‘
- n—00 [An] — Pn n—00 [Anl.p
Pon .
+ limsu limsup |01 (u) — E’ .
n—)ocp P[)\n] - Pn n—>oop n,p( )

Since (uy) is (N,p) summable to £, both the limits
: (1) _
nli)ngo U[)‘n})p(u) =1
and

: 1
s o) =

exist. Therefore, we have, by (11),

P
limsup¢ o) (w) — ot (w)| = 0.

n—o00 [An] — Pn
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For the second term on the right-hand side of (10) we obtain

[An] [An]

bj 1
Z ‘A'LL]| S Z B ] |A j’
j=n+1 Pt Pj_1 pj
[An]
= Bi_1,©
- Z w; o (u)
. J,P
j=n+1 I)Jfl
[An] s % [An] %
Pj 0
< Z <p,] 1> Z ‘w](p)(u)\t , where % + % -1
g=ntl ” Jj=n+1

o+ =

[An] t 1| (0)( )|

-1
j=n+1 J
[An] —n s Lo :
AN =17, (0) ¢ it
< (M=) X (13
j=n+1
From (13), we have
1
[An] ) [\n] " B
limsup > [Au| < (A=) limsup | 35T e | (14)
j=n+1 j=n+1
From (12) and (14), we have
[\n] B
1
un—ag{;(u)‘ <O -Ditimsup | > 5 eQ@)t ] =0 (15)
n—o0o n—o0o j=ntl

Letting A — 17 in (15) and taking (7) into account, we conclude that

msup [u, an{;(u)’ —0. (16)

This completes the proof of Theorem 2.1.

5. Some additional results

If we replace the (N, p) summability of (u,) in Theorem 2.1 by the summability
of (aﬁb %(u)) and (Vé?p) (Au)), we have the following theorems.

Theorem 5.1. Let (p,) be a sequence of nonnegative numbers such that pg > 0, the
conditions (5) and (6) are satisfied and let J&},(u) — ¢ (N,p). Then u, — £(N,p)
if for some t > 1
[An]
(A —1)" 'limsup Z Gt 1| (Au)\ o(1), A—1%. (17)



96 Ibrahim Canak

Proof. If we replace u = (uy,) by o(u) = (af}},(u)) in wqg?%(u) = P"—:Aun, we obtain

P
that wé%(a(u)) = %Aag%(u). By Lemma 3.2,

P,
"= Aot (w) = VO (Aw).
Pn
All the conditions of Theorem 2.1 are satisfied and the condition (7) becomes (17).
This completes the proof of Theorem 5.1. g

Theorem 5.2. Let (p,) be a sequence of nonnegative numbers such that pg > 0, the
conditions (5) and (6) are satisfied and and let VVE,(;,)(AU) — ((N,p). Then (uy) is
slowly oscillating if for some t > 1

[An]
t—17: -1y (1) t_ +
(A=1) hTrLILsOL;p ' g 1] w;,(W)[" =0(1), A—=17. (18)
J=n+

Proof. If we replace u = (u,) by V(O (Au) = (Vrff)p) (Au)) in wr(gz),(u) = %Aun, we
obtain that wé?},(v(o)(Au)) = %AVA?(AU). By Lemma 3.3,
Pnfl
Pn
All the conditions of Theorem 2.1 are satisfied and the condition (7) becomes (18).

So, we have convergence of (Vn(gy)(Au)) to L.
It follows from Lemma 3.2 that

~ Pk (0
o) = ol m) = 30 pVi (Aw)

AVO (u) = wl(w).

n?p n?

for n > m. By the condition (5) and the boundedness of (Vn(f)p) (Aw)), we have

for some constant C' > 0. Taking the limit of both sides of the last inequality as
(1)

= — 1, and m — 0o, we obtain that (opp(u)) is slowly oscillating. By Kronecker
identity, (u,) is slowly oscillating. This completes the proof of Theorem 5.2. g

6. Examples and an application for Theorem 2.1

If we take p, = 1 for all nonnegative n, then summability by the weighted mean
method (N, p) reduces to the Cesaro summability method. We have the following
examples of Theorem 2.1.

Example 6.1. A Cesaro summable sequence (uy,) to £ converges to ¢ in the ordinary
sense if
[An]
(A =D imsup Y 7l (@)[f = o(1), A 1Y, (19)
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If wT(IO% (u) = " for some bounded sequence (ay) in Example 6.1, then we have
' n

the following example.

Example 6.2. A Cesaro summable sequence (uy,) to £ converges to ¢ in the ordinary
sense if
[An]
ja;l* _

(A — 1) Mlimsup
J

n—oo

o(1), A—1T, (20)
j=n+1
where (a,) is a bounded sequence.

We have the following result as an application of Theorem 2.1.

An application. Let (p,) be a sequence of nonnegative numbers such that

po > 0, the conditions (5) and (6) are satisfied and let u, — ¢(N,p). Then (uy,)
converges to £ if

3w (W)l = log vy, (21)
j=1

for some O-Regularly varying sequence (v,,) and for some t > 1.

Proof. Let the conditions (5) and (6) be satisfied and let u, — ¢ (N,p). If
>y ()] = logun,
j=1

for some O-Regularly varying sequence (v,,) and for some ¢ > 1, then it is easy to
show that the condition (7) is satisfied. Indeed, the left side of the condition (7)
becomes

(A — 1) lim sup(log V) — log vn),

n—oo

which is o(1) as A — 1T by the definition of O-Regularly varying sequence. O
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