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END POINT OF SOME GENERALIZED WEAKLY
CONTRACTIVE MULTIVALUED MAPPINGS

M. Eslamian!, A.Abkar?

In this paper, we prove the existence of a common end point for a pair
of multivalued mappings satisfying a new generalized weakly contractive condition
i a complete metric space. Qur result generalizes some results of Dutta and
Choudhury (2008), and Zhang, Song (2010).
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1. Introduction

Banach contraction principle is a remarkable result in metric fixed point the-
ory. Over the years, it has been generalized in different directions and spaces by
mathematicians.

In 1997, Alber and Guerre-Delabriere [1] introduced the concept of weak con-
traction in the following way:

Definition 1.1. Let (E,d) be a metric space. A mapping T : E — E is said to be
weakly contractive provided that

d(Tz, Ty) < d(z,y) — ¢(d(z,y))
where x,y € E and ¢ : [0,00) — [0,00) is a continuous nondecreasing function
such that o(t) = 0 if and only if t = 0.

Using the concept of weakly contractiveness, they succeeded to establish the
existence of fixed points for such mappings in Hilbert spaces. Later on Rhoades
[10] proved that the result of [1] is also valid in complete metric spaces. Rhoades
[10] also proved the following fixed point theorem which is a generalization of the
Banach contraction principle, because it contains contractions as a special case when
we assume that ¢(t) = (1 — k)t for some 0 < k < 1.

Theorem 1.1. Let (E,d) be a complete metric space and let T : E — E be a
weakly contractive mapping. Then T has a fized point.

Since then, fixed point theory for single valued, as well as for multivalued
weakly contractive type mappings was studied by many authors; see [2-9], and [11-
13].
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Let (E,d) be a metric space, and let B(F) denote the family of all nonempty
bounded subsets of E. For A, B € B(E), define the distance between A and B by

D(A, B) = inf{d(a,b) : a € A,b € B},
and the diameter of A and B by
d(A, B) = sup{d(a,b) : a € A,b € B}.

Let T : E — B(FE) be a multivalued operator, then an element z € E is said to
be a fized point of T provided that = € T(x) and it is called an end point of T
if T(x) = {x}. The purpose of this paper is to prove the existence of a common
end point for a pair of multivalued mappings satisfying a new generalized weakly
contractive condition in a complete metric space. Our result generalizes and extends
some results of Dutta and Choudhury [6], and Zhang, Song [13].

2. Main Results

In this sequel, we denote by ® the class of all mappings ¢ : [0,00) — [0, c0)
satisfying the following conditions:
(i) ¢(t) =0 if and only if ¢ = 0;
(ii) ¢ is a lower semi continuous function ;
(iii) for any sequence {t,} with lim, . ¢, = 0, there exist k € (0,1) and ny € N,
such that ¢(t,) > kt, for each n > ny.
Examples of such mappings are p(z) = kz for 0 < k < 1 and ¢(x) = In(z + 1) (see
also [9]). Let © denote the class of all mappings f : [0,00) — [0, 00) satisfying the
following conditions:
(i) f(t) =0 if and only if t = 0;
(ii) f is non-decreasing;
(iii) f is continuous;
(iv) f(z+y) < f(z)+ f(y).
Finally, let ¥ denote the class of mappings ¢ : [0, 00) — [0, 00) which are continuous
and non-decreasing with ¢ (¢) = 0 if and only if ¢ = 0.
Let (E,d) be a metric space, and let T,S : E — B(FE) be two multivalued
mappings, we define

)

M (z,y) = max {d(m,y), §(Tx,z),0(y, Sy), D(y,Tx)+ D(x,Sy) }

2
and
N(z,y) = min{D(y, Tz), D(x, Sy)}.

We now state the main result of this paper.

Theorem 2.1. Let (E,d) be a complete metric space, and let T, S : E — B(E) be
two mappings such that for all x,y € £
fO0(Tx, Sy) < f(M(z,y)) — o(f(M(z,y))) + (N (z,y)) (2.1)

where p € ®, v € ¥ and f € Q. Then S and T have a common end point z € E,
i.e, Sz =Tz ={z}.
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Proof. We construct a sequence {z,} as follows. Take z¢p € E and for n > 1 we
choose xo,+1 € Txoy := Aoy, and xopy9 € Sxopt1 := Aonr1. Now we have
M (z2n, T2n+1)
= maX{d(xQn, x2n+1)7 5(T$2n; x2n); 6(Sx2n+17 $27’L+1)7
D(Tx?m x2n+1) + D(S$2n+1, xZn)

> }
< max{d(Azn—1, A2n),0(A2n_1, A2), 0(Aopnt1, A2n),
D(Txon, xan+1) + D(Sxont1, Ton) )

2
6 A n 7A n—
< max{0(Azn—1, A2n), 0(A2nt1, A2n), . +12 : 1)}
< maX{5(A2n—1, AQn)v (5(A2”+1’ A2n)’

§(Azn, Aon—1) + 6(Azn, A2n+1) )
2

= max{é(A2n717 AQn)7 5(A2n+1> AZn)}

and
N(z2n, v2n+1) = min{ D(Tw2n, Tant1), D(ST2nt1,v2n)} = 0.
By assumption

f(0(Azn, Aony1)) = f(6(T2n, Sw2p41))
< f(M(22n, 2on+1)) — o(f (M (220, T2n41))) + (N (T2n, Ton+1))
= [(M (220, T2n+1)) — P (f (M (220, T2n+1))
< f(M(22n, T2n+1)-

Since f is non-decreasing, we have

0(Aop, Aont1) < M(22p, T2n41)-
Now, if §(Asn_1, Asn) < (Asns1, Asp) then

M (220, Tont1) < 0(A2nt1, A2n),
from which we obtain

M (w2, ont1) = 6(A2n11, A2n) > 0(A2n-1, A2n) > 0,

and

f(0(Azn, Aony1)) = f(6(T2n, Sw2p41))
< F(M(@2n, won1)) — o(f (M (22n, ¥2n41))) + (N (T2n, T2n11))
= [(M (220, T2n+1)) — o (f (M (Z2n, T2nt1))
< f(M(22n, x2n+1) = [(0(A2n+1, A2n))
which is a contradiction. So we have
0(A2py1, A2n) < M (220, T2n41) < 6(A2pn, Azp1).
Similarly we obtain

O(Azn+1, Aont2) < M(xont1, Tant2) < 6(Aznt1, Aopia).
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Therefore the sequence {J(A,, An+1)} is monotone decreasing and bounded below.
So there exists » > 0 such that

lim §(A,, Apt1) = lim M(z,,zp41) =7

n—-oo n—aoo

We now claim that r = 0. In fact taking upper limits as n — oo on either sides of
the inequality

f(6(A2n; A2ni1)) = f(6(Txan, ST2n+41))
< f(M($2n,$2n+1)) ( (M( 2n>m2n+1))) +71Z)(N(x2nal'2n+l))
= f(M (220, T2n+1)) — ¢(f (M (220, T2n+1)))

we have
f(r) < f(r) —ef(r)

which is a contradiction unless » = 0. Thus lim,—,~ (A4, An+1) = 0 and hence
lim,,— 00 d(zp, Tnt+1) = 0. Now we shall prove that {z,} is a Cauchy sequence.
Indeed, Since lim,— o f(M(zy,2nt+1)) = 0 by the property of ¢ there exist 0 <
k <1 and ng € N, such that o(f(M(xn,znt1))) > kf(M(zp, Tny1)) for all n > ng.
On the other hand, for any given € > 0, we can choose > 0 in such a way that
f(n) < ﬁf(s). Moreover, there exists ng such that d(A,, A,—1) < n for each
n > ng. For any natural number m > n > ng if n is even, we have

f(6(An; Ant1)) < f(6(Tan, STni1))
< f(M(2n, 2n41)) — @(f (M (2, Tnt1)) + (N (Tns Trt1))
< (1 =k)f(M(zn, 2p11)) < (1= k) f(6(An, An—1)).

By this inequality, we get for [ > n
FO(ALAIL)) < (L= k) F(0(A_1, Ai2)) < -+ < (L= k)" F(5(An, An—1))

Therefore we have

f(6(An; Am)) < f(6(An, Ant1) + 0(Angr, Anga) + -+ + 6(Am-1, Am))
<f( ( A ))"‘f( ( n+1>An+2))+"'+f(5(Am—1=Am))
= (1 - k)f(5<AnvAn—1)) +
+ (1 =k (5(Ap, A1) + (1= k)™ " f(5(An, Ap_1))
C(1—k)— (1= kym-nL
- 1_ (1 — k‘) f(é‘(AnyAnfl))

< 2R (A An))) < 2R 1) < 560)

Now, by the nondecreasingness of f we obtain §(A,, A,,) < &. From the construction
of the sequence {z,}, it follows that the same conclusion holds for {z,}, i.e. for each
e > 0 there exist ng such that for any natural numbers m > n > ng, d(zy, Tm) < €.
This shows that {z,} is a Cauchy sequence. Notice that F is complete, hence {z,,}
is convergent. Let us denote its limit by lim,,_,., x, = z for some z € E. Now we
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prove that 6(7T'z, z) = 0. Suppose that this is not true, then §(7'z,z) > 0. For large
enough n, we claim that the following equations hold true:

M(Zv x2n+l) = maX{d(Za $271-i-1)7 6(25 TZ), 6(S$2n+17 $2n+1)7
D(TZ, x2n+l) + D(S$2n+1, Z)

5 }=9(2,T2).
Indeed, since
6(Sx2n+17$2n+1) < (5(142”_,_1, Azn) — 0,
and
lim D(Tz,x9n41) + D(Sxont1,2)
n—so0 2
< lim 8(Tz,2) + d(z,x2n+1) + 0(STon+t1, Tont1) + d(T2n11, 2)
S 5
(T2, 2)
5

it follows that there exists k € N such that M (z,z9,+1) = d(2,T%2) for n > k. Note
that

f((s(TZw%'QTH-Z)) < f(é(Tza S$2n+l))
< f(M(z,22n41)) — o(f (M (2, 22n41)) — (N (2, B2n41))-
Letting n — oo, we have
f(5(TZ,Z)) < f(5(TZ, z)) - (p(f((S(TZ, Z)))

i.e, p(f(6(Tz,z2))) < 0. This is a contradiction, therefore §(T'z,2) = 0 i.e., Tz = {z}.
And since

D(Tz,z)+ D(Sz,z)
2

= max{0(Sz, z),

M(z,z) = max{d(z,z),0(Tz,z),0(z,5z2), }

M} = 5(Sz,2)

and
N(z,z) =min{D(z,Tz2),D(z,5z)} =0

we conclude that

f(8(2,82)) < f(6(T2, 52))
< f(M(2,2)) = o(f(M(2,2))) + $(N(2,2))
< f(6(2,52)) — (f(0(5%, 2))),
which in turn implies that Sz = {z}. Hence the point z is a common end point of

S and T.
O

Theorem 2.2. Let (E,d) be a complete metric space, and let T, S : E — B(E) be
two mappings such that for all x,y € £

f(0(Tz, Sy) < f(M(z,y)) — o(f(M(z,y))) (2.2)
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where ¢ € ® and f € Q. Then S and T have a unique common end point z € E.i.e,
Sz=Tz={z}.

Proof. By theorem 2.1, T' and S have a common end point z. Now let y € E be
another common end point of S and T'. Notice that

D(Ty,y) + D(Sy,y)
2

M(y,y) = max{d(y,y),0(Ty,y),(y, Sy), }

= max{d(Sy,y),0(y,Ty)}.

Hence

f(6(y, Ty)) < f(6(Sy, Ty)) < fF(M(y,y)) —e(f(M(y,y)))
< f(maz{é(y, Sy),d(y, Ty)}) — ¢(f(max{d(y, Sy),(y, Ty)}))-

Similarly, we have

f((y, Sy)) < f(6(Ty, Sy)) < F(M(y,y)) — o(f(M(y,y)))

Therefore

f(max{d(y, Sy),0(y, Ty)}) <
f(max{d(y, Sy),d(y, Ty)}) — ¢(f (max{d(y, Sy),d(y, Ty)})))

which implies that max{d(y, Sy),d(y,Ty)} = 0, hence 6(Ty,y) = §(Sy,y) = 0. Now
we have

D(y,Tz) + D(z, Sy)
2

M (z,y) = max{d(z,y),d(z,Tz),0(y, Sy), }

and

fld(z,y)) = f(6(S2,Ty)) < f(M(z,y)) — ¢(f(M(2,y)))
= f(d(z,y)) — ¢(f(d(z,y)))

that imply d(z,y) = 0 i.e, z = y. Hence z is the unique common end point of S and

T. U

If in Theorem 2.1 we put f(¢) =t and ¢(t) = (1 — k)t, for some 0 < k < 1,
then we obtain the following result.

Theorem 2.3. Let (E,d) be a complete metric space, and let T, S : E — B(FE) be
two mappings such that for all x,y € K

§(Tx, Sy) < k(M(z,y)) + (N (z,y)) (2.3)
where 1p € W. Then S and T have a common end point z € E, i.e, Sz =Tz = {z}.

Let T and S be two single valued mappings, the we obtain the following
theorem:

Theorem 2.4. Let (E,d) be a complete metric space, and let T, S : E — E be two
mappings such that for all x,y € E

fd(Tz,Sy) < f(M(z,y)) — o(f(M(z,y))) + (N (z,y)) (2.4)
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where p € &, v € ¥, f e and

M (z,y) = max {d(a:,y), d(Tx,x),d(y, Sy), d(y, Tx) ;—d(a:, Sy) } |

N(z,y) = min{d(Tz,y), d(z, Sy)}.
Then S and T have a common fized point z € E, i.e, Sz =Tz = z.

Example 2.1. Let E = [0,1] and d(z,y) = |x — y|. For each x € E define S, T :
E — B(E) by

r X X
Then
z <Y<z
5(Tx, 8y) = { 2 05523
max{{ - %%} <<l
and
3x
5($,T.’L‘) = Zv 5(y7 Sy) =Y.

We also consider f(t) =2t and ¢(t) = L. We note that if 6(Tz,Sy) = % then

FO(Ta, Sy) = o < o = 25(a, Ta)

IN
N W

(M(z,y)) = f(M(z,y)) — o(f(M(z,y)))
and if §(Tx, Sy) = ¥ — § then

23
v <

B
= 50(:59) < 5 (M (2,)) = F(M(,9)) — o(FOM (,3).

This arguments show that the mappings T and S satisfy the conditions of Theorem
2.2. Now it is easy to see that 0 is the only common end point of this two mappings.

In the following we shall see that Theorem 2.1 is a real generalization of The-
orem 2.2. We note that by Theorem 2.2, T and S have a unique common end point.

P(6(Tz, Sy) = 2( ) <

(SRS
| 8

Example 2.2. Let E = [0,1] and d(z,y) = |x — y|. For each x € E define T,S :
E — B(E) by

Tx:Sx:{[S”Q] z71
1 1.

We also consider f(t) =t, ¢(t) = £, and ¥(t) = 2t*>. We note that if x,y # 1 and

x <y then §(y, Ty) = %y hence

Yy T 8
=< - - < —
J(0(Tx, Ty) 5 3= 155(y,Ty)
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Similar result holds if x,y # 1 andy < z. Now ify =1 and x # 1, then 6(Tz, Ty) =
1-%,DyTe)=1-35 , D(x,Ty)=1—-2,dx,y) =1—x, 6(y,Ty) = 0 and
§(x,Tx) = 2. Hence

1—%, x < 12

M(Zlf, y)) = 2x - %g
EE T2 a7
and
therefore we have
J(6(TaTy) =1~ 5 <

2(1 - 2)* = Y(N(z,y)) < f(M(2,y)) — o(f(M(2,y))) + P(N(z,y)).
Similar result holds if x = 1 and y # 1 This arguments show that the mappings T

and S satisfy the conditions of Theorem 2.1. We observe that 0 and 1 are two end
points for T and S.
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