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ON THE UNIQUE RECOVERY OF TIME-DEPENDENT

COEFFICIENT IN A HYPERBOLIC EQUATION FROM

NONLOCAL DATA

Elvin I. Azizbayov1,2

The purpose of this paper is to discuss the unique restoration of coeffi-
cients in a hyperbolic equation from some data. First, the problem reduces to
an equivalent system by applying the Fourier method. Then with reference to the
Banach fixed point principle, the existence and uniqueness of a solution to this
system were demonstrated. Further, on the basis of the equivalency of these prob-
lems the existence and uniqueness theorem for the classical solution of the inverse
coefficient problem is proved for the smaller value of time.
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1. Introduction

Let T > 0 be a fixed time moment and let DT denotes the rectangular region
in the xt-plane defined by the inequalities 0 ≤ x ≤ 1, 0 ≤ t ≤ T . We further
assume that f(x, t), ϕ(x), ψ(x), Pi(t) (i = 1, 2), and h(t) are given functions of
x ∈ [0, 1] and t ∈ [0, T ]. Consider the one-dimensional inverse problem of identifying
an unknown pair of functions (u(x, t), a(t)) for the equation

utt(x, t)− uxx(x, t) = a(t)u(x, t) + f(x, t), (x, t) ∈ DT , (1)

with the nonlocal initial conditions

u(x, 0) =
T∫
0

P1(t)u(x, t)dt+ ϕ(x),

ut(x, 0) =
T∫
0

P2(t)u(x, t)dt+ ψ(x), 0 ≤ x ≤ 1,

(2)

periodic boundary conditions

u(0, t) = u(1, t), 0 ≤ t ≤ T, (3)

integral boundary conditions

1∫
0

u(x, t)dx = 0, 0 ≤ t ≤ T, (4)
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and the overdetermination condition

u(x0, t) = h(t), 0 ≤ t ≤ T, (5)

where x0 ∈ (0, 1) is some fixed point.
In many practical situations, it is required to determine the coefficients in

an ordinary or partial differential equation from known functionals of its solution.
Problems of these types are often called inverse problems of mathematical physics
and may be contrasted with problems in which an equation is given and its solution
is sought under initial and boundary conditions.

Inverse problems arise in many areas of mathematical physics, and applications
are rapidly spreading to areas such as geophysics, chemistry, medicine, and engineer-
ing, etc. In other words, the study of inverse problems is of vital interest to many
areas of science and technology, like geophysical exploration, system identification,
nondestructive testing, seismology, mineral exploration, ultrasonic tomography, and
so forth.

In the past few decades, a great deal of interest has been to the inverse co-
efficient problems. The general theory of inverse problems for partial differential
equations is well described in the works of many authors. More detailed expositions
and classification of works related to the investigation of inverse problems for partial
differential equations can be found in many books and monographs (see for exam-
ple, [6], [8], [12], [16]–[18], [20], [27]–[29], and the references therein). The existence
and uniqueness problems of solutions of inverse hyperbolic problems with various
measurements were investigated in [1], [2], [10], [11], [13], [19], [24]–[26], [30], [32].
Moreover, many studies are devoted to the analysis of the of numerical aspects of
the coefficient identification problem for one-dimensional hyperbolic equations (see,
e.g., [4], [7], [9], [14], [15], [31], and the references given therein).

In the present paper, we consider an inverse problem for identifying the time-
dependent coefficient in a one-dimensional hyperbolic equation. It will be noted also
that the statement of the problem and the proof technique used in this paper differ
from those of the above articles, and the conditions in the theorems differ signifi-
cantly from those therein. A distinctive feature of this article is the consideration
of a hyperbolic equation with both spatial and time nonlocal conditions.

Definition 1.1. A pair of functions (u(x, t), a(t)) ∈ C2(DT ) × C[0, T ], t ∈ [0, T ]
is called a solution of problem (1)-(5) if each statement of the problem (1)-(5) is
satisfied by these functions in the classical (usual) sense.

Now, to study problem (1) - (5), we first consider the following problem:

y′′(t) = a(t)y(t), 0 ≤ t ≤ T, (6)

y(0) =

T∫
0

P1(t)y(t)dt, y′(0) =

T∫
0

P2(t)y(t)dt, (7)

where P1(t), P2(t), a(t) ∈ C[0, T ] are given functions of t ∈ [0, T ] and y = y(t) is
unknown function. By this we mean that y(t) is a function belonging to the set
C2[0, T ] and satisfying the problem (6), (7) in the usual sense.

We state the following lemma about the uniqueness of solution of problem (6),
(7) without proof.
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Lemma 1.1. (see [21]) Let P1(t), P2(t), a(t) ∈ C[0, T ], and(
T ‖P2(t)‖C[0,T ] + ‖P1(t)‖C[0,T ] +

T

2
‖a(t)‖C[0,T ]

)
T < 1

holds. Then problem (6), (7) has only the trivial solution.

Now along with the inverse boundary-value problem (1) - (5), we consider the
following auxiliary inverse problem: It is required to determine a pair (u(x, t), a(t))
of functions u(x, t) ∈ C2(DT ) and a(t) ∈ C[0, T ] from relations (1)-(3), and

ux(0, t) = ux(1, t), 0 ≤ t ≤ T, (8)

h′′(t)− uxx(x0, t) = a(t)h(t) + f(x0, t), 0 ≤ t ≤ T. (9)

The following theorem holds true.

Theorem 1.1. Suppose ϕ(x), ψ(x) ∈ C[0, 1], Pi(t) ∈ C[0, T ], i = 1, 2, h(t) ∈

C2[0, T ], h(t) 6= 0, f(x, t) ∈ C(DT ),
1∫
0

f(x, t)dx = 0, 0 ≤ t ≤ T , and the following

consistency conditions are fulfilled:

1∫
0

ϕ(x)dx = 0,

1∫
0

ψ(x)dx = 0, (10)

h(0) =

T∫
0

P1(t)h(t)dt+ ϕ(x0), h′(0) =

T∫
0

P2(t)h(t)dt+ ψ(x0). (11)

Then the following statements are true:

(i) each classical solution (u(x, t), a(t)) of the problem (1)-(5) is a solution of
problem (1)-(3), (8), (9), as well;

(ii) each solution (u(x, t), a(t)) of the problem (1)-(3), (8), (9) by virtue of(
T ‖P2(t)‖C[0,T ] + ‖P1(t)‖C[0,T ] +

T

2
‖a(t)‖C[0,T ]

)
T < 1, (12)

is a classical solution of problem (1)-(5).

Proof. Let (u(x, t), a(t)) be the classical solution of problem (1) - (5). Integrating
both sides of Equation (1) from 0 to 1 gives

d2

dt2

1∫
0

u(x, t)dx− (ux(1, t)− ux(0, t))

= a(t)

1∫
0

u(x, t)dx+

1∫
0

f(x, t)dx, 0 ≤ t ≤ T. (13)

Using the fact that
1∫
0

f(x, t)dx = 0, 0 ≤ t ≤ T , and the boundary condition

(3), we conclude that the equality (8) is true.
Letting x = x0 in Equation (1), we get

utt(x0, t)− uxx(x0, t) = a(t)u(x0, t) + f(x0, t), 0 ≤ t ≤ T. (14)
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Further, assuming that h(t) ∈ C2[0, T ], and differentiating (5) twice, we have

utt(x0, t) = h′′(t), 0 ≤ t ≤ T, (15)

Taking into account the condition (5) and the relation (15) in (14) we obtain
(9).

Now, suppose that (u(x, t), a(t)) is a solution to problem (1) - (3), (8), (9).

Then from (13), allowing for
1∫
0

f(x, t)dx = 0, 0 ≤ t ≤ T , (3), and (8), we find:

d2

dt2

1∫
0

u(x, t)dx = a(t)

1∫
0

u(x, t)dx, 0 ≤ t ≤ T. (16)

By using the initial conditions (2) and the compatibility conditions (10), we
may write

1∫
0

u(x, 0)dx−
T∫
0

P1(t)

(
1∫
0

u(x, t)dx

)
dt =

1∫
0

ϕ(x)dx = 0,

1∫
0

ut(x, 0)dx−
T∫
0

P2(t)

(
1∫
0

u(x, t)dx

)
dt =

1∫
0

ψ(x)dx = 0.

(17)

Lemma 1.1 enables us to conclude that the problem (16), (17) has only a

trivial solution. Then,
1∫
0

u(x, t)dx = 0, 0 ≤ t ≤ T , i.e., the condition (4) is satisfied.

Further, it follows from (9) and (14) that

d2

dt2
(u(x0, t)− h(t)) = a(t)(u(x0, t)− h(t)), 0 ≤ t ≤ T. (18)

Exploiting the initial conditions (2) and the compatibility conditions (11), we
have

u(x0, 0)− h(0)−
T∫

0

P1(t)(u(x0, t)− h(t))dt = ϕ(x0)−

h(0)−
T∫

0

P1(t)h(t)dt

 = 0,

ut(x0, 0)− h′(0)−
T∫

0

P2(t)(u(x0, t)− h(t))dt

= ψ(x0)−

h′(0)−
T∫

0

P2(t)h(t)dt

 = 0. (19)

Hence by Lemma 1.1 and relations (18), (19), we conclude that condition (5)
is satisfied. �

2. Existence and uniqueness of the solution of the inverse problem
on the interval [0, 1]

Consider the following system of functions on the interval :

1, cosλ1x, sinλ1x, ..., cosλkx, sinλkx, .... (20)
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The system of functions (20) forms an orthonormal basis, of the space L2(0, 1)
for λk = 2kπ, k = 0, 1, .... Then the first component of classical solution (u(x, t), a(t))
of the problem (1)-(3), (8), (9) has the form:

u(x, t) =

∞∑
k=0

u1k(t) cosλkx+

∞∑
k=1

u2k(t) sinλkx, λk = 2πk, (21)

where

u10(t) =

1∫
0

u(x, t)dx, u1k(t) = 2

1∫
0

u(x, t) cosλkxdx, k = 1, 2, ...,

u2k(t) = 2

1∫
0

u(x, t) sinλkxdx, k = 1, 2, ....

Applying the formal scheme of the Fourier method and using (1) and (2) we
get

u′′10(t) = F10(t;u, a), 0 ≤ t ≤ T, (22)

u′′ik(t) + λ2
kuik(t) = Fik(t;u, a), i = 1, 2; k = 1, 2, ..., 0 ≤ t ≤ T, (23)

u10(0) = ϕ10 +

T∫
0

P1(t)u10(t)dt, u′10(0) = ψ10 +

T∫
0

P2(t)u10(t)dt, (24)

uik(0) = ϕik+

T∫
0

P1(t)uik(t)dt, u′ik(0) = ψik+

T∫
0

P2(t)uik(t)dt, i = 1, 2; k ∈ N, (25)

where
F1k(t) = a(t)u1k(t) + f1k(t), k = 0, 1, ...,

f10(t) =

1∫
0

f(x, t)dx, f1k(t) = 2

1∫
0

f(x, t) cosλkxdx, k = 1, 2, ...,

ϕ10 =

1∫
0

ϕ(x)dx, ψ10 = 2

1∫
0

ψ(x)dx,

ϕ1k = 2

1∫
0

ϕ(x) cosλkxdx, ψ1k = 2

1∫
0

ψ(x) cosλkxdx, k = 0, 1, ...,

F2k(t) = a(t)u2k(t) + f2k(t), f2k(t) = 2

1∫
0

f(x, t) sinλkxdx, k = 1, 2, ...,

ϕ2k = 2

1∫
0

ϕ(x) sinλkxdx, ψ2k = 2

1∫
0

ψ(x) sinλkxdx, k = 1, 2, ....
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Further, from (22) - (25) we find:

u0(t) = ϕ0 +

T∫
0

P1(t)u0(t)dt

+t

ψ0 +

T∫
0

P2(t)u0(t)dt

+

t∫
0

(t− τ)F0(τ ;u, a)dτ, (26)

uik(t) =

ϕik +

T∫
0

P1(t)uik(t)dt

 cosλkt+
1

λk

ψik +

T∫
0

P2(t)uik(t)dt

 sinλkt

+
1

λk

t∫
0

Fik(τ ;u, a) sinλk(t− τ)dτ, i = 1, 2; k = 1, 2, ..., 0 ≤ t ≤ T. (27)

To determine the component u(x, t) of the solution (u(x, t), a(t)) of problem
(1) - (3), (8), (9), we substitute u1k(t), k = 0, 1, ... and u2k(t), k = 1, 2, ... in (21),
obtain

u(x, t) =

ϕ0 +

T∫
0

P1(t)u0(t)dt

+ t

ψ0 +

T∫
0

P2(t)u0(t)dt


+

t∫
0

(t− τ)F0(τ ;u, a)dτ +
∞∑
k=1


ϕ1k +

T∫
0

P1(t)u1k(t)dt

 cosλkt

+
1

λk

ψ1k +

T∫
0

P2(t)u1k(t)dt

 sinλkt +
1

λk

t∫
0

F1k(τ ;u, a) sinλk(t− τ)dτ

 cosλkx

+

∞∑
k=1


ϕ2k +

T∫
0

P1(t)u2k(t)dt

 cosλkt +
1

λk

ψ2k +

T∫
0

P2(t)u2k(t)dt

 sinλkt

+
1

λk

t∫
0

F2k(τ ;u, a) sinλk(t− τ)dτ

 sinλkx. (28)

It follows from (9) and (21) that

a(t) = [h(t)]−1{h′′(t)− f(x0, t)

+
∞∑
k=1

λ2
ku1k(t) cosλkx0 +

∞∑
k=1

λ2
ku2k(t) sinλkx0}. (29)

In order to obtain the expression for the second component of the solution of
problem (1) - (3), (8), (9), we substitute (27) in (29), we get

a(t) = [h(t)]−1{h′′(t)− f(x0, t) +

∞∑
k=1

λ2
k

ϕ1k +

T∫
0

P1(t)u1k(t)dt

 cosλkt
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+
1

λk

ψ1k +

T∫
0

P2(t)u1k(t)dt

 sinλkt +
1

λk

t∫
0

F1k(τ ;u, a) sinλk(t− τ)dτ

 cosλkx0

+
∞∑
k=1

λ2
k

ϕ2k +

T∫
0

P1(t)u2k(t)dt

 cosλkt +
1

λk

ψ2k +

T∫
0

P2(t)u2k(t)dt

 sinλkt

+
1

λk

t∫
0

F2k(τ ;u, a) sinλk(t− τ)dτ

 sinλkx0. (30)

Thus, the solution of problem (1) - (3), (8), (9) was reduced to the solution of
system (28), (30) with respect to unknown functions u(x, t) and a(t).

We have the following lemma.

Lemma 2.1. [23] If (u(x, t), a(t)) is any solution to problem (1)-(3), (8), (9), then
the functions

u10(t) =

1∫
0

u(x, t)dx,

u1k(t) = 2

1∫
0

u(x, t) cosλkxdx, u2k(t) = 2

1∫
0

u(x, t) sinλkxdx, k = 1, 2, ...,

satisfy the system of equations (26), (27) on the interval [0, T ].

It follows from Lemma 2.1 that

Corollary 2.1. Assume that the system (28), (30) has a unique solution. Then
problem (1)-(3), (8), (9) has at most one solution. In other words, if the problem
(1)-(3), (8), (9) has a solution, then it is unique.

With the purpose to study the problem (1) - (3), (8), (9), we consider the
following functional spaces.

By B3
2,T [5], we denote a set of all functions of the form

u(x, t) =
∞∑
k=0

u1k(t) cosλkx+
∞∑
k=1

u2k(t) sinλkx, λk = 2πk,

in the region DT , where each of the function uk(t) (k = 0, 1, 2, ...) is continuous over
an interval [0, T ] and satisfies the following condition:

J(u) ≡ ‖u0(t)‖C[0,T ] +

{ ∞∑
k=1

(
λ3
k ‖u1k(t)‖C[0,T ]

)2
} 1

2

+

{ ∞∑
k=1

(
λ3
k ‖u2k(t)‖C[0,T ]

)2
} 1

2

< +∞.

The norm in the space B3
2,T is defined as follows

‖u(x, t)‖B3
2,T

= J(u).
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It is known that the space B3
2,T is a Banach space [22]. Obviously, E3

T =

B3
2,T × C[0, T ] is also Banach space with the norm

‖z(x, t)‖E3
T

= ‖u(x, t)‖B3
2,T

+ ‖a(t)‖C[0,T ] .

Now consider the operator

Φ(u, a) = {Φ1(u, a), Φ2(u, a)},
in the space E3

T , where

Φ1(u, a) = ũ(x, t) ≡
∞∑
k=0

ũ1k(t) cosλkx+

∞∑
k=1

ũ2k(t) sinλkx, Φ2(u, a) = ã(t),

and the functions ũ10(t), ũik(t), i = 1, 2; k = 1, 2, ..., and ã(t) are equal to the
right-hand sides of (26), (27), and (30), respectively.

Hence we get
‖ũ10(t)‖C[0,T ] ≤ |ϕ10|+ T |ψ10|

+T (‖P1(t)‖C[0,T ] + T ‖P2(t)‖C[0,T ]) ‖u10(t)‖C[0,T ] + |ψ10|

+T
√
T

 T∫
0

|f10(τ)|2 dτ


1
2

+ T 2 ‖a(t)‖C[0,T ] ‖u10(t)‖C[0,T ] , (31)

( ∞∑
k=1

(λ3
k ‖ũik(t)‖C[0,T ])

2

) 1
2

≤
√

6

( ∞∑
k=1

(λ3
k |ϕik|)2

) 1
2

+
√

6

( ∞∑
k=1

(λ2
k |ψik|)2

) 1
2

+
√

6(‖P1(t)‖C[0,T ]

+ ‖P2(t)‖C[0,T ])T

( ∞∑
k=1

(λ3
k ‖uik

(t)‖C[0,T ])
2

) 1
2

+
√

6T

 T∫
0

∞∑
k=1

(λ2
k |fik(τ)|)2dτ


1
2

+
√

6T ‖a(t)‖C[0,T ]

( ∞∑
k=1

(λ3
k ‖uik

(t)‖C[0,T ])
2

) 1
2

, (32)

‖ã(t)‖C[0,T ] ≤
∥∥[h(t)]−1

∥∥
C[0,T ]

{
∥∥h′′(t)− f(x0, t)

∥∥
C[0,T ]

+

( ∞∑
k=1

λ−2
k

) 1
2

×
2∑

i=1

( ∞∑
k=1

(λ3
k |ϕik

|)2

) 1
2

+ T ‖P1(t)‖C[0,T ]

( ∞∑
k=1

(λ3
k ‖uik

(t)‖C[0,T ])
2

) 1
2

+

( ∞∑
k=1

(λ2
k |ψik

|)2

) 1
2

+ T ‖P2(t)‖C[0,T ]

( ∞∑
k=1

(λ3
k ‖uik

(t)‖C[0,T ])
2

) 1
2
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+
√
T

 T∫
0

∞∑
k=1

(λ2
k |fik(τ)|)2dτ


1
2

+T ‖a(t)‖C[0,T ]

( ∞∑
k=1

(λ3
k ‖uik

(t)‖C[0,T ])
2

) 1
2

 . (33)

We impose the following conditions on the function ϕ,ψ, f, P1, P2, and h:

(A) ϕ(x) ∈ C2[0, 1], ϕ′′′(x) ∈ L2(0, 1), ϕ(0) = ϕ(1), ϕ′(0) = ϕ′(1),
ϕ′′(0) = ϕ′′(1);

(B) ψ(x) ∈ C1[0, 1], ψ′′(x) ∈ L2(0, 1), ψ(0) = ψ(1), ψ′(0) = ψ′(1);
(C) f(x, t), fx(x, t) ∈ C(DT ), fxx(x, t) ∈ L2(DT ),

f(0, t) = f(1, t), fx(0, t) = fx(1, t), 0 ≤ t ≤ T ;
(D) P1(t), P2(t) ∈ C[0, T ], h(t) ∈ C2[0, T ], h(t) 6= 0, 0 ≤ t ≤ T.

Then from (31) - (33) we find, respectively, that

‖ũ0(t)‖C[0,T ] ≤ ‖ϕ(x)‖L2(0,1) + T ‖ψ(x)‖C[0,T ] + T
√
T ‖f(x, t)‖L2(0,1)

+T (‖P2(t)‖C[0,T ] + T ‖P1(t)‖C[0,T ] + T ‖a(t)‖C[0,T ]) ‖u0(t)‖C[0,T ] , (34){ ∞∑
k=1

(
λ3
k ‖ũik(t)‖C[0,T ]

)2
} 1

2

≤
√

6
∥∥ϕ′′′(x)

∥∥
L2(0,1)

+
√

6
∥∥ψ′′(x)

∥∥
L2(0,1)

+
√

6T ‖fxx(x, t)‖L2(DT ) +
√

6T (‖P2(t)‖C[0,T ] + T ‖P1(t)‖C[0,T ]

+T ‖a(t)‖C[0,T ])

( ∞∑
k=1

(λ3
k ‖uik(t)‖C[0,T ])

2

) 1
2

, (35)

‖ã(t)‖C[0,T ] ≤
∥∥[h(t)]−1

∥∥
C[0,T ]

{
∥∥h′′(t)− f(x0, t)

∥∥
C[0,T ]

+ 2

( ∞∑
k=1

λ−2
k

) 1
2

×[
∥∥ϕ′′′(x)

∥∥
L2(0,1)

+
∥∥ψ′′(x)

∥∥
L2(0,1)

+
√
T ‖fxx(x, t)‖L2(DT ) + T (‖P2(t)‖C[0,T ]

+T ‖P1(t)‖C[0,T ] + ‖a(t)‖C[0,T ])

( ∞∑
k=1

(λ3
k ‖uk(t)‖C[0,T ])

2

) 1
2

 . (36)

The inequalities (34) and (35) yields

‖ũ(x, t)‖B3
2,T
≤ A1(T ) +B1(T )

×‖a(t)‖C[0,T ] ‖u(x, t)‖B3
2,T

+ C1(T ) ‖u(x, t)‖B3
2,T
, (37)

where

A1(T ) = ‖ϕ(x)‖L2(0,1) + T ‖ψ(x)‖L2(0,1) + T
√
T ‖f(x, t)‖L2(DT )

+2
√

6
∥∥ϕ′′′(x)

∥∥
L2(0,1)

+ 2
√

6
∥∥ψ′′(x)

∥∥
L2(0,1)

+ 2
√

6T ‖fx(x, t)‖L2(DT ) ,

B1(T ) = T 2 + 2
√

6T,

C1(T ) = T (1 + 2
√

6) ‖P1(t)‖C[0,T ] + T (T + 2
√

6) ‖P2(t)‖C[0,T ] .
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Also, from (36) we obtain:

‖ã(t)‖C[0,T ] ≤ A2(T ) +B2(T ) ‖a(t)‖C[0,T ] ‖u(x, t)‖B3
2,T

+ C2(T ) ‖u(x, t)‖B3
2,T
, (38)

where

A2(T ) =
∥∥[h(t)]−1

∥∥
C[0,T ]

{
∥∥h′′(t)− f(x0, t))

∥∥
C[0,T ]

+ 2

( ∞∑
k=1

λ−2
k

) 1
2

×[
∥∥ϕ′′′(x)

∥∥
L2(0,1)

+
∥∥ψ′′(x)

∥∥
L2(0,1)

+
√
T ‖fx(x, t)‖L2(DT )]},

B2(T ) =
∥∥[h(t)]−1

∥∥
C[0,T ]

( ∞∑
k=1

λ−2
k

) 1
2

T,

C2(T ) = 2
∥∥[h(t)]−1

∥∥
C[0,T ]

( ∞∑
k=1

λ−2
k

) 1
2

T (‖P2(t)‖C[0,T ] + T ‖P1(t)‖C[0,T ]).

From inequalities (37) and (38) we arrive at the following estimation

‖ũ(x, t)‖B3
2,T

+ ‖ã(t)‖C[0,T ] ≤ A(T ) +B(T ) ‖a(t)‖C[0,T ]

×‖u(x, t)‖B3
2,T

+ C(T ) ‖u(x, t)‖B3
2,T
, (39)

where

A(T ) = A1(T ) +A2(T ), B(T ) = B1(T ) +B2(T ), C(T ) = C1(T ) + C2(T ).

Let KR denote the closed ball of radius R = A(T ) + 2 centered at zero in E3
T .

Theorem 2.1. Let that hypotheses (A)-(D) be satisfied and suppose that

(B(T )(A(T ) + 2) + C(T ))(A(T ) + 2) < 1. (40)

Then problem (1)-(3), (8), (9) has a unique solution in the ball K = KR.

Proof. In the space E3
T we consider the following operator equation

z = Φz, (41)

where z = {u, a} and the components Φi(u, a), i = 1, 2, of the operator Φ(u, a) are
defined from the right sides of equations (28) and (30), respectively.

Similar to (37) we obtain that for any z, z1, z2 ∈ KR the following inequalities
hold

‖Φz‖E3
T
≤ A(T ) +B(T ) ‖a(t)‖C[0,T ] ‖u(x, t)‖B3

2,T
+ C(T ) ‖u(x, t)‖B3

2,T

≤ A(T ) + (B(T )(A(T ) + 2) + C(T ))(A(T ) + 2), (42)

‖Φz1 − Φz2‖E3
T
≤ B(T )R(‖u1(x, t)− u2(x, t)‖B3

2,T
+

+ ‖a1(t)− a2(t)‖C[0,T ]) + C(T ) ‖u1(x, t)− u2(x, t)‖B3
2,T
. (43)

Then by virtue of (40) it follows from estimations (42) and (43) that the
operator Φ acts in the ball K = KR, and is contractive. Therefore, the operator
Φ has a unique fixed point {z} = {u, a} that is a unique solution of equation (39),
i.e., it is a unique solution of system (28) and (30) in the ball K = KR. Then
the function u(x, t) as an element of space B3

2,T is continuous and has continuous

derivatives ux(x, t) and uxx(x, t) in DT .
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Equation (23) now gives( ∞∑
k=1

(λk
∥∥u′′ik(t)

∥∥
C[0,T ]

)2

) 1
2

≤
√

2

( ∞∑
k=1

(λ3
k ‖uk(t)‖C[0,T ])

2

) 1
2

+
√

2
∥∥∥‖fx(x, t) + a(t)ux(x, t)‖C[0,T ]

∥∥∥
L(0,1)

, i = 1, 2.

It follows from the last inequality that the function utt(x, t) is continuous in
the region DT .

Thus, it is easy to verify that equation (1) and conditions (2), (3), (8), (9) are
satisfied in the usual sense. Therefore, (u(x, t), a(t)) is a solution of problem (1)-(3),
(8), (9), and it is unique by virtue of Lemma 2.1. �

Finally, Theorem 1.1 and Theorem 2.1 straightforward implies the unique
solvability of the original problem (1) - (5).

Theorem 2.2. Suppose that all assumptions of Theorem 2.1, and the conditions

1∫
0

ϕ(x)dx = 0,

1∫
0

ψ(x)dx = 0,

1∫
0

f(x, t)dx = 0, 0 ≤ t ≤ T,

h(0) =

T∫
0

P1(t)h(t)dt+ ϕ(x0), h′(0) =

T∫
0

P2(t)h(t)dt+ ψ(x0),

(
T ‖P2(t)‖C[0,T ] + ‖P1(t)‖C[0,T ] +

T

2
(A(T ) + 2)

)
T < 1,

hold. Then problem (1) - (5) has a unique classical solution in the ball K =
KR(‖z‖E3

T
≤ A(T ) + 2) of the space E3

T .
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