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Some non-linear behaviors in the dynamics of complex systems using the Scale
Relativity Theory in the form of Multifractal Hydrodynamic Model are analyzed. By
assimilating any complex system to a mathematical multifractal-type object, it is
shown that the inversion phenomenon in various mediums (temperature inversion in
atmospheric structures, inversion of tension fields at Martensite-Austenite transition
etc.) can be “mimed” as multifractal tunnel effects.
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1. Introduction

In a recent paper [1], fractal bistable-type behaviors as transitions in the
scale space are obtained. The theoretical model is validated in the case of
temperature inversion in the planetary boundary layer. Since such an approach
implied the multifractal paradigm of motion, then as a general consequence, the
non-differential approach should be well adapted for the field of complex systems,
where any real determination is conducted at a finite scale resolution. This implies
the development of a new physical theory applied to complex systems for which
the motion laws, invariant to spatial and temporal coordinates transformations, are
integrated with scale laws, invariant at scale transformations. Such a theory based
on the above presented assumptions was first developed in the Scale Relativity
Theory [2, 3] with fractal dimension 2 [2] and more recently, in the Scale Relativity
Theory with an arbitrary constant fractal dimension [3, 4]. Both theories define the
“fractal/multifractal physics models”.

In the present paper, some non-linear behaviors in the dynamics of complex
systems through a multifractal hydrodynamic model are analyzed. The present
results generalize the ones obtained in the previous paper [1]. More precisely,
assimilating any complex system to a mathematical multifractal-type object, it is
shown that the inversion phenomenon in various mediums (temperature inversion
in atmospheric structures, inversion of tension fields at Martensite-Austenite
transition etc.) can be “mimed” as multifractal tunnel effects.

2. Non - Differentiability Calibrated on any Complex Systems
Dynamics in the Form of the Multifractal Hydrodynamic Model

Let us consider that any complex system can be, both structurally and
functionally, assimilated to a mathematical multifractal-type object. In a such
conjecture, the complex system dynamics can be described through the Scale
Relativity Theory. In this case, the complex system’ structural units dynamics occur
on continuous but non — differentiable curves — multifractal curves. These dynamics
will be described through the scale covariance derivative [3,4]:

d N 1 2 ],
&zafuﬂ@+zmohw]uw@%, 1)
where:

vt=v) -V, (2a)

D = d' —id”, (2b)
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AP = 2L AP — AL AP, (20)
d®? = 2427 + 2LaP, (2d)
d d Jd oa
= — = — = i[i=v-1 =123. 2e
at atjal axllalap axl axp;l ;l;p ) ;3 ( )

In the above, the variables and parameters that describe the complex system
dynamics have the following meaning:

o x! is the multifractal spatial coordinate;

o t is the non — multifractal time coordinate having the role of an affine
parameter of the motion curves;

o dt is the scale resolution;

. 7t is the complex velocity;

o V} is the differential velocity independent on the scale resolution;

o vt is the non-differentiable velocity dependent on the scale
resolution;

o D' is the constant tensor associated with the differentiable — non —
differentiable transition;

. A4 (2%) are constant vectors associated with the backward
differentiable — non — differentiable scale transitions;

. AL(AP) are constant vectors associated with the forward
differentiable — non — differentiable scale transitions;

o f(a) is the singularity spectrum of order @ and « is the singularity
index;

o a = a(Dyp) where Dy is the fractal dimensions of the motion curves.

Several definitions for fractal dimensions can be found: Kolmogorov fractal
dimension, Hausdorff — Besikovitch fractal dimension etc. [5, 6]. By selecting one
of these definitions and operating with it in the complex system dynamics, the
following condition is imposed: the value of the fractal dimension must be constant
and arbitrary for the entirety of the dynamics analysis. We note that, usually, D <
2 for correlative processes, Dp > 2 for non — correlative processes etc. [5, 6]. In
such a conjecture, through f(a), it is possible to identify not only the “areas” of the
complex system dynamics that are characterized by a certain fractal dimension
(monofractal complex system dynamics), but also the number of “areas” for which
the fractal dimensions are situated in an interval of values (multifractal complex
system dynamics). Moreover, through the singularity spectrum f () it is possible
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to identify classes of universality in the complex system dynamics laws, even when
strange or regular attractors have different aspects.

If the complex system dynamics are described through Markov — type
stochastic processes (i.e., for multifractalization through Markov — type stochastic
processes) [5, 6]:

AL =288 =248% i,1=1,2,3, )
where A is a specific coefficient associated with the multi-fractal-non-multi-fractal

scale transition and &% is Kronecker’s pseudo — tensor, the scale covariant
derivative (1) becomes:

d _ ol ; (L)‘l l

- = 0c + V19, — iA(dt) F@) "9,0". 4
Now, accepting the functionality of the scale covariance principle, which

implies applying the operator (1) to the complex velocity fields (2a), in the absence

of any external constraint, the motion equations of the complex system structural

units dynamics take the following form:

i
dt

This means that the multi-fractal acceleration, d,V¢, the multi-fractal
convection, V'9,7* and the multifractal dissipation D%9,9, V' make their balance
in every point of any multifractal curve of the complex system’ structural units
dynamics. Let us note that equation (5) represents a generalization of the first
principle of Newton, for complex system dynamics on multifractal manifolds.
Particularly, for (3) the motion equation (5) becomes:

~ A

o1 2 ] N
=0,V + Vo,V + Z(dt)[f(a)] 'p¥g,0, Vi = 0. )

i

2
= 9, Vi+ VoVt — m(dt)[D_F]‘lalalvi = 0. (6)

Now, separating the complex system’ structural units dynamics on scale
resolution (differentiable and non — differentiable scale resolutions), (5) becomes:

. . 1 2] .
0,V + Vo, vE — Vo, Vi + Z(dt)[f(“)] 1D”‘616kV,§ =0, (7a)

. . 1 2 ] .
0. Vi + VoV + Vo Vi — 7 (dt)[f(“)] 1D”<alakv,5 =0, (7b)

while (6) takes the form:
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: , .
0. Vi +VEiovh — (Vi + A(dt)[m]_lal 9,V =0, (8a)

: , .
O VEi+ Vo VE+ |VE+ A(dt)[m]_lal a,VE = 0. (8b)

For the irrotational motions of the complex system’ structural units
dynamics, the complex velocity fields (2a) take the form:

2
pi= —zm(dt)[%]‘lai ny, 9)
where ¥ is the states function. From here, for:
v =, /pe’s, (10)

where \/E is the amplitude and s is the phase, the complex velocity fields (9)
become explicitly:

Pi = 22(de)F@ais — ia(de)F@ gt n p, (11)

which enables the definition of the real velocity fields:
Vi = 2A(do)F@l i, (12)
Vi= i/l(dt)[%]‘lai In p. (13)

By (12) and (13) and using the mathematical procedures from [3, 4],
equations (8) reduce to the multifractal hydrodynamic equations:

0,V + Via, Vi = -0, (14)

dep + 0, (pVp) = 0, (15)

with Q the multifractal specific potential:
4] 59t . 2]
0 = —22(anl@ 2 = _ypyt - Daanlral ot o

Equation (14) corresponds to the multifractal specific momentum
conservation law of the complex system dynamics, while equation (15) corresponds
to the multifractal state density conservation law of the same dynamics. The
multifractal specific potential (16) implies the multifractal specific force:
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Fi=-9iQ = —ZAZ(dt)[%]_Zaiala%ﬁ, 17)

which is a measure of the multifractality of the motion curves of the complex system
dynamics.
We note that for external constraints, for example the external scalar
potential U, equation (5) takes the form:
i
dt

while, for multifractalization through Markov — type stochastic processes, the above
written equation becomes:

o1 2 o
=0,V + Vo,V + Z(alt)[f(oo] 'plg,9, 7t = 9i(U) (18)

A

dvt

dt

These two previous equations represent a generalization of the second
principle of Newton for complex system dynamics on multifractal manifolds.

Taking the above into account, the multifractal hydrodynamic equations
take the form

2
=9, Vi + Vo,V — il(dt)[D_F]_lalalVi = 9L(U) (19)

0. V) + Vo vh = —a(Q + U), (20)
d.p + 9,(pV3) = 0. (21)
From these equations the following meanings result:
o Through the multifractal specific force, any complex system’
structural units are constantly in contact with a multifractal medium;
o The multifractal medium can be assimilated with a multifractal fluid

whose dynamics are characterized by the multifractal hydrodynamic model (see
Egs. (14) — (16) or (20), (21));

o Since the velocity field V} is absent from the multifractal states
density conservation laws, it induces non-manifest complex system dynamics - it
facilitates the transmission of multifractal specific momentum and multifractal
energy of focus;

o The ”self — aspect” of the multifractal specific momentum transfer
in complex system dynamics, the reversibility and existence of eigenstates are
guaranteed by the conservation of multifractal energy and multifractal momentum;

o If using the tensor:

4
il = 222(d0) 7@ 2paiatin p, )



Non-linear behaviors in the dynamics of complex systems through a multifractal hydrodynamic model 155

the equation defining the multifractal specific “forces” deriving from a multifractal
specific potential Q@ can be written in the form of a multifractal equilibrium
equation:

pdiQ = 9,tu. (23)
The multifractal tensor % can now be written in the form:
tih =n(o,VE + 9,V4), (24)
with:
n = A(dt)[m]‘lp, (25)

This is, indeed, a multifractal linear constitutive equation for a multifractal
“viscous fluid”, offering the reason for an original interpretation of coefficient 1 as
a multifractal dynamic viscosity of the multifractal fluid.

3. Complex System Dynamics Mimed as a Multifractal Tunnel Effect

Let us describe the complex system dynamics based on the following
assumptions:

o Any complex system can be assimilated, both structural and
functional, to a mathematical object of multifractal type;

o Complex system dynamics can be described through Scale
Relativity Theory in the form of multifractal hydrodynamic equations;

o The complex system operates as a multifractal tunnel effect
described through the external scalar potential (see Fig. 1)

[ ]

0 -;co<x<0
Ux)={U, 0<x<a |, (26)
0 a<x<+oo

where U, is the multifractal barrier height and a is its width (the characteristics of
the complex system).
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Multifractal
incident
states density

Multifractal g
barrier Multifractal
emergent states

density

Multifractal
reflected
states
density

Fig. 1. External scalar potential configuration (multifractal barrier - complex
system) for the tunnel effect of the multifractal type.

Then, complex system dynamics are described through the multifractal
energy conservation law of the form:

Q+U-=E, (27)
or explicitly:
N LN
227 (dt)@ 7 +U=E. (28)

In (28), p is the multifractal state density, U is the external scalar potential,
A is the specific coefficient associated to multifractal-nonmultifractal transition and
E is the multifractal energy constant. We note that the results of (28) are given by
means of the functionality of the second principle of Newton applied to (20) on
multifractal manifolds.

Considering the one-dimensional case, the equation (28) through the
substitution:

\/E = 0(x), (29)
becomes:

1

0,.0(x) + (E-U)0(x) =0. (30)

le(dt)[J%]_z
In the following, the above equations will be used to mimed complex system
dynamics through multifractal tunnel effect (any complex system’ structural unit
with known energy penetrates a barrier of greater energy than the incident one).
As it is shown in Fig. 1, we distinguish three zones denoted by 1, 2, 3 as:
o 1, the multifractal incidence zone;
o 2, the multifractal barrier;
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o 3, the multifractal emergence zone.

In such context, if 6,, 6,, and 65 are the multifractal functions
corresponding to the above mentioned three zones, we have the following
equations:

291

Tt k20, = 0,-00 < x <0 (31a)
d?e
dxzz -q%0,=0, 0<x<a (31b)
d?6
T tk8; =0, a<x<+oo (31c)

where:

E Uy—E

= (32)

2 _ 2
" 2z@an @@zt U T gz(an @)z

Now, through integration, the following solutions of the above equations
are obtained:

0,(x) =A,e*™* +Be ™, —0<x<0 (33a)
92(X) == AZ eqx + BZ e_qx, 0 S X S a (33b)
05 (x) = A; etx a<x<+4oo (33c)
where A, By, A, B,, A3 are constants. We note the following:
o e®* corresponds to the multifractal incident states density (from

—o0) in the multifractal zone 1 and to the multifractal emergent states density (to
+00) in the multifractal zone 3;

o e~ corresponds to the multifractal reflected states density which
exists only in the multifractal zone 1, passing from x = 0 to x = —oo, since in the
multifractal zone 3 the external scalar potential is uniform null.

Since the general expression of the multifractal current of the states density
in the one-dimensional case has the form [6]:

I = iA(dt)@/f@n-1 <g d_H — §d_9>

34
dx dx (34)
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then the following currents can be defined:

o the multifractal current density of the multifractal incident states
density in the zone 1:

2
Ji = 220\ T@) g, 2 (35)
o the multifractal current density of the multifractal emergent states
density in the zone 3:
Jo = 2A(dt)@/T@)=1k| 4,2 (36)
o the multifractal current density of the multifractal reflected states
density:
Jr = —2A(dt)@/TED-1|, |2 (37)

The above results lead to the possibility of a univocal characterization of
multifractal tunnel effect through the multifractal transparency:

2
. =§_e _ Zﬁ (38)
i 1
and the multifractal reflectance:
- B
R =§_ - |2 (39)
i 1

Imposing now the coupling conditions (in x = 0 and x = a), both for the
functions 6; and their derivates, i.e.,

6:1(0) = 6,(0) (409)
do; db,
— (0 =—=(0) (40b)
0,(a) = 03(a) (40c)
de, _  db,
—@=—=( (40d)

the multifractal algebraic system is obtained:
Al + Bl == A2 + BZ (418.)
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ik(A; — By) = q(A; — By) (41b)
e9%4, + e 9B, = ¢!1%4, (41c)
q(e9%A, — e™99B,) = ike'%A, (41d)

Following the same mathematical procedure from [7], the multifractal
transparency takes the form:

4q°k?
T = 1 (42)
4q°k? + (g2 + k?)?sh?(qa)
while the multifractal reflectance becomes:
(kZ + q2)2 (43)

R =
(q? — k?)? + 4q%k? - cth?(qa)
Moreover, in the old notations (32), it is obtained:

22 {[__Wo—E) '
Uosh {[ZAZ(dt)Wf(aD-Z] ‘

U2sh? {[le(dtO) | ab+4EUs — B)

4E(U, — E)
2oh2 (UO — E)
Uosh {[ZAZ(dt)@/f(a))—z

For graphical dependencies it is preferable to use the dimensionless
coordinate system:

(45)

1/2
] a} +4E(Uy — E)

1
2

E
X =ka= a (46a)

22 (o) F@)
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| we-B P2 (46b)
V'=qa= [2,12(dt)(4/f(a))—2 a
Then, the multifractal transparency and multifractal reflectance become:
X2 +Y?)?
R= 7 @47)

(Y2 — X2)2 + 4X2Y2cth?(Y)

_ 4X2%y?

T 4X2Y2 + (X2 +Y2)2sh2(Y)
The 3D variations of the multifractal transparency T on the dimensionless

coordinates X and Y are depicted in Figs. 2 (a, b).

TX, Y)

T (48)

0.25
0 0.00

Fig. 2. The 3D variations of the multifractal transparency T of dimensionless
coordinates X and Y: the dependence T =T (X, Y)

The 2D variations of the multifractal transparency T on the dimensionless
coordinates X and Y are depicted in Figs. 3 (a, b).
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Fig. 3a, b. The 2D variations of the multifractal transparency T of dimensionless
coordinates X and Y: a) the dependence T =T (X, Y=constant); b) the dependence T=T
(X=constant, Y)

In Figs. 4 the 3D variation of the multifractal reflectance R on the
dimensionless coordinates X and Y are given.
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R(X, Y)

Fig. 4. The variation of the multifractal reflectance R of dimensionless coordinates
X and Y: the dependence R =R (X, Y)

In Figs. 5 (a, b) the 2D variations of the multifractal reflectance R on the

dimensionless coordinates X and Y are given.
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1.0

0.8

0.6

0.4

0.2

0.0

(b)

Fig. 5a, b. The 2D variations of the multifractal reflectance R of dimensionless
coordinates X and Y: a) the dependence R = R (X, Y=constant); b) the dependence R =R
(X=constant, Y)

The dependence of T on X involves minimal and asymptotic increases of
the multifractal transparency, while the dependence of T on Y involves only
asymptotic increases of the multifractal transparency. The dependence of R on X
involves maximal and asymptotic decreases of the multifractal reflectance, while
the dependence of R on Y involves only asymptotic decreases of the multifractal
reflectance.

4. Examples of various fields inversion

In such a frame, since X is proportional with a minimal dimension relevant
to the complex system, namely the potential barrier width a, and T has a
proportionality relation with the complex system field variable, Fig. 3a can be
transformed into Fig. 6, that presents the inversion of the field variable.
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274.0 274.5 275.0 275.5 276.0 276.5
Temperature

Fig. 6. The inversion of the field variable in arbitrary unity z=z(T)

In the following, let us present an experimental situation in which inversion
occurs.

Since X is proportional with a minimal dimension relevant to the planetary
boundary layer (PBL), namely the potential barrier width a, and T has a
proportionality relation with the PBL temperature, temperature inversion occurs.

In Figs. 7 and 8 two cases of atmospheric temperature inversion are shown.
For more details, see [1].

Other situations in which such inversions can occur are phase transitions in
shape memory materials (more precisely, at Martensite-Austenite phase transition).
Shape memory alloys (SMA in short) exhibit a series of properties which are very
different compared to regular metallic materials. One of their main characteristic is
the ability to change their geometric shape when subjected to an increase from low
to high temperature. In certain conditions, this shape change can be reversible, such
that the material can “memorize” two geometric shapes: the high temperature shape
(the “warm” shape) and the low temperature shape (the “cold” shape). These
transformations occur due to an effect known as shape memory effect (SME in
short). Moreover, through SME, the material is able to produce mechanical work
when shifting from the “cold” shape to the “warm” one [9]. For example, in the
case of CuAlZn alloys, double inversions can be highlighted in the displacement —
force diagrams. Such a diagram is given in Fig. 9. For more details, see [8].
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Fig. 7. Profile of atmospheric temperature; radiometer data and theoretical model data;
Galati, Romania, 07/05/2022; straight line: radiometer temperature; dotted line: theoretical
temperature.
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Fig. 8. Profile of atmospheric temperature; radiometer data and theoretical model data;
Galati, Romania, 08/05/2022; straight line: radiometer temperature; dotted line: theoretical
temperature.
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Double mversion

Al{mm)

Fig. 9. Force displacement diagram for a CuAlZn alloy (68.95% Cu, 20.04% Al, 10.90%
Zn). Double inversion

In the end, it is reminded that the use of multifractal models in the
description on complex system dynamics can explain a large range of physical
phenomena, from a microscopic to a macroscopic scale, for example the ones
specified in [10-27].

5. Conclusions

The multifractal models presented here, in the mathematical description on
complex system dynamics, can explain a large range of physical circumstances,
from a microscopic to a macroscopic scale, more precisely from the microcosm to
the macrocosm.

In the present paper, utilizing multifractal hydrodynamic model, some
inversion phenomena in various reference mediums are successfully analyzed. In
other words, both the temperature field inversion in atmospheric structures and
inversion of mechanical tension fields at Martensite-Austenite transition can be
“mimed” as author of multifractal tunnel effects. For example, in the case of
CuAlzn alloys, double inversions were highlighted in the displacement — force
diagrams, which fully justifies the advanced theoretical consequences.

The obtained experimental results are in good agreement with the
theoretical ones developed in the models introduced in this study.
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