
U.P.B. Sci. Bull., Series A, Vol. 84, Iss. 4, 2022  ISSN 1223-7027 

NON-LINEAR BEHAVIORS IN THE DYNAMICS OF 

COMPLEX SYSTEMS THROUGH A MULTIFRACTAL 

HYDRODYNAMIC MODEL 

Lenuta CIURCA1, Maria-Alexandra PAUN2,3, Mihaela BARHALESCU4, 

Mihaela JARCAU5, Catalin DUMITRAS6, Anisoara CORABIERU7, Vladimir-

Alexandru PAUN8, Maricel AGOP 9,10, Viorel-Puiu PAUN10,11 

Some non-linear behaviors in the dynamics of complex systems using the Scale 

Relativity Theory in the form of Multifractal Hydrodynamic Model are analyzed. By 

assimilating any complex system to a mathematical multifractal-type object, it is 

shown that the inversion phenomenon in various mediums (temperature inversion in 

atmospheric structures, inversion of tension fields at Martensite-Austenite transition 

etc.) can be “mimed” as multifractal tunnel effects. 

Keywords: complex system, multifractal, scale relativity theory, temperature 

fields inversion, tension fields inversion 

1. “Gheorghe Asachi” Technical University of Iasi, Faculty of Material Science and Engineering, 

Blvd Prof. Dr. Doc. D. Mangeron, 47, Iasi, Romania; lenuta_mate@yahoo.com 

2. School of Engineering, Swiss Federal Institute of Technology (EPFL), Route Cantonale, 1015

Lausanne, Switzerland; maria_paun2003@yahoo.com

3. Division Radio Monitoring and Equipment, Section Market Access and Conformity, Federal

Office of Communications OFCOM, Avenue de l'Avenir 44, CH-2501, Biel/Bienne, Switzerland

4. Constanta Maritime University, Department of General Engineering Sciences, 104 Mircea cel

Batran Street,  900663, Constanta; mihaela.barhalescu@cmu-edu.eu

5. “Stefan cel Mare” University, Department of Food Technologies, Production and Environmental

Safety,13 University Str., Suceava - 720229, Romania; mjarcau@yahoo.com

6. Faculty of Machine Manufacturing and Industrial Management, Gheorghe Asachi” Technical

University of Iași, Romania, Blvd Prof. Dr. Doc. D. Mangeron, 47, Iasi, Romania;

catalin.dumitras@tuiasi.ro

7. Faculty of Material Science and Engineering, “Gheorghe Asachi” Technical University of Iasi,

Blvd Prof. Dr. Doc. D. Mangeron, 47, Iasi, Romania; anisoara.corabieru@academic.tuiasi.ro

8. Five Rescue Research Laboratory, 35 Quai d’Anjou, 75004, Paris, France;

vladimir.alexandru.paun@ieee.org

9. Department of Physics, “Gh. Asachi” Technical University of Iasi, 700050 Iasi, Romania;

magop@tuiasi.ro

10. Romanian Scientists Academy, 54 Splaiul Independentei, 050094 Bucharest, Romania

11. Physics Department, Faculty of Applied Sciences, University POLITEHNICA of Bucharest,

Romania; viorel.paun@physics.pub.ro

*Corresponding author, email:  maria_paun2003@yahoo.com

mailto:maria_paun2003@yahoo.com
mailto:mihaela.barhalescu@cmu-edu.eu
mailto:catalin.dumitras@tuiasi.ro
mailto:magop@tuiasi.ro
mailto:maria_paun2003@yahoo.com


150 L. Ciurca, M.-Al. Paun, M. L. Barhalescu, M. Jarcau, C. Dumitras, A. Corabieru, V.-Al. Paun, M. Agop, V.-P. Paun 

1. Introduction 

In a recent paper [1], fractal bistable-type behaviors as transitions in the 

scale space are obtained. The theoretical model is validated in the case of 

temperature inversion in the planetary boundary layer. Since such an approach 

implied the multifractal paradigm of motion, then as a general consequence, the 

non-differential approach should be well adapted for the field of complex systems, 

where any real determination is conducted at a finite scale resolution. This implies 

the development of a new physical theory applied to complex systems for which 

the motion laws, invariant to spatial and temporal coordinates transformations, are 

integrated with scale laws, invariant at scale transformations. Such a theory based 

on the above presented assumptions was first developed in the Scale Relativity 

Theory [2, 3] with fractal dimension 2 [2] and more recently, in the Scale Relativity 

Theory with an arbitrary constant fractal dimension [3, 4]. Both theories define the 

“fractal/multifractal physics models”.   

In the present paper, some non-linear behaviors in the dynamics of complex 

systems through a multifractal hydrodynamic model are analyzed. The present 

results generalize the ones obtained in the previous paper [1]. More precisely, 

assimilating any complex system to a mathematical multifractal-type object, it is 

shown that the inversion phenomenon in various mediums (temperature inversion 

in atmospheric structures, inversion of tension fields at Martensite-Austenite 

transition etc.) can be “mimed” as multifractal tunnel effects. 

2. Non – Differentiability Calibrated on any Complex Systems 

Dynamics in the Form of the Multifractal Hydrodynamic Model 

Let us consider that any complex system can be, both structurally and 

functionally, assimilated to a mathematical multifractal-type object. In a such 

conjecture, the complex system dynamics can be described through the Scale 

Relativity Theory. In this case, the complex system’ structural units dynamics occur 

on continuous but non – differentiable curves – multifractal curves. These dynamics 

will be described through the scale covariance derivative [3,4]: 

𝑑̂

𝑑𝑡
= 𝜕𝑡 + 𝑉̂𝑙𝜕𝑙 +

1

4
(𝑑𝑡)

[
2

𝑓(𝛼)
]−1

𝐷𝑙𝑝𝜕𝑙𝜕𝑝, (1) 

where: 

𝑉̂𝑙 = 𝑉𝐷
𝑙 − 𝑉𝐹

𝑙, (2a) 

 

𝐷𝑙𝑝 = 𝑑𝑙𝑝 − 𝑖𝑑̂𝑙𝑝, (2b) 
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𝑑𝑙𝑝 = 𝜆+
𝑙 𝜆+

𝑝 − 𝜆−
𝑙 𝜆−

𝑝 , (2c) 

 

𝑑̂𝑙𝑝 = 𝜆+
𝑙 𝜆+

𝑝 + 𝜆−
𝑙 𝜆−

𝑝 , (2d) 

 

𝜕𝑡 =
𝜕

𝜕𝑡
, 𝜕𝑙 =

𝜕

𝜕𝑥𝑙
, 𝜕𝑙𝜕𝑝 =

𝜕

𝜕𝑥𝑙

𝜕

𝜕𝑥𝑝
, 𝑖 = √−1, 𝑙, 𝑝 = 1,2,3. (2e) 

In the above, the variables and parameters that describe the complex system 

dynamics have the following meaning: 

• 𝑥𝑙 is the multifractal spatial coordinate; 

• 𝑡 is the non – multifractal time coordinate having the role of an affine 

parameter of the motion curves; 

• 𝑑𝑡 is the scale resolution; 

• 𝑉̂𝑙 is the complex velocity; 

• 𝑉𝐷
𝑙  is the differential velocity independent on the scale resolution; 

• 𝑉𝐹
𝑙 is the non-differentiable velocity dependent on the scale 

resolution; 

• 𝐷𝑙𝑝 is the constant tensor associated with the differentiable – non – 

differentiable transition; 

• 𝜆+
𝑙 (𝜆+

𝑝 ) are constant vectors associated with the backward 

differentiable – non – differentiable scale transitions; 

• 𝜆−
𝑙 (𝜆−

𝑝 ) are constant vectors associated with the forward 

differentiable – non – differentiable scale transitions; 

• 𝑓(𝛼) is the singularity spectrum of order 𝛼 and 𝛼 is the singularity 

index; 

• 𝛼 = 𝛼(𝐷𝐹) where 𝐷𝐹 is the fractal dimensions of the motion curves. 

Several definitions for fractal dimensions can be found: Kolmogorov fractal 

dimension, Hausdorff – Besikovitch fractal dimension etc. [5, 6]. By selecting one 

of these definitions and operating with it in the complex system dynamics, the 

following condition is imposed: the value of the fractal dimension must be constant 

and arbitrary for the entirety of the dynamics analysis. We note that, usually, 𝐷𝐹 <
2 for correlative processes, 𝐷𝐹 > 2 for non – correlative processes etc. [5, 6]. In 

such a conjecture, through 𝑓(𝛼), it is possible to identify not only the “areas” of the 

complex system dynamics that are characterized by a certain fractal dimension 

(monofractal complex system dynamics), but also the number of “areas” for which 

the fractal dimensions are situated in an interval of values (multifractal complex 

system dynamics). Moreover, through the singularity spectrum 𝑓(𝛼) it is possible 
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to identify classes of universality in the complex system dynamics laws, even when 

strange or regular attractors have different aspects. 

If the complex system dynamics are described through Markov – type 

stochastic processes (i.e., for multifractalization through Markov – type stochastic 

processes) [5, 6]: 

𝜆+
𝑖 𝜆+

𝑙 = 𝜆−
𝑖 𝜆−

𝑙 = 2𝜆𝛿𝑖𝑙    𝑖, 𝑙 = 1, 2, 3, (3) 

where 𝜆 is a specific coefficient associated with the multi-fractal-non-multi-fractal 

scale transition and 𝛿𝑖𝑙 is Kronecker’s pseudo – tensor, the scale covariant 

derivative (1) becomes: 

𝑑

𝑑𝑡
= 𝜕𝑡 + 𝑉̂𝑙𝜕𝑙 − 𝑖𝜆(𝑑𝑡)

(
2

𝑓(𝛼)
)−1

𝜕𝑙𝜕
𝑙. (4) 

Now, accepting the functionality of the scale covariance principle, which 

implies applying the operator (1) to the complex velocity fields (2a), in the absence 

of any external constraint, the motion equations of the complex system structural 

units dynamics take the following form: 

𝑑𝑉̂𝑖

𝑑𝑡
= 𝜕𝑡𝑉̂𝑖 + 𝑉̂𝑙𝜕𝑙𝑉̂

𝑖 +
1

4
(𝑑𝑡)

[
2

𝑓(𝛼)
]−1

𝐷𝑙𝑘𝜕𝑙𝜕𝑘𝑉̂𝑖 = 0. (5) 

This means that the multi-fractal acceleration, 𝜕𝑡𝑉̂𝑖, the multi-fractal 

convection, 𝑉̂𝑙𝜕𝑙𝑉̂𝑖 and the multifractal dissipation 𝐷𝑙𝑘𝜕𝑙𝜕𝑘𝑉̂𝑖 make their balance 

in every point of any multifractal curve of the complex system’ structural units 

dynamics. Let us note that equation (5) represents a generalization of the first 

principle of Newton, for complex system dynamics on multifractal manifolds. 

Particularly, for (3) the motion equation (5) becomes: 

𝑑̂𝑉̂𝑖

𝑑𝑡
= 𝜕𝑡𝑉̂𝑖 + 𝑉̂𝑙𝜕𝑙𝑉̂𝑖 − 𝑖𝜆(𝑑𝑡)

[
2

𝐷𝐹
]−1

𝜕𝑙𝜕
𝑙𝑉̂𝑖 = 0. (6) 

Now, separating the complex system’ structural units dynamics on scale 

resolution (differentiable and non – differentiable scale resolutions), (5) becomes: 

𝜕𝑡𝑉𝐷
𝑖 + 𝑉𝐷

𝑙 𝜕𝑙𝑉𝐷
𝑖 − 𝑉𝐹

𝑙𝜕𝑙𝑉𝐹
𝑖 +

1

4
(𝑑𝑡)

[
2

𝑓(𝛼)
]−1

𝐷𝑙𝑘𝜕𝑙𝜕𝑘𝑉𝐷
𝑖 = 0, (7a) 

 

𝜕𝑡𝑉𝐹
𝑖 + 𝑉𝐹

𝑙𝜕𝑙𝑉𝐷
𝑖 + 𝑉𝐷

𝑙 𝜕𝑙𝑉𝐹
𝑖 −

1

4
(𝑑𝑡)

[
2

𝑓(𝛼)
]−1

𝐷𝑙𝑘𝜕𝑙𝜕𝑘𝑉𝐹
𝑖 = 0, (7b) 

while (6) takes the form: 
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𝜕𝑡𝑉𝐷
𝑖 + 𝑉𝐷

𝑙 𝜕𝑙𝑉𝐷
𝑖 − [𝑉𝐹

𝑙 + 𝜆(𝑑𝑡)
[

2
𝑓(𝛼)

]−1
𝜕𝑙] 𝜕𝑙𝑉𝐹

𝑖 = 0, (8a) 

 

𝜕𝑡𝑉𝐹
𝑖 + 𝑉𝐷

𝑙 𝜕𝑙𝑉𝐹
𝑖 + [𝑉𝐹

𝑙 + 𝜆(𝑑𝑡)
[

2
𝑓(𝛼)

]−1
𝜕𝑙] 𝜕𝑙𝑉𝐷

𝑖 = 0. (8b) 

For the irrotational motions of the complex system’ structural units 

dynamics, the complex velocity fields (2a) take the form: 

𝑉̂𝑖 = −2𝑖𝜆(𝑑𝑡)
[

2

𝑓(𝛼)
]−1

𝜕𝑖 𝑙𝑛 𝛹, (9) 

where 𝛹 is the states function. From here, for: 

𝛹 = √𝜌𝑒𝑖𝑠, (10) 

where √𝜌 is the amplitude and 𝑠 is the phase, the complex velocity fields (9) 

become explicitly: 

𝑉̂𝑖 = 2𝜆(𝑑𝑡)
[

2

𝑓(𝛼)
]−1

𝜕𝑖𝑠 − 𝑖𝜆(𝑑𝑡)
[

2

𝑓(𝛼)
]−1

𝜕𝑖 ln 𝜌, (11) 

which enables the definition of the real velocity fields: 

𝑉𝐷
𝑖 = 2𝜆(𝑑𝑡)

[
2

𝑓(𝛼)
]−1

𝜕𝑖𝑠, (12) 

 

𝑉𝐹
𝑖 = 𝑖𝜆(𝑑𝑡)

[
2

𝑓(𝛼)
]−1

𝜕𝑖 ln 𝜌. (13) 

By (12) and (13) and using the mathematical procedures from [3, 4], 

equations (8) reduce to the multifractal hydrodynamic equations: 

𝜕𝑡𝑉𝐷
𝑖 + 𝑉𝐷

𝑙 𝜕𝑙𝑉𝐷
𝑖 = −𝜕𝑖𝑄, (14) 

 

𝜕𝑡𝜌 + 𝜕𝑙(𝜌𝑉𝐷
𝑙 ) = 0, (15) 

with 𝑄 the multifractal specific potential: 

𝑄 = −2𝜆2(𝑑𝑡)
[

4

𝑓(𝛼)
]−2 𝜕𝑙𝜕𝑙√𝜌

√𝜌
= −𝑉𝐹

𝑖𝑉𝐹
𝑖 −

1

2
𝜆(𝑑𝑡)

[
2

𝑓(𝛼)
]−1

𝜕𝑙𝑉𝐹
𝑙. (16) 

Equation (14) corresponds to the multifractal specific momentum 

conservation law of the complex system dynamics, while equation (15) corresponds 

to the multifractal state density conservation law of the same dynamics. The 

multifractal specific potential (16) implies the multifractal specific force: 
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𝐹𝑖 = −𝜕𝑖𝑄 = −2𝜆2(𝑑𝑡)
[

4

𝑓(𝛼)
]−2

𝜕𝑖 𝜕𝑙𝜕𝑙√𝜌

√𝜌
, (17) 

which is a measure of the multifractality of the motion curves of the complex system 

dynamics. 

We note that for external constraints, for example the external scalar 

potential 𝑈, equation (5) takes the form: 

𝑑𝑉̂𝑖

𝑑𝑡
= 𝜕𝑡𝑉̂𝑖 + 𝑉̂𝑙𝜕𝑙𝑉̂

𝑖 +
1

4
(𝑑𝑡)

[
2

𝑓(𝛼)
]−1

𝐷𝑙𝑘𝜕𝑙𝜕𝑘𝑉̂𝑖 = 𝜕𝑖(𝑈) (18) 

while, for multifractalization through Markov – type stochastic processes, the above 

written equation becomes: 

 

𝑑̂𝑉̂𝑖

𝑑𝑡
= 𝜕𝑡𝑉̂𝑖 + 𝑉̂𝑙𝜕𝑙𝑉̂𝑖 − 𝑖𝜆(𝑑𝑡)

[
2

𝐷𝐹
]−1

𝜕𝑙𝜕
𝑙𝑉̂𝑖 = 𝜕𝑖(𝑈) (19) 

These two previous equations represent a generalization of the second 

principle of Newton for complex system dynamics on multifractal manifolds. 

Taking the above into account, the multifractal hydrodynamic equations 

take the form 

𝜕𝑡𝑉𝐷
𝑖 + 𝑉𝐷

𝑙 𝜕𝑙𝑉𝐷
𝑖 = −𝜕𝑖(𝑄 + 𝑈), (20) 

 

𝜕𝑡𝜌 + 𝜕𝑙(𝜌𝑉𝐷
𝑙 ) = 0. (21) 

From these equations the following meanings result: 

• Through the multifractal specific force, any complex system’ 

structural units are constantly in contact with a multifractal medium; 

• The multifractal medium can be assimilated with a multifractal fluid 

whose dynamics are characterized by the multifractal hydrodynamic model (see 

Eqs. (14) – (16) or (20), (21)); 

• Since the velocity field 𝑉𝐹
𝑖 is absent from the multifractal states 

density conservation laws, it induces non-manifest complex system dynamics - it 

facilitates the transmission of multifractal specific momentum and multifractal 

energy of focus; 

• The ”self – aspect” of the multifractal specific momentum transfer 

in complex system dynamics, the reversibility and existence of eigenstates are 

guaranteed by the conservation of multifractal energy and multifractal momentum; 

• If using the tensor: 

𝜏̂𝑖𝑙 = 2𝜆2(𝑑𝑡)
[

4

𝑓(𝛼)
]−2

𝜌𝜕𝑖𝜕𝑙 ln 𝜌, (22) 



Non-linear behaviors in the dynamics of complex systems through a multifractal hydrodynamic model 155 

the equation defining the multifractal specific “forces” deriving from a multifractal 

specific potential 𝑄 can be written in the form of a multifractal equilibrium 

equation: 

𝜌𝜕𝑖𝑄 = 𝜕𝑙 𝜏̂𝑖𝑙. (23) 

The multifractal tensor 𝜏̂𝑖𝑙 can now be written in the form: 

𝜏̂𝑖𝑙 = 𝜂(𝜕𝑙𝑉𝐹
𝑖 + 𝜕𝑖𝑉𝐹

𝑙), (24) 

with: 

𝜂 = 𝜆(𝑑𝑡)
[

2

𝑓(𝛼)
]−1

𝜌. (25) 

This is, indeed, a multifractal linear constitutive equation for a multifractal 

“viscous fluid”, offering the reason for an original interpretation of coefficient 𝜂 as 

a multifractal dynamic viscosity of the multifractal fluid. 

3. Complex System Dynamics Mimed as a Multifractal Tunnel Effect 

Let us describe the complex system dynamics based on the following 

assumptions: 

• Any complex system can be assimilated, both structural and 

functional, to a mathematical object of multifractal type; 

• Complex system dynamics can be described through Scale 

Relativity Theory in the form of multifractal hydrodynamic equations; 

• The complex system operates as a multifractal tunnel effect 

described through the external scalar potential (see Fig. 1) 

•  

𝑈(𝑥) = {
0    -∞ < 𝑥 < 0
𝑈0     0 ≤ 𝑥 ≤ a
0       a < 𝑥 < +∞

, (26) 

 

where 𝑈0 is the multifractal barrier height and 𝑎 is its width (the characteristics of 

the complex system). 
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Fig. 1. External scalar potential configuration (multifractal barrier - complex 

system) for the tunnel effect of the multifractal type. 

Then, complex system dynamics are described through the multifractal 

energy conservation law of the form: 

𝑄 + 𝑈 = 𝐸, (27) 

or explicitly: 

2𝜆2(𝑑𝑡)
[

4

𝑓(𝛼)
]−2 𝜕𝑙𝜕𝑙√𝜌

√𝜌
+ 𝑈 = 𝐸. (28) 

In (28), 𝜌 is the multifractal state density, 𝑈 is the external scalar potential, 

𝜆 is the specific coefficient associated to multifractal-nonmultifractal transition and 

𝐸 is the multifractal energy constant. We note that the results of (28) are given by 

means of the functionality of the second principle of Newton applied to (20) on 

multifractal manifolds. 

Considering the one-dimensional case, the equation (28) through the 

substitution: 

√𝜌 = 𝜃(𝑥), (29) 

becomes: 

𝜕𝑥𝑥𝜃(𝑥) +
1

2𝜆2(𝑑𝑡)
[

4
𝑓(𝛼)

]−2
(𝐸 − 𝑈)𝜃(𝑥) = 0. (30) 

In the following, the above equations will be used to mimed complex system 

dynamics through multifractal tunnel effect (any complex system’ structural unit 

with known energy penetrates a barrier of greater energy than the incident one). 

As it is shown in Fig. 1, we distinguish three zones denoted by 1, 2, 3 as: 

• 1, the multifractal incidence zone; 

• 2, the multifractal barrier; 
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• 3, the multifractal emergence zone. 

In such context, if 𝜃1, 𝜃2, and 𝜃3 are the multifractal functions 

corresponding to the above mentioned three zones, we have the following 

equations: 

𝑑2𝜃1

𝑑𝑥2
+ 𝑘2𝜃1 = 0, -∞ < 𝑥 < 0 (31a) 

 

𝑑2𝜃2

𝑑𝑥2
− 𝑞2𝜃2 = 0,   0 ≤ 𝑥 ≤ a (31b) 

 

𝑑2𝜃3

𝑑𝑥2
+ 𝑘2𝜃3 = 0,   a < 𝑥 < +∞ (31c) 

where: 

𝑘2 =
𝐸

2𝜆2(𝑑𝑡)(4/𝑓(𝛼))−2
,   𝑞2 =

𝑈0 − 𝐸

2𝜆2(𝑑𝑡)(4/𝑓(𝛼))−2
 (32) 

Now, through integration, the following solutions of the above equations 

are obtained: 

𝜃1(𝑥) = 𝐴1 𝑒𝑖𝑘𝑥 + 𝐵1 𝑒−𝑖𝑘𝑥,  − ∞ < 𝑥 < 0 (33a) 

 

𝜃2(𝑥) = 𝐴2 𝑒𝑞𝑥 + 𝐵2 𝑒−𝑞𝑥,      0 ≤ 𝑥 ≤ 𝑎 (33b) 

 

𝜃3(𝑥) = 𝐴3 𝑒𝑖𝑘𝑥 ,                   a < 𝑥 < +∞ (33c) 

where 𝐴1, 𝐵1, 𝐴2, 𝐵2, 𝐴3 are constants. We note the following: 

• 𝑒𝑖𝑘𝑥 corresponds to the multifractal incident states density (from 

−∞) in the multifractal zone 1 and to the multifractal emergent states density (to 

+∞) in the multifractal zone 3; 

• 𝑒−𝑖𝑘𝑥 corresponds to the multifractal reflected states density which 

exists only in the multifractal zone 1, passing from 𝑥 = 0 to 𝑥 = −∞, since in the 

multifractal zone 3 the external scalar potential is uniform null. 

Since the general expression of the multifractal current of the states density 

in the one-dimensional case has the form [6]: 

𝐽𝑥 = 𝑖𝜆(𝑑𝑡)(2/𝑓(𝛼))−1 (𝜃
𝑑𝜃

𝑑𝑥
− 𝜃

𝑑𝜃

𝑑𝑥
) (34) 
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then the following currents can be defined:  

• the multifractal current density of the multifractal incident states 

density in the zone 1: 

𝐽𝑖 = 2𝜆(𝑑𝑡)
(

2
𝑓(𝛼)

)−1
𝑘|𝐴1|2 (35) 

• the multifractal current density of the multifractal emergent states 

density in the zone 3: 

𝐽𝑒 = 2𝜆(𝑑𝑡)(2/𝑓(𝛼))−1𝑘|𝐴3|2 (36) 

• the multifractal current density of the multifractal reflected states 

density: 

𝐽𝑟 = −2𝜆(𝑑𝑡)(2/𝑓(𝛼))−1|𝐵1|2 (37) 

The above results lead to the possibility of a univocal characterization of 

multifractal tunnel effect through the multifractal transparency: 

𝑇 =
𝐽𝑒

𝐽𝑖
= |

𝐴3

𝐴1
|

2

 (38) 

and the multifractal reflectance: 

𝑅 =
𝐽𝑟

𝐽𝑖
= |

𝐵1

𝐴1
|

2

 (39) 

Imposing now the coupling conditions (in 𝑥 = 0 and 𝑥 = 𝑎), both for the 

functions 𝜃𝑖 and their derivates, i.e., 

𝜃1(0) = 𝜃2(0) (40a) 

 

𝑑𝜃1

𝑑𝑥
(0) =

𝑑𝜃2

𝑑𝑥
(0) (40b) 

 

𝜃2(𝑎) = 𝜃3(𝑎) (40c) 

 

𝑑𝜃2

𝑑𝑥
(𝑎) =

𝑑𝜃3

𝑑𝑥
(𝑎) (40d) 

 

the multifractal algebraic system is obtained: 

𝐴1 + 𝐵1 = 𝐴2 + 𝐵2 (41a) 
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𝑖𝑘(𝐴1 − 𝐵1) = 𝑞(𝐴2 − 𝐵2) (41b) 

 

𝑒𝑞𝑎𝐴2 + 𝑒−𝑞𝑎𝐵2 = 𝑒𝑖𝑞𝑎𝐴3 (41c) 

 

𝑞(𝑒𝑞𝑎𝐴2 − 𝑒−𝑞𝑎𝐵2) = 𝑖𝑘𝑒𝑖𝑞𝑎𝐴3 (41d) 

Following the same mathematical procedure from [7], the multifractal 

transparency takes the form: 

𝑇 =
4𝑞2𝑘2

4𝑞2𝑘2 + (𝑞2 + 𝑘2)2sh2(𝑞𝑎)
 (42) 

while the multifractal reflectance becomes: 

𝑅 =
(𝑘2 + 𝑞2)2

(𝑞2 − 𝑘2)2 + 4𝑞2𝑘2 ⋅ cth2(𝑞𝑎)
 (43) 

Moreover, in the old notations (32), it is obtained: 

𝑅 =

𝑈0
2sh2 {[

(𝑈0 − 𝐸)
2𝜆2(𝑑𝑡)(4/𝑓(𝛼))−2]

1/2

𝑎}

𝑈0
2sh2 {[

(𝑈0 − 𝐸)
2𝜆2(𝑑𝑡)(4/𝑓(𝛼))−2]

1/2

𝑎} + 4𝐸(𝑈0 − 𝐸)

 (44) 

 

𝑇 =
4𝐸(𝑈0 − 𝐸)

𝑈0
2sh2 {[

(𝑈0 − 𝐸)
2𝜆2(𝑑𝑡)(4/𝑓(𝛼))−2]

1/2

𝑎} + 4𝐸(𝑈0 − 𝐸)

 
(45) 

For graphical dependencies it is preferable to use the dimensionless 

coordinate system: 

𝑋 = 𝑘𝑎 = [
𝐸

2𝜆2(𝑑𝑡)
(

4
𝑓(𝛼)

)−2
]

1
2

𝑎 (46a) 
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𝑌 = 𝑞𝑎 = [
(𝑈0 − 𝐸)

2𝜆2(𝑑𝑡)(4/𝑓(𝛼))−2
]

1
2

𝑎 (46b) 

Then, the multifractal transparency and multifractal reflectance become: 

𝑅 =
(𝑋2 + 𝑌2)2

(𝑌2 − 𝑋2)2 + 4𝑋2𝑌2cth2(𝑌)
 (47) 

 

𝑇 =
4𝑋2𝑌2

4𝑋2𝑌2 + (𝑋2 + 𝑌2)2sh2(𝑌)
 (48) 

The 3D variations of the multifractal transparency 𝑇 on the dimensionless 

coordinates 𝑋 and 𝑌 are depicted in Figs. 2 (a, b). 

 

 
  

Fig. 2. The 3D variations of the multifractal transparency T of dimensionless 

coordinates X and Y: the dependence T = T (X, Y) 

The 2D variations of the multifractal transparency 𝑇 on the dimensionless 

coordinates 𝑋 and 𝑌 are depicted in Figs. 3 (a, b). 
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(a) 

 

 

 

 

(b) 

 

 

Fig. 3a, b. The 2D variations of the multifractal transparency T of dimensionless 

coordinates X and Y: a) the dependence T = T (X, Y=constant); b) the dependence T = T 

(X=constant, Y) 

In Figs. 4 the 3D variation of the multifractal reflectance 𝑅 on the 

dimensionless coordinates 𝑋 and 𝑌 are given. 
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Fig. 4. The variation of the multifractal reflectance R of dimensionless coordinates 

X and Y: the dependence R = R (X, Y) 

In Figs. 5 (a, b) the 2D variations of the multifractal reflectance 𝑅 on the 

dimensionless coordinates 𝑋 and 𝑌 are given. 

 

 

(a)  
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(b)  

Fig. 5a, b. The 2D variations of the multifractal reflectance R of dimensionless 

coordinates X and Y: a) the dependence R = R (X, Y=constant); b) the dependence R = R 

(X=constant, Y) 

The dependence of 𝑇 on 𝑋 involves minimal and asymptotic increases of 

the multifractal transparency, while the dependence of 𝑇 on Y involves only 

asymptotic increases of the multifractal transparency. The dependence of 𝑅 on 𝑋 

involves maximal and asymptotic decreases of the multifractal reflectance, while 

the dependence of 𝑅 on 𝑌 involves only asymptotic decreases of the multifractal 

reflectance. 

4. Examples of various fields inversion 

In such a frame, since 𝑋 is proportional with a minimal dimension relevant 

to the complex system, namely the potential barrier width 𝑎, and 𝑇 has a 

proportionality relation with the complex system field variable, Fig. 3a can be 

transformed into Fig. 6, that presents the inversion of the field variable. 
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Fig. 6. The inversion of the field variable in arbitrary unity z=z(T) 

In the following, let us present an experimental situation in which inversion 

occurs.  

Since 𝑋 is proportional with a minimal dimension relevant to the planetary 

boundary layer (PBL), namely the potential barrier width 𝑎, and 𝑇 has a 

proportionality relation with the PBL temperature, temperature inversion occurs. 

In Figs. 7 and 8 two cases of atmospheric temperature inversion are shown. 

For more details, see [1]. 

Other situations in which such inversions can occur are phase transitions in 

shape memory materials (more precisely, at Martensite-Austenite phase transition). 

Shape memory alloys (SMA in short) exhibit a series of properties which are very 

different compared to regular metallic materials. One of their main characteristic is 

the ability to change their geometric shape when subjected to an increase from low 

to high temperature. In certain conditions, this shape change can be reversible, such 

that the material can “memorize” two geometric shapes: the high temperature shape 

(the “warm” shape) and the low temperature shape (the “cold” shape). These 

transformations occur due to an effect known as shape memory effect (SME in 

short). Moreover, through SME, the material is able to produce mechanical work 

when shifting from the “cold” shape to the “warm” one [9]. For example, in the 

case of CuAlZn alloys, double inversions can be highlighted in the displacement – 

force diagrams. Such a diagram is given in Fig. 9. For more details, see [8]. 
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Fig. 7. Profile of atmospheric temperature; radiometer data and theoretical model data; 

Galati, Romania, 07/05/2022; straight line: radiometer temperature; dotted line: theoretical 

temperature. 

 

Fig. 8. Profile of atmospheric temperature; radiometer data and theoretical model data; 

Galati, Romania, 08/05/2022; straight line: radiometer temperature; dotted line: theoretical 

temperature. 
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Fig. 9. Force displacement diagram for a CuAlZn alloy (68.95% Cu, 20.04% Al, 10.90% 

Zn). Double inversion  

In the end, it is reminded that the use of multifractal models in the 

description on complex system dynamics can explain a large range of physical 

phenomena, from a microscopic to a macroscopic scale, for example the ones 

specified in [10-27]. 

5. Conclusions 

The multifractal models presented here, in the mathematical description on 

complex system dynamics, can explain a large range of physical circumstances, 

from a microscopic to a macroscopic scale, more precisely from the microcosm to 

the macrocosm. 

In the present paper, utilizing multifractal hydrodynamic model, some 

inversion phenomena in various reference mediums are successfully analyzed. In 

other words, both the temperature field inversion in atmospheric structures and 

inversion of mechanical tension fields at Martensite-Austenite transition can be 

“mimed” as author of multifractal tunnel effects. For example, in the case of 

CuAlZn alloys, double inversions were highlighted in the displacement – force 

diagrams, which fully justifies the advanced theoretical consequences. 

The obtained experimental results are in good agreement with the 

theoretical ones developed in the models introduced in this study. 
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