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FUZZY TRIGONOMETRIC KOROVKIN TYPE
APPROXIMATION VIA POWER SERIES METHODS OF
SUMMABILITY

Enes Yavuz!

We prove a fuzzy trigonometric Korovkin type approximation the-
orem via power series methods of summability and give a related approrima-
tion result for periodic fuzzy continuous functions by means of fuzzy modulus
of continuity. An illustrative example concerning fuzzy Abel-Poisson con-
volution operator is also constructed.
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1. Introduction

Fuzzy set theory was introduced by Zadeh [1] as an extension of classical
set theory which lacks the means to define imprecise knowledge and to allow
approximate reasoning. Unlike the classical set theory, fuzzy set theory pro-
vides researchers with means to cope with uncertainty and imprecision which
are intrinsic to many real-world problems. Since its invention, the theory has
been used in many areas of science as a smart tool to handle problems involv-
ing fuzziness. Mathematical foundations of the theory have also developed
in different ways and many concepts in classical setting have been extended
to fuzzy setting [2-9]. In particular different sequence spaces are defined and
corresponding convergence properties are investigated [10-16]. In the light of
these developments, in this study we aim to investigate the approximation
of fuzzy continuous functions by sequences of fuzzy positive linear operators
via the concept of power series methods of summability which is defined re-
cently [17]. Before stating the motivation, goals and results of the paper in
more detail we need to give some preliminaries concerning fuzzy numbers.

A fuzzy number is a fuzzy set on the real axis, i.e. u is normal, fuzzy
convex, upper semi-continuous and suppu = {t € R : u(t) > 0} is compact [1].
Ry denotes the space of fuzzy numbers. «a-level set [u], is defined by

B {teR:u(t) >a} , if 0<a<l,
. _{{tER:u(t)>a} , if a=0.
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r € R may be seen as a fuzzy number 7 defined by
=40 i
Let u,v € Ry and k£ € R. The addition and scalar multiplication are defined
by
[u+v]a = [u]a + [V]a = [u, + Uc:7uju_ + U;H , [kula = Klula
where [u], = [u,,ul], for all a € [0,1]. Partial ordering on Ry is defined as
follows:
p=2v e[l 2 Ve = pn, <v, and pf <vl forall ae€l0,1].
The metric D on Ry is defined as

D(u,v) := sup max{lu, —vg |, lug —vJ[}
a€l0,1]

and metric space (Ry, D) is complete [18]. Let f,g: I C R — Ry be fuzzy-
number-valued functions. The distance between f and g is defined by

D*(f,g) = iléI;D(f(w),g(af))-

Let L : C5(R) — C5(R) be an operator where Cy(R) denotes the space of all
fuzzy continuous functions on R. Then we call L a fuzzy linear operator ift

L(cifi + cafa) = ciL(f1) + coL(f2)

for any c1,co € R, f1, fo € C5(R). Also operator L is called fuzzy positive linear
operator if it is fuzzy linear and the condition L(f;xz) =< L(g;x) is satisfied for
any f,g € Cy(R) with f(z) < g(x) and for all z € R .

A function f : R — Ry is 27-periodic if f(z) = f(z + 2m) for all z € R.
The space of all 2r-periodic and fuzzy continuous functions on R is denoted

by C’Q(i) (R). Besides the space of all 27-periodic and real valued continuous
functions on R is denoted by Cs,(R) and equipped with the supremum norm

Anastassiou [19] proved the first fuzzy Korovkin approximation theorem

in the space Céi) (R) as an extension of the classical trigonometric Korovkin
theorem [20]. His theorem states as follows:

Theorem 1.1. Let {L,}, .y be a sequence of fuzzy positive linear operators
from C’g?(R) into itself. Assume that there exists a corresponding sequence

{Ln} . of positive linear operators defined on Cor(R) with the property
ne
{Lnlfi0)}s = Lo (£ 0) (1)
forallz e R,a€[0,1],n e N and f € C’éi) (R). Assume further that
JLIEOHE"(JCZ) — fill =0 (2)
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for i = 0,1,2 with fo(z) = 1, fi(x) = cosx, fo(x) = sinx. Then for all
fe C’Q(i) (R) we have

Tim D*(La(f), ) = 0.
Due to the nature of the concept of convergence, a fuzzy positive linear oper-
ator with property (1) and converging in the sense (2) is an occasional case.
Considering this issue, authors recently utilized summability theory to recover
the convergence of fuzzy positive linear operators which fail to converge in the
sense (2) and achieved the approximation in some cases by means of regular
summability matrices. Duman and Anastassiou [21] studied the trigonometric

approximation in the space C’Q(i) (R) by means of A—statistical convergence and
illustrated obtained results on fuzzy Fejer operators. Anastassiou et al. [22]
presented a fuzzy trigonometric Korovkin type approximation theorem via
A—summation process and studied the rate of convergence of approximating
fuzzy positive linear operators by the help of fuzzy modulus of continuity.
Following these studies we now prove a fuzzy Korovkin type approximation
theorem in the space 05? (R) by using power series methods of summability
and obtain a related approximation by the help of fuzzy modulus of continu-
ity. We also introduce the concept fuzzy Abel-Poisson convolution operator
and construct an example concerning fuzzy Abel-Poisson convolution operators
such that our approximation results via power series methods of summability
work but Theorem 1.1 does not work.

Power series summability method (J,p) is recently extended to fuzzy
number space by Sezer and Canak [17] followingly: Suppose that p = (p,,) is
a sequence of nonnegative real numbers with py > 0 such that Y ,_,pr — 00
as n — oo and associated power series p(r) = > p,r" is convergent for
r € (0,1). A sequence (u,) of fuzzy numbers is said to be summable to
some fuzzy number p by power series method determined by p if Y >, w,p,r"
converges for r € (0,1) and

1 o0
lim — UpPr?" = |
p(r) ,;

r—1-

Then we write u, — u(J,). Let {L,} be a sequence of fuzzy positive linear
operators from Céi) (R) into itself with property (1) and let for each r € (0, 1)

> i)

Then for all f € CS(R), series Yoo Lo (f5)p,r™ and series Yoo Ln(f)par”
converge for r € (0, 1).

par” < 00. (3)
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2. Main Results

Theorem 2.1. Let {L,}
Cg) (R) into itself. Suppose that there exists a corresponding sequence {Zn}
neN

nen e a sequence of positive linear operators from

of positive linear operators defined on Car(R) with the property (1) and satis-
fying (3). Suppose further that

Tl_ig{ ]%izn(fz)pnrn_fl =0 (4)
for i = 0,1,2 with fo(x) = 1, fi(x) = cosx, fo(x) = sinx. Then for all

fe Cz(i) (R) we have

. R . B
TIE{ED (%ZL’%U)ZM’ ,f> =0.

n=0
Proof. Suppose that I is a closed subinterval of R with length 27 and x € [
be fixed. Let f € Céi) (R). Then for every € > 0 there exists a 6 > 0 such that

a2 (yfm)
Sin 5

29
sin® 3

holds for all a € [0, 1] and y € R where MZE = || fF]|(see [20]). Using linearity
and positivity of operators L we obtain

ZL pnr _fi( )

[fay) = fa(@)] < e+2My

< @iznumy)— ) ) par™ + M pé)izna ™ — 1

< ]jﬂgznu,x)pnr - gi(”;zn (s (55) ) ur
+ ME p(lﬂgin(m)pnr -1

< e+ (e+MJ) p(lr)ifn(l,w)pnr —1

l

0
—cosx | — n(cosy; x)p,r™ — cosx
p(r) =

L, (siny; z)ppr™ — sin x] }
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o0

1
(—Z n(cosy; x)p,r" — cosx

}

where KX(e) = ¢ + MT + Sirf\f(i Hence in view of the property (1) and

definition of the metric D we get

w ~
— Z Ln(la x)pnr -1

N 1
S e K { p(r) =

1 o=~
— Z Ly, (siny; z)p,r"™ —sinx

1\3\0'1
~—

1 oo
— Ln (fi;2)par™ — fi

p(?‘)

1 —~
_ZLn(f27 pnr _f2
where K := K(¢) = sup,ejp, max { K (¢), K (¢)}. By taking supremum over
x we conclude

LZ f2pn _f2

Finally taking limit as 7 — 1~ and considering (4) we complete the proof. [

Now we give another approximation theorem for 27-periodic fuzzy contin-
uous functions on R by means of fuzzy modulus of continuity. For f € CJ (R)
the (first) fuzzy modulus of continuity of f is defined by

wi(f;8):= sup  D(f(z), f(y))

z,y€ER;|z—y|<5
for any § > 0 [23,24]
Lemma 2.1. [25] Let f € C§ (R). Then for any § >0

wi (f;0) = sup max {wi(fy;6),wi(fF;0)}.

a€l0,1]

Theorem 2.2. Let {L,}
Céi) (R) into itself. Assume that there exists a corresponding sequence {En}

neN

nen e a sequence of positive linear operators from
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of positive linear operators defined on Car(R) with the properties (1) and (3).
Assume also that

i) lim =0,
(i) r=1- | p(r) <=
(i) lim o (f;7(r)) =0
r—1-
where y(r) = ﬁ Yoo Lo (@)par™|| with o(y) = sin? (45%). Then for all

Proof. Let {Ly}, cy be a sequence of positive linear operators from C’éi) (R) into

itself and corresponding sequence {Ln} of positive linear operators defined
neN

as in the statement of the theorem. Let f € C’Q(i) (R) and let z € [—m, 7] be
fixed. By property (4) of [26] it follows that

p(r)

LSS e — fE ()
n=0

LN (U e | LSS
< pm;Ln(!f() fa(@)|;x) par™ + M o) ; n(1;2)pur™ — 1
Wl(fo:zt75) - n
< () ;L (1+(7r/(5) sm( ),x)pnr
+Z\4o¢i ]%;zn(fo;x)]?nr"—fo
< p(iran fo D)par™ = fo| wr(££:8) + wn(£:0)
mw(faid) §o RN _
+= > Lo (e(y); ) pur™ + M; Z (fo: )par™ — fo
2 p(r) = p(r) =

where M* = || f£||. Then considering property (1), Lemma (2.1) and definition
of the metric D we obtain

1 . n
D (W Z Ln(f;x)pnr ,f(x)>

%Z (fos 2)pur” — fo

n=0

wy (f;0) + wi (f;9)
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™ Wi (f;0) x~ 7 n 1
_’_ﬁaﬁp((r) )HZ:OLW, (@(y)ax)pnr +M (_go fo, pnT —fo

where M := sup,,¢(o yy max {M,, M }. Taking supremum over z and choosing
d = (r) reveal

* L - rn

LZ fo Pt = fo

o0

[e.9]

<

Wi (fi7(r) + (1 + 7°)wf (f57(r))

Ln(fO)pnr - fO

wi (f57(r)) +wi (f;7(r))

}

where K = max{1 + 7%, M } Finally taking limit as » — 1~ and considering
(i) and (ii) of theorem we complete the proof. O

LZ fO pn fO

g~

—
=

S~—

IN
/—’H

ZL (fo)par™ — fo

3. Illustrative Example

Now we construct an example concerning fuzzy Abel-Poisson convolution
operator such that fuzzy trigonometric Korovkin Theorem 1.1 does not work
but our new results work. Before continuing with the example we shortly
mention about the concept of fuzzy Riemann integral. Let f : [a,b] — Ry. We
say that f is fuzzy-Riemann integrable [23] to I € Ry if, for any ¢ > 0,3 > 0:
for any division P = {[u,v]; £} of [a, b] with norms A(P) < 0, we have

D (Z(v —u)f(é),[) <e.

P

=) [ s

By corollary 13.2 of [23, p.644], if f € Cy|a, b](fuzzy continuous on [a, b]) then
f is fuzzy-Riemann integrable on [a, b].

We write

Theorem 3.1. [27] Let f : [a,b] — Ry be fuzzy continuous function. Then

[(FR)/af(x)dx] U £ dx/f+ dx}, Va € [0,1].
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Following [25] and [21], we now introduce the fuzzy Abel-Poisson convolution
operators Py as follows:

Pe(f;w)zlgm{(FR)/w Sz =) dy}

™ .1 —20cosy + 62

where and 0 <0 <1,z € Rand f € Cz(i) (R). Now consider the fuzzy positive
linear operators

Ln(f;2) = (14 (=1)") P (f;2) ()

where P_o_ is the -5 —th fuzzy Abel-Poisson convolution operator. Then it

follows from Theorem 3.1 that
{La(f;2)}Ys = La(fiio)

_ n 2n + 1 " falz =)
- (1+(_1)){27r(n+1)2/ 1— (24 )Cosy+(n+1)2dy}

n+1

where fT € O (R). Now we apply Theorem 2.1 with special case p, = 1.
Since

To(foi) = (14 (~1)"), En<f1;x>:<1+<—1>">< " )

n—+1

L(fi) = 1+ (1) (2 ) sine,

we get
(1_7)izn(f0)7“n—fo = 1_T—>0
o 1+ ’
=~ l—r (1-=7r)ln(l—=7r) (1—=r)In(1+r)
1- L, " — = -
DA o+ :
=~ l—r (1-=7r)ln(l—7r) (1—=r)In(1+r)
1- L, " — = —
( r)% (f2)r" = fo ‘1+T+ ; ;
as r — 17. Then by Theorem 2.1 we conclude
lim D* | (1— L,( 0.
L ( D3 )
Now we obtain the approximation of fuzzy positive linear operators { L,, }

defined in (5) by using Theorem 2.2. Since

1—7‘2 (fo)r™ = fo _1—r

1+7r

—0 as r—17,

neN

—0

— 0
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(i) of Theorem 2.2 is satisfied. Besides by regularity of power series method
(J1) [17, Theorem 2] we have

CCEN R DABEE ENITEE R e S T B

— | 2(n+1)

as r — 17. Since f is fuzzy continuous and 27-periodic, it is fuzzy uniformly
continuous on R [19, Lemma3]. As result we have lim,_,;- wj (f;v(r)) = 0 in
view of the fact lim, ,;- y(r) = 0. So (ii) of Theorem 2.2 is also satisfied. Then
by Theorem 2.2 we conclude that

r—1-

lim D* [ (1 — r)iLn(f)r”,f =
n=0
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