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APPROXIMATE AMENABILITY FOR BANACH MODULES

Fatemeh Anousheh1, Davood Ebrahimi Bagha2, Abasalt Bodaghi3

For a Banach algebra A, a Banach A-bimodule E and a bounded Ba-

nach A-bimodule homomorphism ∆ : E −→ A, the notions of approximate ∆-

amenability and ∆-contractibility for E are introduced. The general theory is

developed and some hereditary properties are given. In analogy with approximate

amenability and contractibility for Banach algebras, it is shown that under some

mild conditions approximate ∆-amenability and approximate ∆-contractibility are

the same properties.
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1. Introduction

The concept of amenability for a Banach algebra was introduced by Johnson

[9] in 1972, and it has been proved to be of enormous importance in Banach algebra

theory (for example, [1], [2], [5] and [10]). The main example in [9] asserts that the

group algebra L1(G) of a locally compact group G is amenable if and only if G is

amenable. The definition of an amenable Banach algebra is strong enough to allow

for the development of a rich general theory, but still weak enough to include a variety

of interesting examples. For example, Johnson’s result fails to be true for discrete

semigroups. This failure is partially due to the fact that l1(S) is equipped with

two algebraic structures. It is a Banach algebra and a Banach module over l1(ES),

where S is a discrete inverse semigroug with the set of idempotents ES . There are

many examples of Banach modules which do not have any natural algebra structure.

One example is Lp(G) which is a left L1(G) module, for a locally compact group G

[4]. There is one thing in common in all of them, namely the existence of a module

homomorphism, from the Banach module to the underlying Banach algebra. This

consideration was the motivation to study the concept of module amenability (more

precisely ∆-amenability) which is defined for a Banach module E over a Banach

algebra A with a given module homomorphism ∆ : E −→ A. This notion was

introduced by Ebrahimi Bagha and Amini in [6].
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The concepts of approximate amenability, contractibility and some other re-

lated concepts, were introduced and studied in [7] and further developed in [8].

In [7], the authors showed that the corresponding class of approximately amenable

(contractible) Banach algebras is larger than that for the classical amenable algebras

introduced by Johnson; for the module approximate amenability case refer to [11].

In this paper, we introduce the concepts of approximate ∆-amenability and ∆-

contractibility, and indicate some basic properties of approximately ∆-amenable Ba-

nach modules. We also study the hereditary properties of approximate ∆-amenability

for a Banach module. Finally, we provide some examples.

2. Approximate amenability for Banach modules

Let A be a Banach algebra and X be a Banach A-bimodule. A derivation

from A to X is a linear map D : A −→ X such that D(ab) = D(a) · b+ a ·D(b) for

a, b ∈ A. Also, D is said to be inner if there exists x ∈ X such that D(a) = a·x−x·a
for every a ∈ A. In this case, we denote D by adx. Moreover, D is said to be

approximately inner if there exists a net (xi) in X such that for any a ∈ A, D(a) =

limi(a · xi − xi · a) = limi adxi(a). A Banach algebra A is called amenable if every

continuous derivation D : A −→ X∗, where X∗ is the dual module of X, is inner

for every Banach A-bimodule X and A is called approximately amenable if every

continuous derivation D : A −→ X∗ is approximately inner, for all Banach A-

bimodule X.

Throughout this paper, A is a Banach algebra, E is a Banach A-bimodule and

∆ : E −→ A is a bounded Banach A-bimodule homomorphism, that is, a bounded

linear map such that for any a ∈ A and x ∈ E,

∆(a · x) = a ·∆(x) and ∆(x · a) = ∆(x) · a.

Let X be a Banach A-bimodule. A bounded linear map D : A −→ X is called a

module derivation (or more specifically ∆-derivation) if

D(∆(a · x)) = a ·D(∆(x)) +D(a) ·∆(x), D(∆(x · a)) = D(∆(x)) · a+∆(x) ·D(a),

for all a ∈ A and x ∈ E. Also, D is called ∆-inner if there is f ∈ X such that for

any x ∈ E

D(∆(x)) = ∆(x) · f − f ·∆(x) = adf (∆(x)).

An A-bimodule E is called module amenable (or more specifically ∆-amenable) if

for each Banach A-bimodule X, all ∆-derivations from A to X∗ are ∆-inner. It is

clear that A is module amenable (with ∆ = id) if and only if it is amenable as a

Banach algebra.

A (weak) right approximate identity of E is a net (aα) in A such that for each

x ∈ E, ∆(x) · aα − ∆(x) → 0 [∆(x) · aα − ∆(x) → 0 in the weak topology]. The

(weak) left and two sided approximate identities are defined similarly.

Definition 2.1. An A-bimodule E is called approximately module amenable (ap-

proximately ∆-amenale as an A-bimodule) if for each Banach A-bimodule X, all ∆-

derivations from A to X∗ are approximately ∆-inner. A ∆-derivation D : A −→ X∗
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is called approximately ∆-inner if there is a net (fα) ⊆ X∗ such that D(∆(x)) =

limα(∆(x) · fα − fα ·∆(x)) (x ∈ E).

A point ∆-derivation d at a character ϕ of an algebra A is a linear functional

d satisfying

d(∆(a · x)) = d(a ·∆(x)) = d(a)ϕ(∆(x)) + ϕ(a)d(∆(x)),

d(∆(x · a)) = d(∆(x) · a) = d(∆(x))ϕ(a) + ϕ(∆(x))d(a) (x ∈ E, a ∈ A).

Proposition 2.1. Suppose that A admits a nonzero continuous point ∆-derivation

d at a character ϕ. If ϕ ◦∆ ̸= 0, then E is not approximately ∆-amenable.

Proof. Let d be a non zero point ∆-derivation at a character ϕ, with ϕ ◦ ∆ ̸= 0.

Then the map D : A −→ A∗; a 7→ d(a)ϕ is a ∆-derivation. We have

D(∆(a · x)) = D(a ·∆(x)) = (d(a)ϕ(∆(x)) + ϕ(a)d(∆(x))ϕ

= d(a)ϕ(∆(x))ϕ+ ϕ(a)d(∆(x))ϕ

= d(a)ϕ ·∆(x) + a · d(∆(x))ϕ

for all a ∈ A and x ∈ E. The last equality holds, in fact, for each b ∈ A

(d(a)ϕ ·∆(x) + a · d(∆(x))ϕ)(b) = (d(a)ϕ ·∆(x))(b) + (a · d(∆(x))ϕ)(b)

= d(a)ϕ(∆(x)b) + d(∆(x))ϕ(ba)

= d(a)ϕ(∆(x))ϕ(b) + d(∆(x))ϕ(b)ϕ(a)

= d(a)ϕ(∆(x))ϕ(b) + ϕ(a)d(∆(x))ϕ(b)

= (d(a)ϕ(∆(x))ϕ+ ϕ(a)d(∆(x))ϕ)(b).

Suppose the assertion of the proposition is false. Hence, there is a net (fα) in A∗

such that (D ◦∆)(x) = limα(adfα ◦∆)(x) for all x ∈ E. Thus

(D(∆(x)))(∆(x)) = d(∆(x))ϕ(∆(x)) = lim
α
(adfα(∆(x)))∆(x)

= lim
α
(∆(x) · fα − fα ·∆(x))(∆(x))

= lim
α
fα((∆(x))2 − (∆(x))2) = 0

for all x ∈ E. So, d(∆(x))ϕ(∆(x)) = 0. This shows that d◦∆ vanishes off ker(ϕ◦∆).

On the other hand, if z /∈ ker(ϕ ◦∆) and x ∈ ker(ϕ ◦∆), then 2x = (x+ z)+ (x− z)

with x+ z, x− z /∈ ker(ϕ ◦∆). So d ◦∆(x) = 0. Thus d ◦∆ = 0. Now suppose that

d(a) ̸= 0 for some a ∈ A. Hence, for any x ∈ E we have

d(∆(a · x)) = d(a ·∆(x)) = d(a)ϕ(∆(x)) + ϕ(a)d(∆(x)).

Therefore, d(a)ϕ(∆(x)) = 0. Since d(a) ̸= 0, we have ϕ ◦∆ = 0 which is a contra-

diction. �

The proof of the following lemma is similar to the proof of [7, Lemma 2.1], so

we do not include it.
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Lemma 2.1. Suppose that E has a weak left (right) approximate identity, then E

has a left (right) approximate identity.

Proposition 2.2. Let E be approximately ∆-amenable. Then, E has left and right

approximate identities. In particular, ∆(E) ·A = A ·∆(E) = ∆(E).

Proof. Take A∗∗ with usual left action and zero right action as an A-bimodule.

Then, the natural injection A −→ A∗∗; a 7→ â is a ∆-derivation. Thus, there is a

net (fα) ⊆ A∗∗ with ∆(x).fα → ∆̂(x) for each x ∈ E. Choose the finite sets F ⊆ E,

Φ ⊆ A∗ and ϵ > 0. Let H = {ϕ · ∆(x) : x ∈ F, ϕ ∈ Φ}, K = max{∥ψ∥, ∥ϕ∥ : ψ ∈
H,ϕ ∈ Φ}. Similar to the proof of [7, Lemma 2.2], we can show that E has a weak

left approximate identity. Now, apply Lemma 2.1. �

Proposition 2.3. Suppose that E is approximately ∆-amenable (as an A-bimodule)

and ϕ : A −→ B is a continuous epimorphism such that

E · kerϕ = kerϕ · E = {0}.

If E is considered as a B-bimodule via b ·x := a ·x, x · b := x ·a (b ∈ B, x ∈ E) where

a ∈ A with b = ϕ(a), then approximate ∆-amenability of E (as an A-bimodule)

implies approximate ϕ ◦∆-amenability of E (as a B-bimodule).

Proof. Suppose that X is a B-bimodule and D : B −→ X∗ is a ϕ ◦ ∆-derivation.

Then X is naturally an A-bimodule via a ·x = ϕ(a) ·x, x ·a = x ·ϕ(a) (x ∈ X, a ∈ A).

Thus D ◦ ϕ : A −→ X∗ is a ∆-derivation, so there is a net (fα) ⊆ X∗ such that

D ◦ ϕ(∆(x)) = lim
α
(∆(x) · fα − fα ·∆(x))

= lim
α
(ϕ(∆(x)) · fα − fα · ϕ(∆(x)))

for all x ∈ E. This shows that D is approximately ϕ ◦∆-inner. �

The next corollary is a direct consequece of Proposition 2.3.

Corollary 2.1. Let E be approximately ∆-amenable (as an A-bimodule) and J be

a closed two-sided ideal of A such that J · E = E · J = {0}. If π : A −→ A/J is the

canonical map, then E is an A/J-bimodule which is approximately π ◦∆-amenable.

Proposition 2.4. Let E and E′ be Banach A-bimodules with corresponding module

homomorphisms ∆ : E −→ A and ∆′ : E′ −→ A, recpectively. If θ : E −→ E′ is a

bounded module epimorphism such that ∆′ ◦θ = ∆, then approximate ∆-amenability

of E implies approximate ∆′-amenability of E′.

Proof. Suppose that D : A −→ X∗ is a ∆′-derivation where X is a Banach A-

bimodule. So D : A −→ X∗ is also a ∆-derivation because

D(∆(a · x)) = D(a ·∆(x)) = D(a · (∆′ ◦ θ)(x)) = D(a ·∆′(θ(x))

= D(a) ·∆′(θ(x)) + a ·D(∆′(θ(x))

= D(a) ·∆(x) + a ·D(∆(x))
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for all a ∈ A and x ∈ E. Due to the approximate ∆-amenability of E, there is a net

(fα) ⊆ X∗ such that D(∆(x)) = limα∆(x) · fα − fα ·∆(x) (x ∈ E). Hence,

D(∆′(θ(x)) = D(∆(x)) = lim
α
(∆(x) · fα − fα ·∆(x))

= lim
α
(∆′(θ(x)) · fα − fα ·∆′(θ(x))

for all x ∈ E. Since θ is surjective, we conclude that D is approximately ∆′-inner

and so E′ is approximately ∆′-amenable. �

Proposition 2.5. Let J be a closed submodule of E and I be the closed ideal of

A generated by ∆(J), q : A −→ A/I and q̃ : E −→ E/J be the corresponding

quotient maps. Then, E is approximately ∆-amenable whenever J is ∆|J -amenable

(∆|J : J −→ I) and E/J is approximately ∆̃-amenable whereas ∆̃ : E/J −→ A/I is

the unique A/I module map with ∆̃ ◦ q̃ = q ◦∆

Proof. Let X be a Banach A-bimodule and let D : A −→ X∗ be a ∆-derivation.

Then, D|I : I → X∗ is a ∆|J -derivation. Since J is ∆|J -amenable, there exists

λ1 ∈ X∗ with D(∆(j)) = adλ1(∆(j)) (j ∈ J). Replacing D by D − adλ1 , we

may suppose that D|∆(J) = 0 so D|I = 0. Set F = I ·X +X · I. Then F is a

closed A-submodule of X and X/F is clearly a Banach (A/I)-bimodule (indeed

X/F is an A-bimodule such that I(X/F ) = (X/F )I = 0). Also, (X/F )∗ ∼= F⊥ =

{f ∈ X∗ : f |F = 0} is a dual Banach (A/I)-bimodule. For each a ∈ A and

b ∈ I, we have a · D(b) = D(ab) = 0 and so D(a) · b = 0. Take x ∈ X. Then,

⟨b · x,D(a)⟩ = ⟨x,D(a) · b⟩ = 0 so D(a)|I·X = 0. Similarly, D(a)|X·I = 0 and so

D(a)|F = 0. Thus D(A) ⊆ F⊥ and the map DI : A/I → F⊥, DI(a + I) = D(a) is

a continuous ∆̃-derivation. By hypothesis, E/J is approximately ∆̃-amenable. So,

there exists a net (fα) ⊆ F⊥ with DI(∆̃(e + J)) = limα adfα(∆̃(e + J)). For each

e ∈ E, we get

∆̃(e+ J) = ∆̃ ◦ q̃(e) = q ◦∆(e) = ∆(e) + I.

Therefore

D(∆(e)) = DI(∆(e) + I) = DI(∆̃(e+ J)) = lim
α
adfα(∆̃(e+ J))

= lim
α
adfα(∆(e) + I) = lim

α
adfα(∆(e)).

Consequently, D is the sum of a ∆-inner derivation adλ1 and approximately ∆-inner

derivation D − adλ1 . �

We have the following lemmas which are analogous to [7, Lemma 2.3] and [7,

Lemma 2.4], respectively. Since the proofs are similar, we omit them.

Lemma 2.2. Let A be a unital Banach algebra with identity e, X be an A-bimodule,

and let D : A −→ X∗ be a ∆-derivation. Then, there is a ∆-derivation D1 : A −→
e ·X∗ · e and η ∈ X∗ such that

(i) ∥η∥ ≤ 2C∥D∥ (where C is a constant depending on X);

(ii) D(∆(x)) = D1(∆(x)) + adη(∆(x)) (x ∈ E).
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Lemma 2.3. Let A be a unital Banach algebra with identity e and E be approx-

imately ∆-amenable, X be an A-bimodule and D : A −→ X∗ be a ∆-derivation.

Then, there are a net (fα) ⊂ e ·X∗ · e and η ∈ X∗ such that

(i) ∥η∥ ≤ 2C∥D∥;
(ii) D(∆(x)) = adη(∆(x))) + limα(adfα(∆(x)) (x ∈ E).

Remark 2.1. In the previous lemma if E is ∆-amenable then there are f ∈ e ·X∗ ·e
and η ∈ X∗ such that

(1) ∥η∥ ≤ 2C∥D∥;
(2) D(∆(x)) = adη(∆(x)) + adf (∆(x)) (x ∈ E).

Let A be a non-unital Banach algebra. Then, A♯ = A ⊕ C, the unitization

of A, is a unital Banach algebra which contains A as a closed ideal. If E is a

Banach A-bimodule and ∆ : E −→ A is an A-bimodule homomorphism, then E is

an A♯-bimodule with the actions

(a, λ) · x = a · x+ λx, x · (a, λ) = x · a+ λx (x ∈ E, λ ∈ C, a ∈ A).

It is easy to check that ∆′ : E −→ A♯ is an A♯-bimodule homomorphism, where for

any x ∈ E,∆′(x) = ∆(x).

Proposition 2.6. E is approximately ∆-amenable (as an A-bimodule) if and only

if E is approximately ∆′-amenable (as an A♯-bimodule).

Proof. Sufficient part: Let D : A♯ −→ X∗ be a ∆′-derivation, where X is an A♯-

bimodule. Clearly, X is an A-bimoule and D|A : A −→ X∗ is a ∆-derivation.

Since E is approxmiately ∆-amenable as an A-bimodule, there is a net (fα) ⊂ X∗

such that D|A(∆(x)) = limα adfα(∆(x)). It follows from Im(∆′) = Im(∆) ⊆ A ⊆
A♯ that D(∆′(x)) = D|A(∆(x)) = limα adfα(∆(x)) = limα adfα(∆

′(x)). So, E is

approximately ∆′-amenable as an A♯-bimodule.

Necessary part: Let D : A −→ X∗ be a ∆-derivation where X is an A-

bimodule. Then X is an A♯-bimodule with the usual actions. Now, D can be

extended to D̃ : A♯ → X∗ by D̃(a, λ) = D(a). Then D̃ is a ∆′-derivation. In fact

D̃(∆′((a, λ) · x))) = D̃((a, λ) ·∆′(x)) = D̃((a ·∆(x) + λ∆(x))

= D̃((a ·∆(x)) + D̃(λ∆(x)) = D(a ·∆(x)) + λD(∆(x))

= D(a) ·∆(x) + a ·D(∆(x)) + λD(∆(x))

= D̃(a, λ) ·∆′(x) + (a, λ) · D̃(∆′(x)).

Then, D̃ is approximately ∆′-inner, whence D is approximately ∆-inner. �

Definition 2.2. A Banach A-bimodule X is called right ∆-essential if for x ∈ X,

there are a ∈ ∆(E) and y ∈ X such that x = y · a. The left ∆-essential and (two

sided) ∆-essential modules are defined similarly.

Theorem 2.1. Suppose that ∆ has a dense range and E has a bounded approximate

identity. Then E is approximately ∆-amenable if and only if for each ∆-essential

Banach A-bimodule X, all ∆-derivations from A to X∗ are approximately ∆-inner.
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Proof. Let (aα) ⊆ A be a bounded approximate identity for E. Let X be a Banach

A-bimodule and D : A −→ X∗ be a ∆-derivation. Consider Tα : X∗ −→ X∗ defined

by Tα(f) = aα · f , for all f ∈ X∗. Since (aα) is bounded in A, {Tα} is bounded in

B(X∗). Hence, it has a w∗-cluster point, say T . We may assume that Tα → T in

w∗-topology. For each e ∈ E, x ∈ X, f ∈ X∗ we have

⟨x ·∆(e), Tf⟩ = lim
α
⟨x ·∆(e), Tαf⟩ = lim

α
⟨x ·∆(e), aα · f⟩

= lim
α
⟨x ·∆(e)aα, f⟩ = ⟨x ·∆(e), f⟩.

Thus, T −I : X∗ −→ (X ·∆(E))⊥ is a bounded projection. Also, the following short

exact sequence of Banach A-bimodules is admissible

0 −→ (X ·∆(E))⊥ −→ X∗ −→ (X ·∆(E))∗ −→ 0.

On the other hand, X

(X·∆(E))
·∆(E) = 0. We have

X∗ = (X ·∆(E))∗ ⊕ (X ·∆(E))⊥.

This implies that TD and (I − T )D are ∆-derivations, the latter being ∆-inner.

It follows from (X · ∆(E))⊥ ∼= ( X

(X·∆(E))
)∗ and X

(X·∆(E))
· ∆(E) = 0 that ∆(E) ·

( X

(X·∆(E))
)∗ = 0. Since ∆ has dense range, A·( X

(X·∆(E))
)∗ = 0 and so A·(X ·∆(E))⊥ =

0. We now consider ∆(E) · (X ·∆(E)) and proceed as before to find that D is the

sum of two ∆-inner derivations, plus a derivation mapping into the dual of the

∆-essential module ∆(E) · (X ·∆(E)). �

Lemma 2.4. Let A be an approximately amenable Banach algebra. If B is another

Banach algebra such that A is an ideal of B and ∆ : A −→ B is the inclusion map,

then A is approximately ∆-amenable (as a B-bimodule).

Proof. Suppose that X is a B-bimodule and D : B −→ X∗ is a ∆-derivation. Then,

X is also an A-bimodule andD|A : A→ X∗ is a derivation. Since A ia approximately

amenable there exists a net (fα) ⊂ X∗ such that D|A(a) = limα adfα(a), we have

D(∆(a)) = D(a) = D|A(a) = limα adfα(a). �

It is shown in [6, Proposition 2.8] that if ∆ has a dense range, then ∆-

amenability of the A-module E is equivalent to amenability of the Banach algebra

A. Also, it is known that the direct sum of two amenable Banach algebras is an

amenable Banach algebra. Summing up:

Lemma 2.5. Let E be a Banach A-bimodule and F be a Banach B-bimodule. If

α : E −→ A and β : F −→ B are bounded Banach A-bimodule homomorphism and

B-bimodule homomorphism with dense ranges, respectively, then E⊕F is a Banach

A⊕B-bimodule with the natural action (x, y)·(a, b) = (xa, yb), (a, b)·(x, y) = (ax, by)

for (a, b) ∈ A ⊕ B, (x, y) ∈ E ⊕ F. Also, (α ⊕ β) : E ⊕ F −→ A ⊕ B is defined by

(α ⊕ β)(x, y) = (α(x), β(y)) is a bounded Banach A ⊕ B-bimodule homomorphism.

In particular, if E is α-amenable (as an A-bimodule) and F is β-amenable (as a

B-bimodule), then E ⊕ F is α⊕ β-amenable as an A⊕B-bimodule.
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Definition 2.3. A Banach A-bimodule E is called approximately ∆-contractible if

for any Banach A-bimodule X every ∆-derivation D : A −→ X is approximately

∆-inner.

Proposition 2.7. Let E be a Banach A-bimodule, and ∆ : E −→ A be a bounded

Banach A-bimodule homomorphism. Let ∆ ⊕ ∆ : E ⊕ E −→ A ⊕ A be defined by

(∆⊕∆)(x, y) = (∆(x),∆(y)). If E ⊕E is approximately ∆⊕∆ contractible (as an

A⊕A bimodule), then A has an approximate identity.

Proof. Let A be an A⊕A-bimodule with the following actions

(a, b) · x = ax, x · (a, b) = xb (x ∈ A, a, b ∈ A).

Define D : A ⊕ A → A by D(a, b) = a − b. Then, D is a derivation and hence a

(∆⊕∆)-derivation. So, there is a net (ai) ⊂ A such that

D(∆(x),∆(y)) = ∆(x)−∆(y) = lim
i
(∆(x),∆(y))ai − ai(∆(x),∆(y))

= lim
i
∆(x)ai − ai∆(y).

for all x, y ∈ E. Therefore, limi∆(x)ai = ∆(x) and limi ai∆(y) = ∆(y). �

Theorem 2.2. Let E be a Banach A-bimodule and ∆ : E −→ A be a bounded

Banach A-bimodule homomorphism. Suppose that ∆(E) is norm closed in A and

∆(E) has a bounded approximate identity. Then, E is approximately ∆-amenable if

and only if it is approximately ∆-contractible.

Proof. The sufficient part is clear. For the necessary part, assume that E is approx-

imately ∆-amenable (as an A-bimodule). We claim that ∆(E) is an approximately

amenable Banach algebra. So, by [8, Theorem 2.1] ∆(E) is an approximately con-

tractible Banach algebra. Now, let D : A −→ X be a ∆-derivation for some Banach

A-bimoule X. Then, D |∆(E): ∆(E) −→ X is a derivation. Since ∆(E) is approxi-

mately contractible, D |∆(E) is approximately inner and hence D is approximately

∆-inner. Therefore E is approximately ∆-contractible.

To prove the claim suppose that D : ∆(E) −→ X∗ is a derivation for a Banach

∆(E)-bimodule X. Since ∆(E) is a norm closed ideal in A and ∆(E) has a bounded

approximate identity, by [12, Proposition 2.1.6] we can extend D to a derivation

D̄ : A −→ X∗. Due to the approximate ∆-amenability of E (as an A-bimodule), D̄

is approximately ∆-inner and thus D is approximately inner. �

For a Banach algebra A, let π : A
⊗̂
A −→ A be the canonical map, that is,

π(a⊗ b) = ab for any a, b ∈ A.

Theorem 2.3. Let A be a unital Banach algebra with identity e, E be a Banach

A-bimodule and ∆ : E −→ A be a bounded Banach A-bimodule homomorphism.

Consider the following assertions:

(i) E is approximately ∆-amenable as a Banach A-bimodule;

(ii) There is a net (Mv) ⊆ (A
⊗̂
A)∗∗ such that for each x ∈ E, ∆(x) ·Mv −Mv ·

∆(x) −→ 0 and π∗∗(Mv) −→ e;
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(iii) There is a net (M ′
v) ⊆ (A

⊗̂
A)∗∗ such that for each x ∈ E, ∆(x) ·M ′

v −M ′
v ·

∆(x) −→ 0 and π∗∗(M ′
v) = e for every v.

Then (i)⇒(iii)⇒ (ii), and in the case that ∆ has dense range, (ii) implies (i).

Proof. (i)⇒ (iii). Let D : A −→ (A
⊗̂
A)∗∗ be defined by D(a) = a · u − u · a

for any a ∈ A, where u = e ⊗ e. Then, Im(D) ⊆ ker(π∗∗) ∼= (kerπ)∗∗. Since E is

approximately ∆-amenable, there is a net (tv) ⊂ ker(π∗∗) such that for any x ∈ E,

D(∆(x)) = limv ∆(x) · tv − tv ·∆(x). Let M ′
v = u− tv. So, π

∗∗(M ′
v) = e and

∆(x) ·M ′
v −M ′

v ·∆(x) = ∆(x) · u− u ·∆(x)− (∆(x) · tv − tv ·∆(x)) −→ 0.

(iii)⇒(ii) It is trivial.

(ii)⇒(i). Let D : A −→ X∗ be a ∆-derivation for some ∆-essential Banach

A-bimodule X. For each x ∈ X, let µx ∈ (A
⊗̂
A)∗ defined by µx(a⊗ b) = ⟨aD(b), x⟩

for all a, b ∈ A. Now, for each v, put fv(x) = Mv(µx) for any x ∈ X. We show

that for any y ∈ E, D(∆(y)) = limv adfv(∆(y)) and hence by Theorem 2.1 E is

approximately ∆-amenable. It is easy to check that for x ∈ X, m ∈ A
⊗̂
A

µx·∆(y)−∆(y)·x(m) = (µx ·∆(y)−∆(y) · µx)(m) + (π(m)Da)(x).

There is a net (mα
v ) in A

⊗̂
A such that Mv = w∗ − limαm

α
v . So,

(∆(y) · fv − fv ·∆(y))(x) = fv(x ·∆(y)−∆(y) · x)
=Mv(µ∆(y)·x−x·∆(y)) = lim

α
(µ∆(y)·x−x·∆(y))(m

α
v )

=Mv(µx ·∆(y)−∆(y) · µx) + lim
α
(π(mα

v )D(∆(y))(x)

= (∆(y) ·Mv −Mv ·∆(y))(µx) + (π∗∗(Mv)D(∆(y)))(x).

Thus

∥(∆(y) · fv − fv ·∆(y))(x)−D(∆(y))(x)∥
6 ∥∆(y) ·Mv −Mv ·∆(y)∥ · ∥D∥ · ∥x∥
+ ∥x∥ · ∥π∗∗(Mv)− e∥ · ∥D(∆(y))∥

Therefore, D(∆(y)) = limv adfv(∆(y)) as required. �

Given a sequence {An} of Banach algebras, define their l∞ direct sum as

l∞(An) = {(xn) : xn ∈ An, ∥(xn)∥ = sup ∥xn∥ <∞}

and

c0(An) = {(xn) ∈ l∞(An) : ∥xn∥ → 0}.
We finish the paper by four examples.

Example 2.1. We present an approximately ∆-amenable module which is not a

∆-amenable Banach module. Consider the algebra Mn of n×n matrices with norm

∥aij∥2 = (
∑

i,j |aij |2)1/2. Then ∥AB∥2 ≤ ∥A∥2∥B∥2 for any A,B ∈Mn. One should

remember that the duality between Mn and M∗
n is, ⟨A,E⟩ =

∑
i,j aijeij . Also, the
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map Mn → M∗
n : A 7−→ A, is isometric. Let

[
0 −1

1 0

]
as an element of M∗

2 .

Inductively, define Pn+1 =

[
0 −Pn

Pn 0

]
so that Pn ∈ M2n . Let An = M ♯

2n .

By [7, Example 6.2], c0(An) is an approximately amenable Banach algebra which

is not amenable, since c0(An) is an ideal of l∞(An), by Theorem 2.1 c0(An) is

approximately ∆-amenable as an l∞(An)-bimodule, where ∆ : c0(An) −→ l∞(An) is

the inclusion map. Now we define D : l∞(An) −→ l1(A∗
n) by D((xn)) =

(
adPn (xn)

n2

)
.

As in [7, Example 6.2] D cannot be ∆-inner. Thus, c0(An) is not ∆-amenable as an

l∞(An)-bimodule.

Example 2.2. Let A be an approximately amenable Banach algebra and let π :

A⊗̂A → A be the canonical map. Then A⊗̂A is approximately π-amenable (as an

A-bimodule). It is easy to see that π is a Banach A-bimodule homomorphism. Since

A is an approximately amenable Banach algebra, A has left approximate identity.

Therefore, π has a dense range. Let D : A −→ X∗ be a π-derivation where X is

a Banach A-bimodule. Since π has a dense range, D is a derivation. Due to the

approximate amenability of A an Banach algebra, there exists a net (fα) ⊂ X∗ such

that D(a) = limα adfα(a), So D(π(x)) = limα adfα(π(x)) for all x ∈ A⊗̂A.

Example 2.3. Let G be a locally compact group. We know that L1(G) is a closed

two sided ideal in M(G). We can consider L1(G) as a Banach M(G)-bimodule. Let

i : L1(G) −→M(G) be the inclusion map. IfG is a non discrete amenable group then

M(G) is not an approximately amenable Banach algebra [7]. Let D :M(G) −→ X∗

be an i-derivation where X is a Banach M(G)-bimodule. Then, X is also an L1(G)-

bimodule and D|L1(G) : L
1(G) −→ X∗ is a derivation. Since G is amenable, D|L1(G)

is inner and hence D|L1(G) is an approximately inner derivation. Consequently,

L1(G) is an approximately i-amenable M(G)-bimodule.

Example 2.4. Let G be an abelian compact group. Then, Lp(G) (1 < p <∞) is a

Banach L1(G)-bimodule. If 1/p+ 1/q = 1 and f ∈ Lq(G), then define

∆f : Lp(G) → L1(G)

by ∆f (g) = g ∗ f . Since G is an abelian compact group, ∆f has dense range. If G

is amenable so L1(G) is an amenable Banach algebra and so Lp(G) is ∆f -amenable.

Therefore, Lp(G) is approximately ∆f -amenable.

The idea of the next example is motivated by [7, Example 6.1].

Example 2.5. For each n ∈ N , let An be a unital Banach algebra with identity en.

Let Mn be an An-bimodule such that there exists kn > 0 such that for each x ∈Mn

and a ∈ An, we have ∥a · x∥ ≤ kn∥a∥∥x∥, ∥x · a∥ ≤ kn∥x∥∥a∥. Let ∆n : Mn −→ An

be a bounded Banach An-bimodule homomorphism with dense range. Suppose that

Mn is ∆n amenable as an An-bimodule. Let M = c0(Mn) and A = c0(An). If

sup{kn : n ∈ N} < ∞, then M is a Banach A-bimodule. Consider the mapping

∆ : M −→ A defined through (∆(mn)) = (∆n(mn)) and sup{∥∆n∥ : n ∈ N} < ∞.
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Then ∆ is a bounded Banach A-bimodule homomorphism and M is approximately

∆-amenable (as an A-bimodule). It is easy to see that M is a Banach A-bimodule

and ∆ is a bounded Banach A-bimodule homomorphism. Let X be an A-bimodule

and D : A −→ X∗ be a ∆-derivation. Put

Bk = {(xn) ∈ c0(An) : xn = 0 for n > k}

and

Ck = {(mn) ∈ c0(Mn) : mn = 0 for n > k}.
Set En = (e1, e2, e3, ..., en, 0, ...). Then, (En) is a central approximate identity for

A. Restricting D to some Bn we have a ∆|Cn-derivation Dn : Bn −→ X∗. Since

Bn is unital, by Lemma 2.5 and Remark 2.1, there exists fn ∈ En · X∗ · En and

ηn ∈ X∗(∥ηn∥ 6 2C∥D∥) such that Dn(∆|Cn(x)) = adfn(∆|Cn(x))+ adηn(∆|Cn(x)),

for any x ∈ Cn. Note that for each x ∈ M , ∥adηn(En∆(x) −∆(x))∥ → 0, because

(En) is an approximate identity and (ηn) is bounded. Since fn ∈ En ·X∗ · En, we

have aEn · fn = a · fn and fn · Ena = fn · a for any a ∈ A. As (En) is central, for

any x ∈M , we get

D(∆(x)) = lim
n
D(En∆(x)) = lim

n
((∆(x)En) · fn − fn · (En∆(x)) + adηn(En∆(x))

= lim
n
(∆(x) · fn − fn ·∆(x) + adηn(En∆(x))

= lim
n
(adfn(∆(x)) + adηnEn∆(x)) + adηn(∆(x)− (En∆(x))

= lim
n
(adfn(∆(x)) + adηn(∆(x))) = lim

n
ad(fn+ηn)(∆r(x)).
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