U.P.B. Sci. Bull., Series D, Vol. 74, Iss. 2, 2012 ISSN 1454-2358

THE STATIONARY MOTION OF A BOGIE ALONG A
CIRCULAR CURVE

Maidilina DUMITRIU!

In lucrare se propune o noud abordare privind rezolvarea ecuatiilor de
echilibru ale migcarii permanente a unui boghiu intr-o curba circulard, abordare
bazata pe definirea pozitiilor limitd secantd §i coardad. Prin aceasta se rezolva
problema nedeterminarii pozitiei boghiului datoritd jocului in cale. Sunt calculate
fortele centrifuge necompensate corespunzdtoare acestor pozitii limitd §i, pe aceastd
baza, se stabileste pozitia boghiului in functie de forta centrifugd necompensata
care actioneazad efectiv. Este analizat cazul unui boghiu cu conducere elastica a
osiilor si se pune in evidentd influenta razei curbei si vitezei, precum §i a
ampatamentului si elasticitatilor conducerii osiilor asupra regimului stationar.

This paper proposes a new approach of solving the equilibrium equations of
the stationary motion of a bogie in a circular curve, based on the secant and chord
limit positions. Thus, the issue of the undetermined position of the bogie due to the
clearance in the track is solved. The unbalanced centrifugal forces corresponding to
the two limit positions are calculated and then the bogie position is determined
depending on the unbalanced centrifugal force applied on the bogie. The case of a
bogie with elastic steering of the wheelsets is analyzed and the influence of the curve
radius, speed, the bogie base and the elasticity of the steering of the wheelsets on the
curving behaviour is pointed out.
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1. Introduction

Curves are a critical area of any railway system, since almost every
challenge in vehicle/track interaction is a greater test in curves. Derailment of
trains occurs more frequently in curves or in switches and crossing, which may be
considered a special case of the curved track [1 - 4]. The reprofiling interval of
wheels is usually prescribed by the rapid wear that occurs in both treads and
flanges in curves. Vehicles are more sensitive to lateral irregularities in track
geometry because they follow the high rail in a curve more closely and thereby
affect the passenger ride. On the other hand, the rail life is generally much shorter
in curves; rail fastenings break off from greater movement of the rails, sleeper
skew and, thereby, narrow the gauge etc. [5-7].

! Assistant Prof,, Depart. of Railway Vehicles, University POLITEHNICA of Bucharest, Romania,
e-mail: madalinadumitriu@yahoo.com.



40 Madailina Dumitriu

By studying the curving of the vehicles the best technical improvements of
the construction [8-11] can be found and the traction [12, 13] and braking [14] can
be optimized.

Solving the issues of the curving simulation is a difficult task, due to the
nonlinearities of the wheelset/rails interface: the wheelset/rails clearance, the
geometry of the contact between the wheels and rails and the friction coefficient
[1, 15, 16].

This work proposes a new approach of the equilibrium equations of the
stationary motion of a bogie along a circular curve based on the concept of the
limit positions. These limit positions are defined as the geometric contact between
the rear wheelset of the bogie and the inner rail — the secant limit position, and the
outer rail — the chord limit position; there is no leading force acting on the rear
wheelset. Starting from the values of the unbalanced centrifugal force
corresponding to the two limit positions, the bogie position may be found (secant,
free or chord position), depending on the effective unbalanced centrifugal force
acting on bogie. Here, this method is applied to point out the basic features of the
stationary motion of a bogie along a circular curve.

2. The equilibrium equations

The mechanical model of a two-axle bogie in stationary motion with
constant velocity V" along a circular curve of radius R is presented in Fig. 1. The
wheelsets are linked to a body frame of the bogie by means of linear springs of
stiffness k., k, in the longitudinal and lateral direction, respectively. The bogie
base is 2a, the transversal base of the suspension 25 and the distance between the
rolling circles of the wheels is 2e.
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Fig. 1. Mechanical model of the bogie in curve.

The position of each wheelset is determined by the displacements y; and y»
respectively of the wheelset centre in respect to its local reference moving frame
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and the attack angles a; and a, with respect to the radial position (Fig. 2). Also,
the position of the body frame of the bogie is given by the lateral displacement y,,
of the body frame centre and the rotation o.
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Fig. 2. Coordinates of the bogie.

It is supposed that the attacking wheel of the leading wheelset is in contact
with the flange of the high rail. The position of the rear wheelset may be in
contact with the high rail or the low rail or even between both rails, depending on
the equilibrium position of the bogie. The three cases are known as the so-called
the chord position, the secant position and the free position, respectively. The
effect of the wheel flange is replaced by a guidance roller that introduces the
leading forces P; and P, corresponding to the two wheelsets. This hypothesis has
been adopted by Heummann [17] and recommended by Sebesan [1], and others.
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Fig. 3. Contact forces.

On the rolling surfaces the contact forces act (Fig. 3): the normal force N
and the friction force 7j;, where the index i = 1, 2 stands for the leading or rear
wheelset and the index j = 1, 2 stands for the outer or inner rail. The friction force
has the components 7; and 7).;. The components of the resultants of the contact
forces are

X, =T,; (1)

xij »
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Y, =FN,siny, +T,_, cosy,; 2
Q; =N, cosy,; T, siny,; 3

where y;; stands for the contact angle.
The friction forces may be calculated using the nonlinear formula provided
by Chartet [18]

KV, N p KV yzi/'N
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where « stands for the creepage coefficient, p is the coefficient of adherence, v;; is
the creepage of the wheel ‘ij° and v; and v,.; are its components

2 2
Vi = Vo T Vs - ®)

The creepage components result from the kinematics of the wheelset

Ar. (v, )
in':i E_ﬂ ; szi':_L’ (6)
R T eos, (7))
where
Ary(y) =1y (y)—r; Ary(v) =r—ry(y,), @)

with r4(y;) - the radius of the rolling circles depending on the wheelset
displacement and r - the wheel radius when the wheelset takes the central place
between rails. To calculate Ary(y;), the contact curve method may be applied [1].
In fact, this method allows to solve the issue of the contact between the wheels
and rails, including the contact angles v;(y)).
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Fig. 4. Forces acting on the wheelsets and the frame of the bogie.

Fig. 4 shows the forces acting on the wheelsets and the bogie frame for the
chord position. It distinguishes the elastic forces between the wheelsets and the
bogie frame Fj;,, the contact forces Xj; and Yj;, the unbalanced centrifugal force
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F., and the leading forces P, and P,. It has to be noticed that the leading force P,
satisfies the following conditions

- for the chord position P, > 0;

- for the free position P, = 0;

- for the secant position P, < 0.

The equations of equilibrium for the chord position of the bogie may be
written as follows

i(YlﬁE,)—Pl:o; ®)
Z( )=k =0; )
22: —1)’"'(eX,, ~bF,,)=0; (10)
2. (=D (eXy; = bF, ) = 0; (11)
£, _ZzlzzlEy‘y =0; (12)
ii[( 1)/ bE,, +(=1)"aF}, |=0. (13)

i=l j=1

Likewise, the above equations represent the equilibrium condition for the
secant position, but, in this case, P, will have negative sign. If the bogie takes the
free position, then Eq. (9) writes

22:(1/21.+sz)=0. (14)

The elastic forces depend on the stiffness &, and k,, and the relative
position between bogie frame and the wheelsets

F;'lx = l2x bk (a’bt a‘i)’ l: 1’ 2; (15)
F,=F, =k,(yy—y)i=12, (16)
where
2
a a
0‘-—%—},)’17, yb+ﬁiaah‘ (17)

The unbalanced centrifugal force depends on the curve radius R, the super-
elevation of the track / and the bogie velocity V'
V: ooh

F =Ml =— - 18
g(gR 2eJ (18)

where M is the 1/2 vehicle mass and g stands for the acceleration of gravity.
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When the bogie velocity equals

IR
V=V0=,/g2—e, (19)

the unbalanced centrifugal force is zero and the bogie velocity is the equilibrium
velocity.

When the velocity is lower than the equilibrium velocity, the unbalanced
centrifugal force acts into the inner rail and its magnitude may be calculated using

F, = Mg£ , (20)
2e
where F is the so-called excess of super-elevation
2
E=h=2""50 with v <¥,. 1)
gR

When the velocity is higher than the equilibrium velocity, the unbalanced
centrifugal force acts into the outer rail and Eq. (18) reads

F,=Mg . 22)
2e
where [ stands for the so-called insufficiency of super-elevation
2
=27 _h50 with V7. (23)
gR

The unbalanced centrifugal force is the cause of a load transfer but this
may be usually neglected; hence, corroborating the fact that the contact angle on
the rolling surface is a small angle, Eq. (3) becomes

Q;,=N;cosy, £T _,;siny, =N, =0,, (24)
where Qy is the static load on wheel.

By inserting the forces expressions in the equilibrium equations, a set of
nonlinear equations is obtained:

Aq=B, (25)
where ( is the column vector of the bogie displacements and leading force(s), A is
a matrix depending on the wheelsets displacements and B is the column vector of
the free terms, including the unbalanced centrifugal force.

Considering the wheelset/track clearance 2o, we have the following cases:

- the bogie takes place in the secant position

Y1 =0, y2=—6q=[a1 a, y, o, A Pz]T; (26)
- the bogie occupies the free position
»n=0.pP=0.q=o, y, o, y a B, 27)

with—c <y, <o;
- the bogie is in the chord position
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n=c.y»=0.q=l0, o, y « A B[ (28)

The structure of the matrix A and the column vector B changes, according
to the three cases.

The nonlinear equation (25) may be solved following an iterative method.

It has to be noticed that the issue of the bogie curving is nonlinear, due to
the clearance of the wheelset that modifies the shape of the equilibrium equations.
Moreover, for every case, the equilibrium equations are nonlinear due to
wheels/rails contact, including the geometry and the friction coefficient.

A value of the unbalanced centrifugal force being given, the bogie position
cannot be directly determined, due to the nonlinearity of the wheelset/track
clearance. To overcome this shortcoming, the following procedure should be
taken into consideration. There are two limit positions, named the limit secant
position when the rear wheelset and the inner rail are in contact and the limit
chord position when the wheelset and the outer rail are in contact; the leading
force P, is zero for both. The bogie touches the limit positions for two particular
values of the unbalanced centrifugal force, F,; and Fi,..

These values may be calculated starting from the equations (8) and (10-14)
corresponding to the free position of the bogie rewritten in the matrix form (25),
where the column vector q is as follows

- for the limit secant position

J’1:G’J’2:_G’Pz:0,q=[a1 a, ¥ o, A Fcns]T; (29)
- for the chord limit position
ylzc,yzzc,PzzO,q:[al a, y, o, A Fcnc]T- (30)

When the two limit values of the unbalanced centrifugal force are
calculated, the bogie position is determined by the correlations below:

- the bogie is in the secant position for F,, < Fq

- the bogie is in the free position for F,s < F< Fene

- the bogie is in the chord position for Fi,. < Fy.

For a particular F,, force, one may choose the adequate equilibrium
equation according to the correlation above. Then, solving this equation
iteratively, the position of each part of the bogie and the leading force(s) are
obtained.

3. Numerical application

Next, the stationary motion of a particular two-axle bogie along a curved
circular track is numerically analysed using the equilibrium equations and the
method presented in previous section. The physical parameters of the bogie taken
into account are as follows: M = 20000 kg, k. = 40 MN/m, k, = 10 MN/m, 2a =
2.56 m, 2r = 0.89 m, 0, =49 kN, n = 0.36, « = 195. The CFR S78 wheel profile
is considered for the bogie wheelsets. The track has the UIC 60 rails and the
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super-elevation £ = 150 mm for any radius of curvature. Also, the admissible
value of the insufficiency of super-elevation is I g, = 70 mm.
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Fig. 5. Unbalanced centrifugal forces at the limit positions and extreme values:
— Fens s - Fene = s Eenmin s -+ - - Fenmax;

Fig. 5 presents the unbalanced centrifugal forces at the limit positions
versus the curve radius. Also, the min/max values of the unbalanced centrifugal
force acting on the bogie are displayed in order to determine the curving position
of the bogie. The min/max values of the unbalanced centrifugal force (F_umin/
Fumayx) are obtained taking £ = h (V' =10) and I = lygm (V' = Vaam) in Egs. (20) and
(23), respectively. One observes that the bogie takes the free position for all
speeds when the curve radius is higher than 390 m. For a low speed, the bogie

occupies the secant position for the curves of radius lower than 390 m.
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Fig. 6. Influence of velocity at R = 500 m: (a) —, rear wheelset displacement; -+ , displacement of

the bogie frame; (b) ---, attack angle of the leading wheelset; —, attack angle of the rear wheelset;
------ , rotation of the bogie frame; (c) ---, Py; —, P,.
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Fig. 6 shows the influence of the bogie velocity upon the curving
behaviour when the bogie runs along a 500 m radius curve. The maximum
velocity corresponding to the insufficiency of super-elevation of 70 mm is 96.5
km/h. The bogie moves in the free position for any value of velocity, according to
the preceding results. When the velocity increases, the rear wheelset and the bogie
frame move to the outer rail due to the unbalanced centrifugal force that increases
as the velocity increases (fig. 6 (a)). The attack angles of the wheelsets and the
rotation angle of the bogie frame decrease (fig. 6 (b)). In fact, the bogie exhibits
the tendency to take place in the chord position but it does not touch this position.
The leading force increases as long as the velocity increases and its increasing rate
becomes higher when the velocity is higher than 30-40 km/h.

Fig. 7 diplays the influence of the curve radius upon the stationary motion
of the bogie when the insufficiency of super-elevation takes the admisible value.
It is noticed that the attack angles of both wheelsets and the leading force
increases at small radiuses.
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Fig. 7. Influence of curve radius (I = I4n): (a) ---, attack angle of the leading wheelset; —,
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The attack angle of the leading wheelset and the leading force calculated
for two bogie base values, 2.56 m and 2.00 m respectively, are presented in Figure
8. The numerical simulation takes into consideration a radius of 500 m and
velocities from 0 to 96.5 km/h. When the bogie base is smaller, the attack angle
and the leading force of the leading wheelset are lower. It seems that the tendency
of the two parameters are poorly influenced by the bogie velocity.
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Fig. 9. Influence of longitudinal stiffness (R = 500 m): (a) attack angle of the leading wheelset;
(b) leading force; -+ , bogie with rigid wheelsets; —, k. = 40 MN/m, k, = 6 MN/m;
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Fig. 10. Influence of transversale stiffness (R = 500 m): (a) attack angle of the leading wheelset;
(b) leading force; —, k, = 40 MN/m, k, = 6 MN/m; -~ , k=40 MN/m, k, = 1 MN/m.

Fig. 9 shows the influence of the longitudinal stiffness, upon considering
the circulation in a 500 m radius curve. The attack angle of the leading wheelset
and the leading force are presented for the following wheelsets steering: bogie
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with rigid wheelsets, bogie with elastic steering — the reference option &, = 40
MN/m, k, = 6 MN/m and bogie with a very elastic longitudinal steering k. = 6
MN/m, k, = 6 MN/m. It is evident that the larger attack angles and leading forces
derive for the bogie with rigid wheelset. The lower the longitudinal stiffness of
the bogie steering system, the lower the attack angle and the leading force.

Similar results show in case of the influence of the lateral stiffness of the
wheelsets steering, as is figure 10. The numerical simulation refers to the
reference option and to the instance when the transversal leading is more elastic
(ky =40 MN/m, k, = 1 MN/m). The greater the elasticity of the bogie transversal
leading, the smaller the attack angle and the leading force.

6. Conclusions

The study of the stationary motion of a bogie along a circular curve
represents an essential theoretical issue, with real applications in terms of safety
against derailment, wear of treads, stability of track, etc.

In order to solve the issue of the motion along a curve, it is required to
take into account the nonlinearities, due to the wheelset/rails interface that
changes the equilibrium equations in dependence with the wheelset/rails
clearance, the geometry of the contact between the wheels and rails and the
friction coefficient depending on the creepage. This work proposes a new
approach of the equilibrium equations of the stationary motion of a bogie along a
circular curve based on the concept of the limit positions. To this end, the secant
limit position and the chord limit position are defined and the corresponding
unbalanced centrifugal forces are calculated. Starting from these, the position of
the bogie may be found, depending on the effective unbalanced centrifugal force
acting on bogie.

The method suggested here has been used to examine the main issues
related to the two-axle bogie in stationary motion with constant velocity } along a
circular curve of radius R. The higher the speed, the closer the bogie tends to get
to the chord position, and the higher the leading force and the lower attack angle
of the leading wheelset. The bogie performance of moving along the curve
improves while crossing curves of long radii, by lowering the wheelbase or
raising the elasticity of the wheelsets steering.

It is a must to highlight the fact that the setting of parameters of a bogie is
a compromise between matching the contradictory requirements imposed by the
curving and the stability of the rolling movement.
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