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LIE SYMMETRY ANALYSIS AND CONSERVATION LAWS 

FOR TIME FRACTIONAL COUPLED WHITHAM-BROER-

KAUP EQUATIONS 

 
Hadi Roohani GHEHSAREH1, Ahmad MAJLESI2, Ali ZAGHIAN3 

In the current work, time fractional coupled Whitham-Broer-Kaup equations 

which describes the anomalous bidirectional propagation of long waves in shallow 

water is investigated. A Lie symmetry analysis is formulated and used to the 

governing model. The symmetry reductions of the model are constructed and the 

system of nonlinear time fractional partial differential equations is similarity 

reduced to a system of nonlinear frcational ordinary differential equations in 

Erdelyi-Kober derivative sense. Moreover, the resultant symmetry generators are 

used to calculate conserved vectors for the time fractional problem. Two different 

kinds of conservation laws of the problem have been constructed.  

Keywords: Lie symmetry analysis; Time fractional coupled Whitham-Broer-

Kaup equations; Erdelyi-Kober operators; Conservation laws    

 

1. Introduction 

In recent decades theory of fractional calculus [1, 2] has gained notable 

attention of many researchers in science and engineering due to its high ability for 

describing various complicated natural phenomena. Many of anomalous 

phenomena and complex processes in natural science have been successfully 

described by using the theory of fractional calculus and mathematically modeled 

as fractional differential or integral equations[3, 4, 5, 6]. The main advantage of 

fractional modeling is that they are excellent tools to appropriately characterize 

hereditary and inherent memory properties of the anomalous phenomena. In 

recent years several semi-analytical methods and numerical techniques have been 

developed and employed for solving and investigating various practical problems 

which have been mathematically modeled as fractional equations [7, 8, 9, 10, 11, 

12, 13, 14, 15, 16].  

In this study the following important mathematical model, the time 

fractional Whitham-Broer-Kaup equations, which describes the anomalous 

bidirectional propagation of long waves in shallow water will be investigated[17].  
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 where ( , )u x t  and ( , )v x t  denote the fluid velocity along the horizontal direction 

and vertical displacement of the fluid from its equilibrium position, respectively. 

The constants p  and q  ( ( , ) (0,0)p q  ) are diffusion coefficients and (.)
t


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


 

denotes the Riemann-Liouville partial derivative operator of order   ( 0 < 1  ) 

with respect to time component, t , which is defined as follows :  
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where (.)  is the gamma function. For =1  the anomalous bidirectional 

propagation model (1) is reduced to the classical Whitham-Broer-Kaup problem. 

Several numerical and semi-analytical methods have been formulated and 

employed to investigate the classical Whitham-Broer-Kaup problem[18, 19, 20, 

21, 22].  The classical Whitham-Broer-Kaup (WBK) equation has been widely 

used to study of solitary wave theory in shallow water. However, the classical 

Whitham-Broer-Kaup (WBK) equation is not adequate to describe complicated 

mechanism of  propagation of shallow water waves in porous medium, such as 

tsunami wave propagation. In these situations the temporal derivative in the WBK 

equation and  corresponds to the variation in the flux, 
t




 , should be replaced 

with  fractional time derivative, 
t








, which properly describes variation in the 

flux through the fractal boundary, where  denotes the fractal dimensions of the 

porous medium [23]. Saha Ray [17] has discussed the time-fractional WBK 

equations (1) and approximated the traveling wave solutions of the model in their 

generalized Taylor expansion forms. In [24] a semi-analytical technique, called 

the residual power series method is formulated and used to approximate traveling 

solutions of the model (1). By choosing = 1p  and = 0q  in the (1) the so-called 

time fractional modified Boussinesq system is concluded. While if = 0p  and 
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0q   another special case of the time fractional coupled Whitham-Broer-Kaup 

equations, called time fractional coupled approximate long wave equations is 

obtained. In [25] the time-space fractional Whitham-Broer-Kaup equations has 

been investigated. Recently, Amjad Ali et.al employed a numerical method based 

on the Adomian decomposition method coupled with the Laplace transforms to 

calculate the approximate traveling wave solutions of the time-space fractional 

coupled Whitham-Broer-Kaup equations[26].  

In recent years, Lie symmetry analysis has been developed and widely 

used to deal with several types of complicated nonlinear differential problems[27, 

28, 29, 30]. Buckwar and Luchko in [31] computed invariant solutions of 

fractional differential equations by employing the scaling transformations. 

Moreover, a symmetry group of scaling transformations for time-space fractional 

partial differential equation is extracted in [32]. Gazizov et al. introduced a 

prolongation formula for the Riemann-Liouville fractional derivative 

operator[33]. In [34] they utilized the proposed Lie point symmetry method for 

solving the nonlinear time fractional diffusion problem. Recently, Hashemi et al. 

formulated and used the Lie symmetry approach for investigating various types of 

the fractional differential equations[35,36,37,38,39,40,41]. Singla and Gupta 

extracted a Lie point symmetry analysis for systems of coupled time fractional 

partial differential equations [42,43]. Moreover, they developed the Lie symmetry 

approach for space-time fractional systems of partial differential equations [44, 

45]. In this study, the expanded Lie symmetry approach proposed by Singla and 

Gupta is utilized for symmetry analysis and similarity reductions of the time 

fractional Whitham-Broer-Kaup equations (1). 

The idea of conservation law plays an important role to analyze the 

fundamental properties of the physical models[46]. Relation between symmetries 

of differential equations and conservation laws is explained by the Noether’s 

theorem [47]. The Noether’s theorem is valid for differential equations having 

Lagrangians. The classical Noether’s theorem have been generalized and 

employed to find conservation laws for several fractional differential equations 

having fractional Lagrangians [48,49,50,51]. Ibragimov in [52] extracted a new 

generalized conservation theorem based on the adjoint equations for the nonlinear 

differential equations not having Lagrangians. Lukashchuk has used the new 

conservation theorem to find conservation laws for time fractional subdiffusion 

and diffusion-wave equations[53]. Gazizov et al. found conservation laws for the 

time-fractional Kompaneets equations based on the generalization of fractional 

Noether’s operator [54]. Very recently, Singla and Gupta in [55,56] have 

extracted the fractional Noether’s operators to calculate conserved vectors of the 

time and space-time fractional nonlinear systems of partial differential equations, 

respectively. Majlesi et.al. performed a Lie symmetry analysis on a coupled 

system of time fractional Jaulent-Miodek equations and constructed the 
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conservation laws of the problem [57].  In the current work the generalization of 

fractional Noether’s operator proposed by Singla and Gupta [55] is employed for 

calculating conserved vectors for the governing system of nonlinear time 

fractional partial differential equation (1).  

2. Lie symmetry analysis and similarity reductions of the time 

fractional Whitham-Broer-Kaup system 

In this section an invariant analysis for the time fractional Whitham-Broer-

Kaup system (1) would be presented. Moreover, the symmetry reductions of the 

governing time fractional nonlinear system based on the symmetry groups are 

investigated. For this purpose, firstly the main details of Lie symmetry analysis 

for systems of time fractional PDEs are briefly described.  

2.1  Description of the Lie symmetry analysis for systems of time fractional 

PDEs 

 Here we consider a coupled system of two time fractional nonlinear PDEs 

as follows[42]:  
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 where { ( , ), ( , )}u x t v x t  and { , }x t  are dependent and independent variables 

respectively. > 0  is a real number and (.)
t
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 denotes the Riemann-Liouville 

partial derivative operator and subscripts denote integer partial derivatives. 

According to the Lie symmetry analysis, assume the time fractional system (2) is 

invariant under the following one parameter Lie group of transformations :  
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 where   is a parameter, ( , , , )     is the set of infinitesimals and , ,,t t    and 
, ,, , ( =1,2,)j x j x j   are extended infinitesimals of order   and j  respectively. 

The infinitesimal generator of the time fractional system (2) is a vector field as 

follows:  
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 The vector field (4) generates a symmetry of (2) provided that it admits the 

following infinitesimal invariance criteria:  
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 where Pr V  is the generalized fractional prolongation operator[42,43] :  
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 where ,m n N  denote orders of partial differential equations (2). In the above 

relation the integer order extended infinitesimals ,j x  and ,j x  are defined as 

follows:  
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Moreover the  -order extended infinitesimal ,t  is defined as follows:  
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where tD   is the total fractional derivative with respect to t . Using the 

generalized Leibniz rule [2] and generalized chain rule [5] and after some 

simplifications the  -order extended infinitesimal ,t  is given in the following 

form (see for more details [42, 43]) :  
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 where 
tD  denotes the total derivative operator with respect to t  and  
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 Similarity, the  -order extended infinitesimal ,t  can be simplified as follows :  
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From the above relations it can be easily concluded that whenever infinitesimals 
  and   are linear with respect to each dependent variables u  and v , the 

expressions 1 2 1, ,    and 2  vanish identically.  
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2.2  The symmetry reductions of the time fractional Whitham-Broer-Kaup 

system 

 Here, the proposed Lie symmetry analysis is formulated and employed to 

reduce the problem (1). For this purpose, by imposing the prolongations (6) 
,2,1

1( )Pr V   and ,3,2

2( )Pr V   to problem (1) under group of transformations (3), 

the following invariance criterions are concluded: 

 , 1, 1, 2,
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1 2

[ ] = 0,t x x x
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[ ] = 0.t x x x x
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 By substituting the integer and   order extended infinitesimals into (9) and 

equating the coefficients of various powers and partial derivatives of independent 

variables u  and v  to zero, a set of fractional and classical partial differential 

equations with respect to the variables , ,    and   is obtained. By solving the 

resultant system of differential equations symbolically the following values for 

infinitesimals functions are computed: 
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 where 
1 2,c c  and 

3c  are free constant parameters. Notice that the lower limit of 

the Riemann-Liouville partial derivative operator is fixed, so to ensure that it is 

invariant under group of transformations (3), the following initial condition 

should be satisfied.  
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 Clearly, the above vector fields form a closed Lie algebra: 

  1 1 2 2 1 2 2 2 1[ , ] = [ , ] = 0, [ , ] = = [ , ].V V V V V V V V V− −  

For the infinitesimal generator 1V , the following characteristic equations is 

concluded :  
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By solving the above characteristic equations the following similarity variable and 

invariant solutions are obtained.  

 2 2= , ( , ) = ( ), ( , ) = ( ),z xt u x t t F z v x t t G z
 


− −

−
                  (13) 

 where z  and ( ), ( )F z G z  are new independent variable and dependent variables 

respectively.  

Now, the reduction form of the time fractional system (1) with respect to 

the above presented symmetry generators is given by the following theorem. 
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  Theorem 1.Corresponding to the infinitesimal generator 
1V , the similarity 

variable 2=z xt
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( , ) = ( )v x t t G z− , reduced the time fractional system of partial differential 

equations (1) to the following system of fractional ordinary differential of 
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 Proof: According to the similarity solutions (13), for 1 < <  ( )n n n− N  the 

 -order Riemann-Liouville time fractional derivative for ( , )u x t  is given as 

follows:  
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 Now by using the change of variable, =
t

s
 , the relation (16) is transformed to 

following form :  
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by comparing with the Erdelyi-Kober fractional differential operator, the above 

relation can be presented as follows:  
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t K F z

t t


 





− − − 

 
                                             (18) 

 So we have,  
31

1 ,
2 2

21
= ( [ ( )( )])

n
n n

n

u
t K F z

t t t


 





−
− − −

−

  

  
                        

3 31
1 1 , 1 ,

2 2 2 2
2 21

3
= [( ) ( )( ) ( )( ) ]

2

n
n n n n

n

d z
n t K F z t K F z

t dz t

 
   

 


−

− − − − − − −

−

 
− +

 
 

31
1 1 ,

2 2
21

3
= [ ( )( )( )]

2

n
n n

n

z d
t n t K F z

t t dz


 




−

− − − −

−

 
− +

 
 

31
1 1 ,

2 2
21

3
= [ ( )( )( )].

2 2

n
n n

n

d
t n z K F z

t dz


 






−
− − − −

−


− −


                                            (19) 

 Following the above process for ( 1)n −  times, we easily obtain:  

 
3

1 ,
2 2

2= [ ( )( )]
n

n n

n

u
t K F z

t t


 





− − − 

 
 

 
3 1

1 ,
2 2

2

=0

3
= (1 )( )( )

2 2

n
n

j

d
t j z K F z

dz


 






−
− − −

− + −  

 
3 3

1 ,
2 2

2= ( )( ).t P F z


 



− −

                                                                  (20) 

 In similar manner, the  -order Riemann-Liouville time fractional derivative for 

( , )v x t  with respect to the similarity transforms (13) can be expressed as follows: 

  2 1 2 ,

2= ( )( ).
v

t P G z
t


  





− −


                                                              (21) 

 Moreover for = n N  we have:  

 2= = ( ( ))
nn n

n n

u u
t F z

t t t




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  
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dz
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−
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3 3

1 ,
2 2

2= ( )( ),
n

n n

n

t P F z
− −

 

 and similarly, for = n N  we have:  

 2 1 2 ,

2= = ( )( ).
n

n n n

n

n

v v
t P G z

t t





− − 

 
 

 Now by substituting the proposed similarity transformations (13) in the main 

problem (1) and from relations (20) and (21) the reduced system of fractional 

ordinary equations (14) is concluded.  

Moreover, for the infinitesimal generator 
2V , by solving the associated 

characteristic equations the invariant solutions of the problem (1) are obtained as 

( , ) = ( )u x t f t  and ( , ) = ( )v x t g t . Substituting the above obtained group of 

invariant solutions in the governing problem (1), the following reduced system is 

concluded:  

 

( )
= 0

( )
= 0

f t

t

g t

t










 



 

 

Integrating both sides of the above system, the following invariant solutions are 

arrived:  

 1 11 2( ) = , ( ) = ,
( ) ( )

f t t g t t  

 

− −

 
                                     (22) 

where 1  and 2  are arbitrary constants. 

3. Conservation laws of the time fractional Whitham-Broer-Kaup 

system 

In this section a new approach which has been developed and 

implemented to the time-fractional system of PDEs [55] is employed to construct 

conservation laws for the time fractional Whitham-Broer-Kaup system (1). 

According to the approach proposed by Singla and Gupta[55], the formal 

Lagrangian for the time fractional PDEs system (1) is considered as follows:  

 

= ( , )[ ( , ) ( , ) ( , ) ( , )]

( , )[ ( , ) ( , ) ( , ) ( , ) ( , ) ( , )],

x x xx

xxx x x xx

u
f x t v x t u x t u x t qu x t

t

v
g x t pu x t u x t v x t u x t v x t qv x t

t










+ + +




+ + + + −



L

       (23) 

 where ( , )f x t  and ( , )g x t  are newly introduced dependent variables. The adjoint 

equations for the formal Lagrangian operator (23) are calculated as follows:  
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*= ( ) ( , ) ( , ) ( , ) ( , ) ( , ) ( , ) = 0,t x x xx xxxD f u x t f x t v x t g x t qf x t pg x t
u




− − + −

L
 (24) 

 and  

*= ( ) ( , ) ( , ) ( , ) ( , ) = 0,t x x xxD g f x t g x t u x t qg x t
v




− − −

L
                    (25) 

 where the Euler-Lagrange operator, 



, is defined as :  

 
*

1 2
=1 , ,,

1 2

= ( ) ( 1) ,
( ) ( )

k

t d d d
k

kt d d d
k

D D D D
D







   

  
+ + −

  
  

where *( )tD   denotes the adjoint operator for the Riemann-Liouville fractional 

operator ( )tD   and equals to the standard right-hand sided Caputo fractional 

differential operator [55]. According to [55], the time fractional system of 

equations( 2.5) is said to be nonlinearly self-adjoint whenever by introducing new 

variables = ( , , , )f x t u v  and = ( , , , )g x t u v , where at least one of them is 

non-zero and substituting them and their related partial derivatives with respect to 

x  into adjoint equations (24) and (25), the resultant equations are satisfied for all 

solutions of the governing problem (1). It means that for nonlinear self-

adjointness of (1) the following conditions should be held :  

1 2= ( ) ( ),x x xx xxx x x xx

u v
v uu qu pu uv vu qv

u t t

 

 


 



 
+ + + + + + + −

 

L
 

3 4= ( ) ( ),x x xx xxx x x xx

u v
v uu qu pu uv vu qv

v t t

 

 


 



 
+ + + + + + + −

 

L
 

 where , ( =1,2,3,4)i i  are unknown coefficients. The above relations are given 

as follows:  
*( ) ( , )( ) ( , )( )t x u x v x x u x v xD u x t u v v x t u v       − + + − + +  

 
2 2

, , , , , ,( 2 2 2 )xx x u x x v x u u x u v x x u xx v v x v x xq u v u u v u v v       + + + + + + + +  

 
2 2

, , , , , , , , , , ,[ 3 3 3 3 3x x x u u v x x v v xx x u v v x x u u x x x u v x x xp u v v v u v u u u v     − + + + + +  

 

, , , , , , , , , , , ,6 3 3 3 3 3x u v x x u v x x x x x u x x x v x x u x x x v x xu v u v u v u v     + + + + + +  

2 2 3 3

, , , , , , , ,3 3 ]u xxx v xxx x u u x x v v x u u u x v v v xu v u v u v     + + + + + +  

1 2= ( ) ( ),x x xx xxx x x xx

u v
v uu qu pu uv vu qv

t t

 

 
 

 
+ + + + + + + −

 
                   (26) 

 and  
*

,( ) ( ) ( ) ( 2t x u x v x x u x v x xx x u xD u v u v u q u         − + + − + + − +  
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2 2

, , , , ,2 2 )x v x u u x u v x x u xx v v x v x xv u u v u v v     + + + + + +  

3 4= ( ) ( ).x x xx xxx x x xx

u v
v uu qu pu uv vu qv

t t

 

 
 

 
+ + + + + + + −

 
                   (27) 

 Now by balancing the coefficients of the different powers of dependent variables 

u  and v  and their related partial derivatives in both sides of (26) and (27) a 

systems of partial differential equations should be concluded. Solving the 

resultant system of differential equations analytically, the following results is 

obtained:  

 = 0, =1,2,3,4,i i  

 ( , , , ) = ( , ) = , ( , , , ) = ( , ) = ,x t u v f x t A x t u v g x t B         (28) 

 where A  and B  are free constants. This confirms the nonlinear self-adjointness 

of the problem (1). Corresponding to each vector field 

=i i x i t i u i vV     +  +  +   there exist Lie characteristic functions which are 

defined as follows:  

 = , = .u v

i i i x i t i i i x i tW u u W v v     − − − −  

So Corresponding to the vector fields (12) for the time fractional Whitham-Broer-

Kaup problem the following Lie characteristic functions are concluded, 

respectively:  

 1 1= 2 , = 2 2 ,u v

x t x tW u xu tu W v xv tv   − − − − − −          (29) 

 and  

 2 2= , = .u v

x xW u W v− −                                                       (30) 

 Now by using the above constructed Lie characteristic functions, conserved 

vectors corresponding to the governing problem should be calculated. A vector 

= ( , )x tC C C  is said to be a conserved vector for the problem (1) if the following 

conservation equation is held for it, 

  (1)( ) ( ) = 0.t x

t xD C D C+                                                            (31) 

 Clearly in the governing system of fractional partial differential equations (1), all 

of the partial derivatives with respect to the independent variable x  are of 

integer-orders, so the x  components of the conserved vectors are obtained based 

on the following classical forms [52]:  

2= ( ( ) ( ) ) ( ( ) ).x u u u v v

i i x i x i i x i

x xx xxx x xx

C W D W D W W D W
u u u v v

    

    
+ + + +

L L L L L
(32) 

 Moreover, an extended formula to compute the t -component of conserved vector 

for the time fractional system of equations are introduced as follows [55] :  
1

1 1

=0

= ( 1) [ ( ) ( ) ( ) ( )]
( ) ( )

n
t k k u k k v k

i t i t t i t

k t t

C D W D D W D
D u D v

 

 

−
− − − − 

− +
 


L L
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      ( 1) [ ( , ) ( , )],
( ) ( )

n u v

i i

t t

W W
D u D v 

 
− − +

 

L L
J J                                                (33) 

 where = [ ] 1n  +  and ( , )f gJ  denotes an integral transform which defined as 

follows:  

 
10

1 ( , ) ( , )
( , ) = .

( ) ( )

t p

nt

f x s g x r
f g drds

n r s  + − − − J  

Letting =1A  and =1B  and by substituting Lie characteristic functions (29) and 

(30) into relations (32) and (33), the following conserved vectors for the time 

fractional problem (1) is obtained. 

Case1. 0 < <1 , conserved vectors are given as follows:  

 

1 = ( 2 2 2 ) ( 2 )x

x t x t x tC u u xu tu v xv tv v u xu tu     − + + + + + − + +  

         (2 2 3 2 )x xx tx x xx txq u xu tu v xv tv   − + + − − −  

         (3 2 ) (2 2 ),xx xxx txx x tp u u tu v xv tv   − + + − + +  

 
1 1 1 1 1 1

1 = ( ( ) 2 ( )) ( ( ) ( )) 2 ( ) 2 ( ),t

t t t x t x t t t tC I u I v x I u I v I tv I tu      − − − − − −− + − + + −  

                                                                                                  (34) 

2 = ( ) ( ) ,x

x x x x xx xx xxxC u u v vu v q u v pu− − − − − + −  
1 1

2 = ( ) ( ).t

t x t xC I u I v − −− −  

Case2. 1< < 2 , conserved vectors are given as follows:  

 

1 = ( 2 2 2 ) ( 2 )x

x t x t x tC u u xu tu v xv tv v u xu tu     − + + + + + − + +  

          (2 2 3 2 )x xx tx x xx txq u xu tu v xv tv   − + + − − −  

          (3 2 ) (2 2 ),xx xxx txx x tp u u tu v xv tv   − + + − + +  
1 1 1 1 1 1

1 = ( ( ) 2 ( )) ( ( ) ( )) 2 ( ) 2 ( ),t

t t t x t x t t t tC D u D v x D u D v D tv D tu      − − − − − −− − + − + + −

                                                                                                  (35) 

2 = ( ) ( ) ,x

x x x x xx xx xxxC u u v vu v q u v pu− − − − − + −  
1 1

2 = ( ) ( ).t

t x t xC D u D v − −− −  

4. Conclusions 

In this paper, the Lie group analysis approach is used to study time 

fractional coupled Whitham-Broer-Kaup equations with Riemann-Liouville 

derivative operators. Based on the Lie symmetries analysis, the governing system 

of time fractional partial differential equations is similarity reduced to a system of 

nonlinear frcational ordinary differential equations in Erdelyi-Kober derivative 
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sense. The new conservation theorem based on the generalization of fractional 

Noether operators is used to calculate the conserved vectors and conservation 

laws of the model successfully. 
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