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LIE SYMMETRY ANALYSIS AND CONSERVATION LAWS
FOR TIME FRACTIONAL COUPLED WHITHAM-BROER-
KAUP EQUATIONS

Hadi Roohani GHEHSAREH!, Ahmad MAJLESI?, Ali ZAGHIAN?

In the current work, time fractional coupled Whitham-Broer-Kaup equations
which describes the anomalous bidirectional propagation of long waves in shallow
water is investigated. A Lie symmetry analysis is formulated and used to the
governing model. The symmetry reductions of the model are constructed and the
system of nonlinear time fractional partial differential equations is similarity
reduced to a system of nonlinear frcational ordinary differential equations in
Erdelyi-Kober derivative sense. Moreover, the resultant symmetry generators are
used to calculate conserved vectors for the time fractional problem. Two different
kinds of conservation laws of the problem have been constructed.

Keywords: Lie symmetry analysis; Time fractional coupled Whitham-Broer-
Kaup equations; Erdelyi-Kober operators; Conservation laws

1. Introduction

In recent decades theory of fractional calculus [1, 2] has gained notable
attention of many researchers in science and engineering due to its high ability for
describing various complicated natural phenomena. Many of anomalous
phenomena and complex processes in natural science have been successfully
described by using the theory of fractional calculus and mathematically modeled
as fractional differential or integral equations[3, 4, 5, 6]. The main advantage of
fractional modeling is that they are excellent tools to appropriately characterize
hereditary and inherent memory properties of the anomalous phenomena. In
recent years several semi-analytical methods and numerical techniques have been
developed and employed for solving and investigating various practical problems
which have been mathematically modeled as fractional equations [7, 8, 9, 10, 11,
12, 13, 14, 15, 16].

In this study the following important mathematical model, the time
fractional Whitham-Broer-Kaup equations, which describes the anomalous
bidirectional propagation of long waves in shallow water will be investigated[17].
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where u(x,t) and v (x,t) denote the fluid velocity along the horizontal direction
and vertical displacement of the fluid from its equilibrium position, respectively.

aa
ot )

denotes the Riemann-Liouville partial derivative operator of order a (0<a <1)
with respect to time component, t , which is defined as follows :

The constants p and g ((p,q)=(0,0)) are diffusion coefficients and

1 aﬂ t m-a-1

_ I(t—r) u(x,z)dz, m-1<a<m, meN,
0” _|T(n—a) ot" Jo

—(u(x,t))=

ot o"

ot"

(u(x,t)), a=neN,

where T'(.) is the gamma function. For « =1 the anomalous bidirectional

propagation model (1) is reduced to the classical Whitham-Broer-Kaup problem.
Several numerical and semi-analytical methods have been formulated and
employed to investigate the classical Whitham-Broer-Kaup problem[18, 19, 20,
21, 22]. The classical Whitham-Broer-Kaup (WBK) equation has been widely
used to study of solitary wave theory in shallow water. However, the classical
Whitham-Broer-Kaup (WBK) equation is not adequate to describe complicated
mechanism of propagation of shallow water waves in porous medium, such as
tsunami wave propagation. In these situations the temporal derivative in the WBK

equation and corresponds to the variation in the flux, % , should be replaced

o

with fractional time derivative, ek which properly describes variation in the

flux through the fractal boundary, where « denotes the fractal dimensions of the
porous medium [23]. Saha Ray [17] has discussed the time-fractional WBK
equations (1) and approximated the traveling wave solutions of the model in their
generalized Taylor expansion forms. In [24] a semi-analytical technique, called
the residual power series method is formulated and used to approximate traveling
solutions of the model (1). By choosing p =1 and q =0 in the (1) the so-called

time fractional modified Boussinesq system is concluded. While if p =0 and
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q # 0 another special case of the time fractional coupled Whitham-Broer-Kaup

equations, called time fractional coupled approximate long wave equations is
obtained. In [25] the time-space fractional Whitham-Broer-Kaup equations has
been investigated. Recently, Amjad Ali et.al employed a numerical method based
on the Adomian decomposition method coupled with the Laplace transforms to
calculate the approximate traveling wave solutions of the time-space fractional
coupled Whitham-Broer-Kaup equations[26].

In recent years, Lie symmetry analysis has been developed and widely
used to deal with several types of complicated nonlinear differential problems[27,
28, 29, 30]. Buckwar and Luchko in [31] computed invariant solutions of
fractional differential equations by employing the scaling transformations.
Moreover, a symmetry group of scaling transformations for time-space fractional
partial differential equation is extracted in [32]. Gazizov et al. introduced a
prolongation formula for the Riemann-Liouville fractional derivative
operator[33]. In [34] they utilized the proposed Lie point symmetry method for
solving the nonlinear time fractional diffusion problem. Recently, Hashemi et al.
formulated and used the Lie symmetry approach for investigating various types of
the fractional differential equations[35,36,37,38,39,40,41]. Singla and Gupta
extracted a Lie point symmetry analysis for systems of coupled time fractional
partial differential equations [42,43]. Moreover, they developed the Lie symmetry
approach for space-time fractional systems of partial differential equations [44,
45]. In this study, the expanded Lie symmetry approach proposed by Singla and
Gupta is utilized for symmetry analysis and similarity reductions of the time
fractional Whitham-Broer-Kaup equations (1).

The idea of conservation law plays an important role to analyze the
fundamental properties of the physical models[46]. Relation between symmetries
of differential equations and conservation laws is explained by the Noether’s
theorem [47]. The Noether’s theorem is valid for differential equations having
Lagrangians. The classical Noether’s theorem have been generalized and
employed to find conservation laws for several fractional differential equations
having fractional Lagrangians [48,49,50,51]. Ibragimov in [52] extracted a new
generalized conservation theorem based on the adjoint equations for the nonlinear
differential equations not having Lagrangians. Lukashchuk has used the new
conservation theorem to find conservation laws for time fractional subdiffusion
and diffusion-wave equations[53]. Gazizov et al. found conservation laws for the
time-fractional Kompaneets equations based on the generalization of fractional
Noether’s operator [54]. Very recently, Singla and Gupta in [55,56] have
extracted the fractional Noether’s operators to calculate conserved vectors of the
time and space-time fractional nonlinear systems of partial differential equations,
respectively. Majlesi et.al. performed a Lie symmetry analysis on a coupled
system of time fractional Jaulent-Miodek equations and constructed the
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conservation laws of the problem [57]. In the current work the generalization of
fractional Noether’s operator proposed by Singla and Gupta [55] is employed for
calculating conserved vectors for the governing system of nonlinear time
fractional partial differential equation (1).

2. Lie symmetry analysis and similarity reductions of the time
fractional Whitham-Broer-Kaup system

In this section an invariant analysis for the time fractional Whitham-Broer-
Kaup system (1) would be presented. Moreover, the symmetry reductions of the
governing time fractional nonlinear system based on the symmetry groups are
investigated. For this purpose, firstly the main details of Lie symmetry analysis
for systems of time fractional PDEs are briefly described.

2.1 Description of the Lie symmetry analysis for systems of time fractional
PDEs

Here we consider a coupled system of two time fractional nonlinear PDES
as follows[42]:

o

a

o“u
A= -F(Xx,t,uv,u,v,,)=0,
1=~ F( )

(2)
A, zZ%—G (x,t,uv,u,v,,)=0,

where {u(x,t),v(x,t)} and {x,t} are dependent and independent variables

aat“ (.) denotes the Riemann-Liouville

respectively. « >0 is a real number and

partial derivative operator and subscripts denote integer partial derivatives.
According to the Lie symmetry analysis, assume the time fractional system (2) is
invariant under the following one parameter Lie group of transformations :

X =x +&£(x,t,uv)+0(&),
t =t+er(X,t,uv)+0(s?),
T =u+en(x,t,uv)+0(s%),
V =V +&¢(X,t,uv)+0(g%),

~t

8_u = ou +en™ +0 (%), (3)
a 8ta
o %

o = e 40 (),
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o'a _ dlu )
O o +en’* +0 (%), j=1,2,3
o v

aX—J :¥+8¢jvx +O(82), J :1;213H

where ¢ is a parameter, (£,7,7,4) is the set of infinitesimals and 7**,¢*' and
', ¢ (j =1,2,) are extended infinitesimals of order « and j respectively.
The infinitesimal generator of the time fractional system (2) is a vector field as
follows:

V = §(x,t,u,v)aix+r(x ,t,u,v)@%w;(x ,t,u,v)a%+¢(x ,t,u,v)%. 4)

The vector field (4) generates a symmetry of (2) provided that it admits the
following infinitesimal invariance criteria:
Prv (Al) |Al=O,A2=0: O’

Prv (Az) |Al:0,A2:0: 0, (5)

where PrV is the generalized fractional prolongation operator[42,43] :

1x

0 0 0 0 0
Pre™V =V +p* + —— 4™ +¢“ + g +4+¢" —— (6
T @ ou,, ’ ov ! ’ ov, ’ o, ©

where m,n e N denote orders of partial differential equations (2). In the above
relation the integer order extended infinitesimals n'* and ¢'* are defined as

follows:

i i 0,0
=D p'™* —(D, &)——(D, 1) —
n = 5) (D,7) (=)
- - 0,0V .
I = D Jilx i 1 :1,2,,
#'* =D,¢ -0, )~ (C55)
where D, denotes the total derivative operatorW|th respect to x
0 0 0 0
D, =—+U, —+U,, —+H, —+V,, ——+--,
ox  “ou ou, ov ov,

Moreover the « -order extended infinitesimal 7“* is defined as follows:
7™ =D n+&ED (U, )-D(Gu, )+ D¢ (D, (r)u) =D " (su) + 7D (u),
where D/ is the total fractional derivative with respect to t. Using the

generalized Leibniz rule [2] and generalized chain rule [5] and after some
simplifications the « -order extended infinitesimal ' is given in the following

form (see for more details [42, 43]) :
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where D, denotes the total derivative operator with respect to t and

ZZZZ(I j[ J( jr,r(,ti—a(—l)susaj @) oy

i=2j=2r=2s=0 0!+1) ot’ 6t"'8ur'
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Similarity, the « -order extended infinitesimal ¢“* can be simplified as follows :

5t =0 D, D I T g, T Ty
+i[(?j__(i JDHl(T)]Da I(V) Z[ j ¢ D% l(u)
_i(ftj Dti (5) Dtaii (Vx ) ot P (8)
where
j r ti—a s Saj(ur—S) ai—j+r¢
Z;;Z;Zg[ j( ](s]r!l‘(i—a+l)( DU =% ot'Jeu"’

S gt 2

i=2j=2r=2s=0 0[+1) ot} 8t"‘8v"
From the above relations it can be easily concluded that whenever infinitesimals
¢ and 7 are linear with respect to each dependent variables u and v, the

expressions ¢,,¢,, o, and p, vanish identically.
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2.2 The symmetry reductions of the time fractional Whitham-Broer-Kaup
system

Here, the proposed Lie symmetry analysis is formulated and employed to
reduce the problem (1). For this purpose, by imposing the prolongations (6)
Pr“*V (A,) and Pr**¥/ (A,) to problem (1) under group of transformations (3),
the following invariance criterions are concluded:

[na,t +¢1,x U, +u771’x +q772,x ]A1=0’A2:0 =0,

[p° + pr* +ug SV 4y, ~Q9 ], 0 =0 (9)

By substituting the integer and « order extended infinitesimals into (9) and

equating the coefficients of various powers and partial derivatives of independent

variables u and v to zero, a set of fractional and classical partial differential

equations with respect to the variables &,7,7 and ¢ is obtained. By solving the

resultant system of differential equations symbolically the following values for
infinitesimals functions are computed:

E=c,+c,aX, T=Cy+2C,, n=—actM, ¢=-2aCcy, (10)

where c,,c, and c, are free constant parameters. Notice that the lower limit of

the Riemann-Liouville partial derivative operator is fixed, so to ensure that it is
invariant under group of transformations (3), the following initial condition
should be satisfied.

7(X,t,u,v)|_,=0. (11)
So ¢, =0 and the following sets of the infinitesimal generators are obtained:
V, =ax i+2t£—ozui—205vi, szi. (12)
OX ot ou ov OX

Clearly, the above vector fields form a closed Lie algebra:

|_V1,Vl]:|_V2,V2]:O, I_Vl,VZ]:—aVZ :_NZ’Vl]'
For the infinitesimal generator V,, the following characteristic equations is
concluded :

ax 2 -—au -2V
By solving the above characteristic equations the following similarity variable and
invariant solutions are obtained.

z=xt 2, u(x,t)=t 2F(z), v(x,t)=tG(z), (13)
where z and F(z),G (z) are new independent variable and dependent variables

respectively.
Now, the reduction form of the time fractional system (1) with respect to
the above presented symmetry generators is given by the following theorem.
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Theorem 1.Corresponding to the infinitesimal generator V,, the similarity

variable z =xt 2 with the similarity transformations u(x,t)=t 2F(z) and

v(X,t)=t“G(z), reduced the time fractional system of partial differential

equations (1) to the following system of fractional ordinary differential of
equations:

(P F)(z) G (z)+F@)F (2)+qF (2),

a

(P 5 G)z)=-pF @) +(F@)G () -aG (2), (14)

a

where the left-hand side Erdelyi-Kober fractional differential operator, (P/“), is
defined as[58] :

Erm@) = [T+ i -2z K HI@), 2>0,a>0, (9
i= S

where

_|[e]+1 ifaeN,
a if aeN,

and
1

1 ® a-1 —(p+a < .
(K/"H)(z) = mjl(z—1) COOH (2 )d e ifa>0

H(Zz) ifa=0
Proof: According to the similarity solutions (13), for n—1<a <n(n eN) the
o -order Riemann-Liouville time fractional derivative for u(x,t) is given as
follows:
o“u 1 1
= ts”“stxszds 16
= F(n_)atnj( ) (xs 2) (16)

Now by using the change of variable, 1:2—, the relation (16) is transformed to

following form :

3
n_,

o°u a”

ot at” F(n
by comparing with the Erdelyi- Kober fractional differential operator, the above
relation can be presented as follows:

j( 1yt PR (17)
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o“u o" n—g 1-Zn-a
= t 2(K,2 F)z)] 18
T at”[ ( 2 )(2)] (18)
So we have,
o“u an—l 0 n—§a 1-% n-a
T (5[t (K2 F)@)D
an—l 3 n—Ea—l 1-Zn-a n—§a d 1-Zn-a oz
= n——akt 2 (K,2 F)z)+t 2 —(K.,?2 F)(iz)—
atH[( 2a) ( 2 )(2) OIZ( 2 X )at]

"t nden 3 Gz d,, 1%
= t 2 (N——a+t——)K,? F)(z
atn,1[ ( > atolz)( 2 )(2)]
ot nden 3 g d, 1%
= t 2 N——a-—z—)K,?2 F)2) 19
atn,1[ ( 5% dz)(§ )(2)] (19)
Following the above process for (n —1) times, we easily obtain:
A (D)
8ta th 2
7§a n-1 3 . a d 1-% na
=t 2 l-—a+j——z—)K,? F)z
[la-—Gari-G2 K. F)
—Ea 1—3—aa
=t 2 (P, 2"F)(2). (20)

a

In similar manner, the « -order Riemann-Liouville time fractional derivative for
v (x,t) with respect to the similarity transforms (13) can be expressed as follows:

ov

o

=2 (P} G )(2). (21)

Moreover for ¢ =n e N we have:

o ou o -2
= = t 2F(z
ot ot" 8’[”( @)

ot o,

=l R @))]

SO0 gt non, d
_atnfl[t ( 2 ZZdZ)F(Z)]

3,n-L

- 3 . n_d
=t 2 | |@-=n+]——=z2 —)F(z)
g 2 2 dz
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EN
=t 2 (P, * F)(),

and similarly, for « =n e N we have:
ov _ oV
ae ot
Now by substituting the proposed similarity transformations (13) in the main
problem (1) and from relations (20) and (21) the reduced system of fractional
ordinary equations (14) is concluded.

Moreover, for the infinitesimal generator V,, by solving the associated
characteristic equations the invariant solutions of the problem (1) are obtained as
u(x,t)=f () and v(x,t)=g(). Substituting the above obtained group of
invariant solutions in the governing problem (1), the following reduced system is
concluded:

=t (PF¥"G)(2).

n

o't (t) _
ata
o"g(t) _
ata
Integrating both sides of the above system, the following invariant solutions are
arrived:

— Kl a-1 _L a-1
f(t)—@t , g(t)—r(a)t , (22)

where x, and x, are arbitrary constants.

3. Conservation laws of the time fractional Whitham-Broer-Kaup
system

In this section a new approach which has been developed and
implemented to the time-fractional system of PDEs [55] is employed to construct
conservation laws for the time fractional Whitham-Broer-Kaup system (1).
According to the approach proposed by Singla and Gupta[55], the formal
Lagrangian for the time fractional PDEs system (1) is considered as follows:

0 S +v, (X, t)+u(x,tu, (x,t)+qu,, (x,t)]

* (23)
+0(x ,t)[Z%Jr pu,. (X, t)+u(x,tiv (x,t)+u, (x,tv(x,t)—-qv, (x,t)],

where f (x,t) and g (x,t) are newly introduced dependent variables. The adjoint

equations for the formal Lagrangian operator (23) are calculated as follows:

L=f (x,t)[
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55—:;=(Dt“)*f —u(x,Hf, (x,t)-v(x,t)g, (x,t)+af,, (x,t) = pg,, (x,t) =0, (24)
and

oL o

§—V=(Dt ) 9 -f,(x,t)—g,(x,tu(x,t)-qg,, (x,t) =0, (25)

where the Euler-Lagrange operator, 51 , Is defined as :
@

5 _ 0 . 0 o d
2 -2 (D" +3'(-1)*D,D, D, ——
S Ow (S o(Dy w) kZ;( )" PaDaDe, (@)g, 4, .4,

where (D,*)" denotes the adjoint operator for the Riemann-Liouville fractional

operator (D,”) and equals to the standard right-hand sided Caputo fractional

differential operator [55]. According to [55], the time fractional system of
equations( 2.5) is said to be nonlinearly self-adjoint whenever by introducing new
variables f =w(x,t,u,v) and g =¢(x,t,u,v), where at least one of them is

non-zero and substituting them and their related partial derivatives with respect to
X into adjoint equations (24) and (25), the resultant equations are satisfied for all
solutions of the governing problem (1). It means that for nonlinear self-
adjointness of (1) the following conditions should be held :

_L:M(aau +V_ +Uu_+qu )+,uz(—a +pu, +uv, +vu, —qv ),
5U ata X X XX ata XXX X X XX
_L:ﬂg(a“u +V_ +UU, +qu )+y4(—a +pu, +uv, +vu, —qv ),
S ata X X XX ata XXX X X XX

where z, (i =1,2,3,4) are unknown coefficients. The above relations are given
as follows:
(D) v —u(x, ), +wu, +V, ) -V (X, )@, +pu, +@v,)

2 2
+q (lr//xx +2l//x,uux +21//x,vvx +lr//u,uux +21r//u,vuxvx +lr//uuxx +lr//v,vvx +l//vvx,x)

2
_p[wx,x,x +3¢u,u,vuxzvx +3¢\/,\/V><xvx +3(Du,v,vuxvx +3¢u,uuxu +3¢u,vux,xvx

X X

+6¢x ,u,vuxvx +3¢u,vuxv +3¢x,x,uux +3¢x,x,vvx +3¢x,uux,x +3(Dx,vvx,x

+(Duuxxx +(pvvxxx +3¢x,u,uux2 +3¢x,v,vv><2 —i_(au,u,uu;;3 +(Dv,v,vv)?]
o“u
8tll
and (Dta)*(o_(‘//x +l//uux +vax)_(¢x +¢uux +(D\/Vx)u _q((oxx +2¢x,uux

= ( +V, +UU, +quxx)+,u2(g%+ pu,, +uv, +vu, —qv,, ), (26)
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2 2
+2¢x,vvx +¢u,uux +2(Du,vuxvx +(Duuxx +¢v,vvx +¢vvx,x)
a,

= ys(ztli +V, +UU, +quxx)+y4(gla+ pu,,, +uv, +vu, —qv,, ). (27)

Now by balancing the coefficients of the different powers of dependent variables
u and v and their related partial derivatives in both sides of (26) and (27) a
systems of partial differential equations should be concluded. Solving the
resultant system of differential equations analytically, the following results is
obtained:

u =0, i1=1234,

w(x,t,uyv)=f (x,t)=A, p(x,t,uv)=g(x,t)=B, (28)
where A and B are free constants. This confirms the nonlinear self-adjointness
of the problem (1). Corresponding to each vector field
V,=¢&0, +1,0,+1,0, +¢ 0, there exist Lie characteristic functions which are
defined as follows:

W =n -&u, —zu, W/ =¢-&v, —7v,.

So Corresponding to the vector fields (12) for the time fractional Whitham-Broer-
Kaup problem the following Lie characteristic functions are concluded,
respectively:

W =-au —axu, —2tu,, W, =-2av —axv, —2tv,, (29)
and

W, ==, W,=-v_. (30)
Now by using the above constructed Lie characteristic functions, conserved
vectors corresponding to the governing problem should be calculated. A vector
C =(C*,C") is said to be a conserved vector for the problem (1) if the following
conservation equation is held for it,
D,(C")+D,(C")y =0. (31)

Clearly in the governing system of fractional partial differential equations (1), all

of the partial derivatives with respect to the independent variable x are of
integer-orders, so the x components of the conserved vectors are obtained based

on the following classical forms [52]:
oL oL ) oL oL

Cr=w/' +D W")—+D W." +W." —+D,W.")—).(32

1 MII . XM/I )5uxx XM/I )§UXXX) WI 5 . XM/I ) 9 XX) ( )

ou
Moreover, an extended formula to compute the t -component of conserved vector
for the time fractional system of equations are introduced as follows [55] :

i = (D! B/ WD (o) + D WD) (g

oL

)]
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oL , oL

_(_1)n[~] Wiu’a(Df‘u))H QNi ’a(Dt“v))]’ (33)

where n =[a]+1 and J (f ,g) denotes an integral transform which defined as
follows:

_ 1 terf (X,8)g(x,r)
J( ’g)_r(n-a)fojt ey

Letting A =1 and B =1 and by substituting Lie characteristic functions (29) and
(30) into relations (32) and (33), the following conserved vectors for the time
fractional problem (1) is obtained.

Casel. 0 <« <1, conserved vectors are given as follows:

C) =—u(au +axu, +2tu, +2av +axv, +2tv,) -V (au + axu, +2tu,)
—q(2au, +axu,, +2tu, —3av, —axv, —2v,)
—pQBau,, +au,,, +2tu,, )—(Q2av +axv, +2v,),

txx

C,=a(=1"W)+21 W) —ax (174U, )+1 W, )+ 21,7 (tv,) - 21 7“(tu,),
(34)
C, =u(~u, —v,)—vu, —v, —=qU,, +V,,)— Pl
Cy=-1"W)-177,).
Case2. 1< < 2, conserved vectors are given as follows:

C,) =—u(au +axu, +2u, +2av +axv, +2tv,) -V (au +axu, +2tu,)
—(2au, +axu,, +2tu, —3av, —axv,, —2v,)
—-p@Bau,, +au,,, +2tu,, )—(2av +axv, +2tv,),
C, =—a(-Df*u)+2D/*())—ax (D (u,)+D W, ) +2D,  tv,) - 2D, *(tu,),
(35)
C, =u(~u, —v,)—vu, v, —=qU,, +V,,)— Pl
C,=-D"*(u,)-D *(,).

4. Conclusions

In this paper, the Lie group analysis approach is used to study time
fractional coupled Whitham-Broer-Kaup equations with Riemann-Liouville
derivative operators. Based on the Lie symmetries analysis, the governing system
of time fractional partial differential equations is similarity reduced to a system of
nonlinear frcational ordinary differential equations in Erdelyi-Kober derivative
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sense. The new conservation theorem based on the generalization of fractional
Noether operators is used to calculate the conserved vectors and conservation
laws of the model successfully.
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