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IMPLICIT ITERATIVE SCHEMES OF STRICTLY PSEUDOCONTRACTIVE
OPERATORS IN UNIFORMLY CONVEX BANACH SPACES

Liping Yang1, Zhaohui Li2, Jinxin Wang3

We study the strong convergence of an implicit iteration scheme for a strictly pseudo-
contractive operator in a real uniformly convex Banach space E whose norm is Fréchet differen-
tiable with mild conditions. Additionally, it proves a weak convergence theorem for a strictly pseudo-
contractive operator without the Opial property. Results proved in this paper represent an extension
and refinement of the previously known results in this area.
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1. Introduction

As the theoretical basis and basic tool of nonlinear science, nonlinear operator theory has
become a basic branch of modern mathematics. Fixed point theory is also a fascinating emerging
field in modern mathematics and can be deemed to a heart subject in studying nonlinear analysis. In
particular, it has several important applications in connection with numerical analysis, physics, engi-
neering, economics, biology, game theory, optimization theory. Best proximity theory has attracted
the attention of many mathematicians working in game theory and optimization theory. Wang et
al. [18] introduced an adaptive fixed-point proximity algorithm to solve a class of unconstrained op-
timization problem. In fuzzy game theory, because fuzzy fixed point theory or fuzzy common fixed
point theory can be used to prove the existence of equilibrium solution, Tian et al. [13] introduced
a new FMS (fuzzy metric space)-tripled fuzzy metric space, and introduced topological properties,
Cauchy sequences and completeness of the tripled fuzzy metric space. By Using Meir-Keeler type
contraction condition, Lakzian and Rhoades [6] mainly obtained two new fixed point theorems de-
fined in complete metric spaces with w−distance.

In the sequel, let J : E→ 2E∗ be the duality mapping defined by

J(x) = {x∗ ∈ E∗ : 〈x,x∗〉= ‖x‖2 = ‖x∗‖2}, ∀x ∈ E,

where E∗ denotes the topological dual of a Banach space E with norm ‖·‖ and 〈x,v〉 is the duality
pairing v(x) of x ∈ E and v ∈ E∗.

Let K ⊂ E be a nonempty subset and f : K→ K be said to be a contraction operator if there
exists a constant α ∈ [0,1) such that

‖ f (x)− f (y)‖ ≤ α‖x− y‖ (1.1)

for all x, y ∈ K. A self-operator T : K → K is said to be nonexpansive if inequality (1.1) holds for
α = 1.

1School of Applied Mathematics, Guangdong University of Technology, Guangzhou 510520, P. R. China, e-mail:
yanglp2019@gdut.edu.cn

2School of Applied Mathematics, Guangdong University of Technology, Guangzhou 510520, P. R. China, e-mail:
1298557505@qq.com

3School of Applied Mathematics, Guangdong University of Technology, Guangzhou 510520, P. R. China, e-mail:
gamgamwong@163.com

55



56 Liping Yang, Zhaohui Li, Jinxin Wang

A self-operator T : K→ K is said to be a pseudo-contraction if we have

〈T x−Ty, j(x− y)〉 ≤ ‖x− y‖2

holds for some j(x− y) ∈ J(x− y) and each x, y ∈ K.
Let every x, y ∈ K and j(x− y) ∈ J(x− y). If we have

〈T x−Ty, j(x− y)〉 ≤ ‖x− y‖2−λ‖(I−T )x− (I−T )y‖2 (1.2)

holds for every constant λ > 0, then self-operator T : K → K is said to be a λ−strictly pseudo-
contraction [2]. We may assume 0 < λ < 1.

An operator T : K→ K is said to be a strong pseudo-contraction, if we have

〈T x−Ty, j(x− y)〉 ≤ k‖x− y‖2

holds for every k ∈ (0,1) and ∀x,y ∈ K.
Indeed, (1.2) can be rewritten in the following form

〈(I−T )x− (I−T )y, j(x− y)〉 ≥ λ‖(I−T )x− (I−T )y‖2, (1.3)

where I is the identity operator. And if T is λ−strictly pseudo-contraction, it can prove from
(1.3) that T is Lipschitzian continuous with L ≥ (1+λ )/λ . Meanwhile, we note that the class of
λ−strictly pseudo-contraction mappings is not dependent of the class of strong pseudo-contractive
operators.

Example 1.1. Let R denote the set of real numbers with the usual norm. Let T : R→ R be an
operator defined by T x =−3x. Then we have

|x−T x− (y−Ty)|2 = (1+3)2|x− y|2,
and

〈x−T x− (y−Ty),x− y〉= (1+3)|x− y|2.
Hence T is a strictly pseudo-contractive operator with unique fixed point x∗ = 0 but not a strong
pseudo-contraction and not a nonexpansive operator.

In 1967, Browder and Petryshyn [2] introduced λ−strictly pseudo-contractive operators,
however iterative methods of λ−strictly pseudo-contractive operators are far less developed than
those for nonexpansive operators, the reason is maybe that the second item to the right of equation
(1.2) is obstruct of the convergence analysis for iterative algorithms used to find a fixed point of the
λ−strictly pseudo-contraction. Indeed, in solving inverse problems (see, for example, Scherzer [9]),
λ−strictly pseudo-contractive operators have more widely used than nonexpansive operators do.
Hence, it is more interesting to study the iterative manner of λ−strictly pseudo-contractive opera-
tors. Yang [20] established the strong convergence of the Ishikawa iterative process for a λ−strictly
pseudo-contractive operator in Banach spaces under mild assumptions. Yao et al. [22] studied the
split feasibility problem and the fixed point problem involved in the pseudo-contractive mappings.

Construction algorithms for fixed points problems is an important subject in nonlinear oper-
ator theory and its applications to convex programming, feasibility problems, image processing, and
much more. In this respect, please see: Sahu et al. [8], Usurelu et al. [14–17], Wang et al. [19]. We
point out that an implicit process is generally desirable when no explicit scheme is available. Such a
process is generally used as a ”tool” to establish the convergence of an explicit scheme. Suzuki [12]
introduced the following implicit iteration scheme

xn = αnu+(1−αn)T (tn)xn, u ∈ K, n≥ 1

for the nonexpansive semigroup case T= {T (t) : 0≤ t < ∞} in Hilbert spaces. Since then construc-
tion of fixed points of mappings via the implicit iterative algorithm has been investigated extensively
by many authors (see, e.g., [7, 11, 21] and the references therein).

It is important to know whether implicit iterative procedures can be extended to the λ−strictly
pseudo-contractive operators.
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Motivated and inspired by the above described works, the main objective of this paper is to
study the convergence of implicit iteration scheme for λ−strictly pseudo-contractive operators in
Banach spaces. We shall prove that implicit iterative processes converge strongly to a fixed point
of strictly pseudo-contractive operators in the framework of uniformly smooth and strictly convex
Banach spaces. Additionally, we shall prove a weak convergence theorem for the strictly pseudo-
contractive operators without the Opial property.

2. Preliminaries

We shall need the following basic concepts, notations and lemmas throughout this paper.
Let (E,‖·‖) be Banach spaces with dimension E ≥ 2. The function δE : (0,2]→ [0,1] is the

modulus of convexity of E defined by

δE(ε) = inf
{

1− 1
2
‖x+ y‖ : ‖x‖ ≤ 1,‖y‖ ≤ 1,‖x− y‖ ≥ ε

}
for every ε > 0. A Banach space E is uniformly convex if and only if δE(ε)> 0 for all ε ∈ (0,2]. A
Banach space E is said to be strictly convex if ‖x+ y‖/2 < 1 holds for x, y ∈ E with ‖x‖= ‖y‖= 1
and x 6= y.

Let S(E) = {z ∈ E : ‖z‖= 1}. The space E is said to be smooth if

lim
t→0

‖x+ ty‖−‖x‖
t

(2.1)

exists for all x, y ∈ S(E). The norm of E is said to be Fréchet differentiable, if for each x ∈ S(E),
the limit (2.1) is attained uniformly for y ∈ S(E). The norm of E is said to be uniformly Fréchet
differentiable if the limit (2.1) is attained for x, y ∈ S(E). We known that the Sobolev spaces W k,p

(1 < p < ∞) and the spaces Lp (1 < p < ∞) are both uniformly convex and uniformly Fréchet
differentiable.

The function ρE : [0,∞)→ [0,∞) is the modulus of smoothness of E defined by

ρE(τ) = sup
{

1
2
(‖x+ y‖+‖x− y‖)−1 : ‖x‖= 1,‖y‖ ≤ τ

}
for every τ > 0. A Banach space E is said to be uniformly smooth if ρE(τ)/τ → 0 as τ → 0+.
It is well known that E is uniformly smooth if and only if the norm of E is uniformly Fréchet
differentiable. We know that if E is said to be smooth, then the normalized duality mapping J is
single-valued and continuous from the strong topology to the weak star topology.

Recall that the mapping T : K → K is semi-compact if any sequence {xn} ⊆ K satisfying
limn→∞‖xn−T xn‖= 0 has a convergent subsequence.

Lemma 2.1. (see [4]) Let E be a real Banach space with the Fréchet chet differentiable norm. For
each x ∈ E, let ρ∗(t) be defined for t ∈ (0,∞) by

ρ
∗(t) = sup

{
‖x+ ty‖2−‖x‖2

t
−2〈y,J(x)〉 : y ∈ S(E)

}
.

Then ρ∗(t)> 0, ρ∗(t) is an increasing for t > 0 and limt→t+ ρ∗(t) = 0 such that

‖x+h‖2 ≤ ‖x‖2 +2〈h,J(x)〉+‖h‖ρ∗(‖h‖) (2.2)

for all h ∈ E\{0}.

Zhou [23] pointed out that ρ∗(t) depends on x ∈ E. For x ∈ E\{0}, ρ∗(t) ≥ t for t > 0. For
x = 0, ρ∗(t) = t for t > 0. If one defines ρ∗(0) = 0, then Equation (2.2) holds for all x, h ∈ E.

In the sequel, we will assume that

ρ
∗(t)≤ st, (2.3)

where s≥ 1 is some fixed constant.
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Combining (2.2) and (2.3), we have

‖x+h‖2 ≤ ‖x‖2 +2〈h,J(x)〉+ s‖h‖2 (2.4)

for all x, h ∈ E, where J is the normalized duality map from E to E∗.

Lemma 2.2. (see [10]) Let (E,‖·‖) be a uniformly convex Banach space, and let a, b be two con-
stants with 0 < a < b < 1. Suppose that {αn} is a real sequence in [a,b] and that {xn}, {yn} ⊂ E
such that

limsup
n→∞

‖xn‖ ≤ d, limsup
n→∞

‖yn‖ ≤ d, lim
n→∞
‖αnxn +(1−αn)yn‖= d,

for some constant d ≥ 0. Then limn→∞‖xn− yn‖= 0.

Lemma 2.3. (see [3, Lemma 1.12]) For every normed space E. Then δE (s)
s is a nondecreasing

function on (0,2].

A Banach space is said to have the Kadec-Klee property if, whenever x ∈ ϖw({xn}) with
limn→∞‖xn‖= ‖x‖, it follows that limn→∞ xn = x strongly, where ϖw({xn}) = {x : ∃xn j ⇀ x} denotes
the weak limit set of {xn} and {xn j} ⊂ {xn}.
Lemma 2.4. (see [5, Lemma 2]) Assume that E is a real reflexive Banach space such that its dual
E∗ has the Kadec-Klee property. Let {xn} be a bounded sequence in E, with p1, p2 ∈ ϖw({xn}).
Suppose that limn→∞‖αxn +(1−α)p1− p2‖ exists for all α ∈ [0,1]. Then p1 = p2.

Lemma 2.5. (see [1]) Let K be a nonempty closed convex subset of a real uniformly smooth Banach
space E. Suppose that T is a nonexpansive mapping of K into itself such that F(T ) 6= /0. Let {xn}⊂K
be a sequence such that limn→∞‖xn−T xn‖= 0 and {xn} converge weakly to z. Then z is fixed point
of T .

Lemma 2.6. Let K be a nonempty convex subset of a real uniformly convex Banach space E whose
norm is Fréchet differentiable and T : K→K be λ−strictly pseudo-contractive mappings. For x∈K,
we define Tα x = (1−α)x+αT x, where 0≤ α < µ , and µ = λ

s . Then Tα : K→ K is nonexpansive
mapping such that F(Tα) = F(T ).

Proof. For any x, y ∈ K, it follows from Equations (1.3) and (2.4) that

‖Tα x−Tα y‖2 = ‖(1−α)x+αT x− (1−α)y−αTy‖2

= ‖(x− y)+α(T x−Ty− (x− y))‖2

≤ ‖x− y‖2 +2α〈T x−Ty− (x− y), j(x− y)〉
+sα

2‖T x−Ty− (x− y)‖2

≤ ‖x− y‖2−2λα‖T x−Ty− (x− y)‖2

+sα
2‖T x−Ty− (x− y)‖2

≤ ‖x− y‖2−λα‖T x−Ty− (x− y)‖2

≤ ‖x− y‖2,

which implies that Tα is a nonexpansive mapping.
It is easy to see that Tα x = x⇐⇒ T x = x. This completes the proof. �

Remark 2.7. Lemma 2.6 of this paper extends Lemma 1.2 of [24] from 2-uniformly smooth Banach
spaces to uniformly smooth Banach spaces.

Let K be a closed convex subset of a uniformly smooth Banach space E and T : K → K be
a λ−strictly pseudo-contractive mapping. For x0 ∈ K, n≥ 1, compute the implicit iteration process
{xn} defined by the following formula:

xn = (1− cn)xn−1 + cnTα xn, (2.5)
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where {cn} ⊂ (0,µ) and µ = λ

s .
For u, v ∈ K, and every n≥ 1, we define

T v
n (u) = (1− cn)v+ cnTα u. (2.6)

Since each T v
n : K→ K is a contraction, it follows from the Banach Contraction Principle that each

xn in (2.5) is uniquely defined.
The next result deal with the general behavior of the implicit iterative processes of (2.5).

Lemma 2.8. Let E be a uniformly convex Banach space whose norm is Fréchet differentiable, let
K be a nonempty convex subset of E, and let b be a constant with 0 < b < 1. Let T : K → K be a
λ−strictly pseudo-contractive mapping , and F(T ) 6= /0, Assume that {xn} is defined by (2.5) with
b < cn < µ for all n≥ 1 and p ∈ F(T ). Then

(i) there exists c≥ 0 such that limn→∞‖xn− p‖= c.
(ii) limn→∞‖xn−T xn‖= 0.

Proof. It follows from (2.5) and Lemma 2.6 that

‖xn− p‖ = ‖(1− cn)(xn−1− p)+ cn(Tα xn− p)‖
≤ (1− cn)‖xn−1− p‖+ cn‖Tα xn− p‖
≤ (1− cn)‖xn−1− p‖+ cn‖xn− p‖. (2.7)

It follows from (2.7) that ‖xn− p‖≤ ‖xn−1− p‖. Therefore, there exists c≥ 0 such that limn→∞‖xn−
p‖= c.

Since Tα is a nonexpansive mapping, we have limsupn→∞‖Tα xn− p‖ ≤ c. Note that xn− p =
(1−cn)(xn−1− p)+cn(Tα xn− p), it follows from Lemma 2.2 that we have limn→∞‖xn−1−Tα xn‖=
0. From (2.5), we have xn− xn−1 = cn(xn−1−Tα xn), then we obtain limn→∞‖xn− xn−1‖= 0.

It follows from limn→∞‖xn−1−Tα xn‖= 0, limn→∞‖xn− xn−1‖= 0 and ‖xn−Tα xn‖ ≤ ‖xn−
xn−1‖+ ‖xn−1− Tα xn‖ that we get limn→∞‖xn− Tα xn‖ = 0. Since xn− Tα xn = α(xn− T xn) and
0 < α < 1, we have limn→∞‖xn−T xn‖= 0. This completes the proof. �

3. Main Results

In this section, we will first prove the strong convergence for a strictly pseudo-contractive
mapping in uniformly convex Banach spaces.

Theorem 3.1. Let K be a closed and convex subset of a uniformly convex Banach space E whose
norm is Fréchet differentiable, b be a constant with 0 < b < 1. Let T : K → K be a semi-compact
λ−strictly pseudo-contractive mapping, and F(T ) 6= /0, and let {xn} be defined by (2.5) with b <
cn < µ for all n≥ 1. Then {xn} converges strongly to some point in F(T ).

Proof. Since T is a semi-compact and limn→∞‖xn−T xn‖ = 0, then there exists {xnk} ⊂ {xn} such
that xnk → p as k→ ∞. Since Tα is a nonexpansive mapping, we have

0≤ ‖p−Tα p‖ = ‖(p− xnk)+(xnk −Tα xnk)+(Tα xnk −Tα p‖
≤ ‖p− xnk‖+‖xnk −Tα xnk‖+‖Tα xnk −Tα p‖
≤ 2‖p− xnk‖+‖xnk −Tα xnk‖
→ 0, as k→ ∞.

This implies that p is a fixed point of Tα . It follows from Lemma 2.6 that p is a fixed point of T .
It follows from Lemma 2.8(i) that limn→∞‖xn− p‖ exists, then we have limn→∞‖xn− p‖ = 0. This
completes the proof. �

Example 3.2. Let E be a real line R and K = [−1,1]. Define T : K → K by T x = −x. Then T
is a 1

2−strictly pseudo-contractive mapping with F(T ) = {0}. Take αn = 1
n , define x1 = 1 and

xn = (1−αn)xn−1 +αnT xn for n≥ 2, then {xn} converges strongly to fixed point of T .
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Lemma 3.3. Let K be a closed and convex subset of a uniformly convex Banach space E whose
norm is Fréchet differentiable, b be a constant with 0 < b < 1. Let T : K → K be a λ−strictly
pseudo-contractive mapping, and F(T ) 6= /0, and let {xn} be defined by (2.5) with b < cn < µ for all
n≥ 1. Then for ω1, ω2 ∈ F(Tα), limn→∞‖txn +(1− t)ω1−ω2‖ exists for all t ∈ [0,1].

Proof. Let dn(t) = ‖txn +(1− t)ω1−ω2‖. Obviously limn→∞‖ω1−ω2‖ exists and from Lemma
2.8(i) that limn→∞ dn(1) = limn→∞‖xn−ω2‖ exists. It now remains to prove the lemma for t ∈ (0,1).
Set

Qω
n (u) := (1− cn)ω + cnTα u,

where n ∈ N, u ∈ K, ω ∈ K. Since Qω
n (u) : K → K is a contraction mapping, by the Banach Con-

traction Principle there exists a unique un,ω ∈ K such that Qω
n (un,ω) = un,ω . Then for n ∈ N, we can

define the mapping Sn : K → K by Sn(ω) = un,ω for each ω ∈ K. And we have xn+1 = Sn(xn) for
all n ∈ N. Next we will prove that each Sn is nonexpansive. Indeed, for any v1, v2 ∈ K. Note that
Sn(vi) = ui (i = 1,2) if and only if

ui = (1− cn)vi + cnTα ui.

Therefore

‖Sn(v1)−Sn(v2)‖ = ‖u1−u2‖
≤ (1− cn)‖v1− v2‖+ cn‖Tα u1−Tα u2‖
≤ (1− cn)‖v1− v2‖+ cn‖u1−u2‖.

It follows from that

‖u1−u2‖ ≤ (1− cn)‖v1− v2‖+ cn‖u1−u2‖,
which implies that

‖Sn(v1)−Sn(v2)‖= ‖u1−u2‖ ≤ ‖v1− v2‖. (3.1)

Hence, each Sn is a nonexpansive mapping.
Let ω ∈ F(Tα), then we have Tα ω = ω . Hence (1− cn)ω + cnTα ω = ω . This implies that

F(Tα)⊂
⋂

∞
n=1 F(Sn). Define

Vn,m = Sn+m−1 ◦Sn+m−2 ◦ · · · ◦Sn, f or m≥ 1.

Then Vn,m : K → K is a nonexpansive mapping and Vn,mω = ω , Vn,mxn = xn+m for ω ∈ F(Tα),
m, n ∈ N. If ‖xn −ω1‖ = 0 for some n0 ∈ N, then we have xn = ω1 for all n ∈ N. Indeed, if
n < n0, it follows from (2.5) that we have xn0−1 = xn0−2 = · · · = x1 = ω . If n > n0, since the
sequence {‖xn−ω1‖}∞

n=1 is nonincreasing, the we also have xn = ω1. Therefore, we may assume
that ‖xn−ω1‖> 0 for all n ∈ N. Set

ut
n := txn +(1− t)ω1,

αn,m :=Vn,m(ut
n)− tVn,mxn− (1− t)Vn,mω1,

βn := t(1− t)‖xn−ω1‖,
γn,m := Vn,mω1−Vn,m(ut

n)
t‖xn−ω1‖

,

δn,m := Vn,m(ut
n)−Vn,mxn

(1−t)‖xn−ω1‖
.

Since Vn,m : K→ K is a nonexpansive mapping, then we obtain that ‖γn,m‖ ≤ 1 and ‖δn,m‖ ≤ 1. By
the definition of uniformly convex space, we have

‖tx+(1− t)y‖ ≤ 1−2min{t,1− t}δE(‖x− y‖)
≤ 1−2t(1− t)δE(‖x− y‖) (3.2)

for all t ∈ (0,1) and x, y ∈ E such that ‖x‖ ≤ 1 and ‖y‖ ≤ 1. Hence, it follows from (3.2) that we
have

2t(1− t)δE(‖γn,m−δn,m‖)≤ 1−‖tγn,m +(1− t)δn,m‖. (3.3)
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Note that

γn,m−δn,m =
αn,m
βn

,

tγn,m +(1− t)δn,m =
‖Vn,mxn−Vn,mω1‖
‖xn−ω1‖

= ‖xn+m−ω1‖
‖xn−ω1‖

.

It follows from (3.3) that

2βnδE

(
‖αn,m‖

βn

)
≤ ‖xn−ω1‖−‖xn+m−ω1‖. (3.4)

It follows from Lemma 2.3 that δE (s)
s is nondecreasing, and limn→∞‖xn−ω1‖ exists, δE(0) = 0. The

continuity of δE gives from equation (3.4) that liminfn(limsupm‖αn,m‖) = 0 uniformly for all m.
That is liminfn(limsupm‖Vn,m(ut

n)− tVn,mxn− (1− t)Vn,mω1‖) = 0. On the other hand, we have

dn+m(t) ≤ ‖txn+m +(1− t)ω1−ω2 +(Vn,m(ut
n)− tVn,mxn− (1− t)Vn,mω1)‖

+‖−(Vn,m(ut
n)− tVn,mxn− (1− t)Vn,mω1)‖

= ‖Vn,m(ut
n)−ω2‖+‖Vn,m(ut

n)− tVn,mxn− (1− t)Vn,mω1‖
≤ dn(t)+‖Vn,m(ut

n)− tVn,mxn− (1− t)Vn,mω1‖.

Therefore, limsupn→∞ dn(t)≤ liminfn→∞ dn(t). This implies that limn→∞ dn(t) exists for all t ∈ [0,1].
This completes the proof. �

Now, we prove the weak convergence of the implicit iterative processes (2.5) for λ−strictly
pseudo-contractive mappings.

Theorem 3.4. Let E be a uniformly convex Banach space E whose norm is Fréchet differentiable
such that its dual E∗ has the Kadec-Klee property, let K be a closed and convex subset of E. Let
T : K→ K be a λ−strictly pseudo-contractive mapping, and F(T ) 6= /0, and let {xn} be defined by
(2.5) with b < cn < µ for all n≥ 1, where b be a constant with 0 < b < 1. Then there exists a fixed
point p ∈ F(T ) such that xn ⇀ p.

Proof. It follows from Lemma 2.8(i) that the sequence {xn} is bounded. Since E is a uniformly
convex Banach space, then {xn} has a weakly convergent subsequence {xni}. We assume that there
exists ω ∈ E such that {xni} converges weakly to ω for i→ ∞. Note that {xn} ⊂ K and K is weakly
closed, then ω ∈ K. It follows from Lemma 2.8(ii) that limn→∞‖xn−Tα xn‖= 0. By Lemma 2.5, we
obtain ω ∈ F(Tα). Assume that {xn} does not converge weakly to ω . Then there exists {xni} ⊂ {xn}
such that {xni} converges weakly to some p 6= ω . As in the case of ω , we can obtain p ∈ K and
p ∈ F(Tα). By Lemma 3.3, limn→∞‖txn +(1− t)p−ω‖ exists for t ∈ [0,1]. It follows from Lemma
2.4 that ω = p. Therefore {xn} converges weakly to p. This completes the proof. �

Remark 3.5. Since the dual of reflexive Banach spaces with the Opial property or a Fréchet differ-
entiable norm has the Kadec-Klee property, Theorem 3.4 generalizes the known ones.

4. Conclusions

The problem of finding a fixed point of operators is of particular importance since it covers
many monotone inclusion and optimization problems that appear in applications. In this paper, we
introduced a new implicit iterative algorithm with strong convergence and weak convergence for
λ−strictly pseudo-contractive operators. An interesting question of future research is to investigate
to what extent the algorithm with variable step sizes can be applied the solving of monotone inclusion
problems.
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