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ZERO SET OF IDEALS IN BEURLING ALGEBRAS

A. Minapoor' and O.T. Mewomo?

In this paper, for a locally compact Abelian group G with a non quasi analytic
weight w of G, we investigate the zero set of ideals for Beurling algebra L'(G,w). Also,
we obtain the weighted version of Plancherel theorem. In particular, we show that if the
zero set of an ideal I of L*(G,w) is empty then I = L*(G,w).
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1. Introduction

Various aspects of the cohomologies of Beurling algebras have been studied by several au-
thors, most notable are Gronbaek [6], Dales and Lau [2], Grahramani, Loy and Zhang
[5] and Mewomo and Maepa [12]. For details on the cohomologies of Banach algebras, see
[10, 11, 13, 14] and the references cited therein. Beurling algebras are L!-algebras associated
with locally compact groups G with an extra weight w on the groups.

Dales and Lau in [2] studied these algebras and their second duals. Weak amenability and
2-weak amenability of Beurling algebras are studied by Samei in [16]. In the Abelian case,
their harmonic analysis properties have been studied among others by Beurling [1] and
Domar [3]. Domar [3] proved the following results:

Theorem 1.1. Let G be a locally compact Abelian group and w a weight on G. For every
neighborhood N of the identity e in G (the dual group of G ), there exists fy € L'(G,w)

such that suppfj\v C N, ]/”J\v(e) # 0, if and only if w satisfies

= 1 t

yologwlnt) _ o viea
n

n=1

In case this is true, the algebra L*(G,w) has the wiener property, i.e. for every proper closed
ideal I of L'(G,w), there exists v € G such that I C {f € L*(G,w)|f(y) = 0}.

Rudin in [17] studied the zero set of ideals I of group algebra L*(G) for some locally compact
Abelian group G. With this we can easily characterize the closed ideals of L!(G).
Motivated by the work of Rudin in [17] and the above result, in this paper, for a locally
compact Abelian group G, we use the fact that the Beurling algebra L'(G,w) is a regular
Banach algebra if the weight w is non quasi analytic and study the notion of zero set of
ideals for ideals of Beurling algebra L'(G,w). Also in Theorem 3.2, we obtain the weighted
version of Plancherel theorem [17]. Finally we show that if the zero set of an ideal I of
LY(G,w) is empty then I = L}(G, w).
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2. Beurling Algebras

In this section, we establish some results on Beurling algebras needed in the next section.
Let G be a locally compact group. We denote by L!(G) the group algebra of G.

Let w be a Borel measurable function, w : G — [1,00) such that w(s 4+ t) < w(s).w(t) and
w(0) = 1, then w is called a weight function on G. The Beurling algebra L' (G, w) is defined

as the set of all (equivalence classes of) measurable functions f : G — C such that
e = [ 1) [ w@)de < o

and equipped with the convolution product * of functions; that is for f,g € L*(G,w) and
xz €@,

fro@) = [ fe= oty
Also, let L™>(G, %) be the space of all measurable complex-valued function ¢ on G, such

that f is essentially bounded, and for ¢ € L*>(G, %), define
w

16l 2 o cssup(| 2 iz € G

The spaces L'(G,w) and L*(G, %) are in duality by
1
(o) = [ J@oads (feLNGw)b € L¥(G. ).
Recall that, f, is the translate of f defined by f.(y) = f(y —z) (y € G).

Theorem 2.1. Every closed translation-invariant subspace of L*(G,w) is an ideal, Con-
versely any closed ideal in L*(G,w) is translation invariant.

Proof. The proof is similar to that of [17, Theorem 7.1.2]. O

Lemma 2.1. Suppose f € L'(G,w), then the map x — f, is a continuous map of G into

LY(G,w).

Proof. Let € > 0 be given and fix z € G. Since C.(G) is dense in L'(G,w), there exists

€

C.(G h that — [ lw< ——

g € Ce(G) such that || g — f | < 3w

0 € G is the identity of G. Let m be the Haar measure of G, and W = {y € G : ¢g(y) # 0},

then W is an open neighborhood of 0 € G and W = K := supp(g). By continuity of g at

0 € G, there is a neighborhood U of 0 € G such that || g — g, ||co< ﬁ (z € U), where

M =3m(K + K)(sup;cgyx w(t)) w(x). Here K+ K ={y+z:y,z€ K}. Now V=UnNW
is an open neighborhood of 0 € Gand K +V C K+ W C K + K. Also

. By translation we assume that g(0) # 0, where

supp(g —g.) CK+VCK+K (zeV).

Next

19— 9z llw= /G l9(u) = g(u = 2)|w(u)du = / lg(u) = g(u = 2)|w(u)du

K+K

<lg=g o [ wlduslg=g. e ( sp wE)m(K +K)
K+K teK+K

< M(tg(lEK w(t)) = 3w (z) (zeV).
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Also we have

Ig:— f- IIw=/G(g—f)(t—Z)w(t)dt=/G(g—f)(a)w(2+a)d0<

< w(2) /G<g — N@)uw(a)de <w(z) g = f < wz). 200,

Since w > 1 we get
||f_fz ||w SHf_gHw_‘_”g_gz ||w+||gz_fz ||w
€ € € €
— < —
+u(z) 3w(x) — w(z) w(zx)

< 4=

~ 3w(x) * 3w(x)
Finally we have f; — f, = (f — fy—z)s for y € G. If we assume that y —z € V and put
z =1y — x, then we get

H Je — fy Hw <w(z) | f- fyfz lo<w() || f—f:llw

<supw(z)e < sup w(z)e.
z€V zeEK+K

(zeV).

Since w is continuous and continuous functions are bounded on compact sets, w is bounded
on V, also it is bounded on K + K, since € is arbitrary the proof is complete. O

Lemma 2.2. Given f € L'(G,w) and € > 0, there exists a neighborhood V of 0 in G with
the following property: if u € L*(G,w) vanishes outside V, u > 0 and Jou(z)dr =1, then
| f—fxulw<e.

Proof. For € > 0, choose V by Lemma 2.1 with || f — f, ||w< € for all y € V. If u satisfies
the hypotheses, we have

(f % u)() = /G F( — yyu(y)dy.

Then we have

(f % u)(z) — flz) = / @ —y) — F@)luly)dy.

G

Hence
| Fxu—fllo= /G /G (@ — y) — F(@)]u(y)w(@)dydz
- / uly) / (@ —y) — F(@)|w(z)dedy
G G
S/Gu@) -1, ||wdy:/Vu<y> 1= fy o dy

< /V u(y)edy = ¢ /G u(y)dy < e

For 1 < p < o0, a Beurling space on a locally compact group G is defined as follows
LP(G,w) :={f: f € LP(GQ); fw € LP(G)}.
When p = 1, then it is Beurling algebra. For f € L?(G,w), we define || f ||p.w:=| fw |/
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3. Zero Set of Ideals

For f € LY(G,w), we define Z(f) to be the set of all v € G such that f(v) =0, and if
is an ideal in L'(G,w), we define the zero set of I by Z(I) = Ner Z(f). Thus v € Z(I)

if and only if J/c\(w) = 0 for all f € I. Since f is continuous on G, each Z(f) is closed,
hence Z(I) is closed for every I. It was shown by Domar in [3, Theorem 2.11] that L'(G, w)

is a regular Banach algebra if and only if the weight w is non quasi analytic (n.q.a.), i.e.,
Sy bgz# < oo for all t € G. This generalizes a theorem of Beurling [1, Theorem V B]
for G = R. It follows that if w is a n.q.a. weight on G, then the ideal
{f € L' (G, w) : f has compact support } is dense in L'(G,w) [15].
A function ¢ defined on G is said to be positive-definite if the inequality

N

n,m=1

holds for every choice of x1, ...,z in G and for every choice of complex numbers ¢y, ..., cy.

Theorem 3.1. (Bochner [17]) A continuous function ¢ on G is positive-definite if and only

~

if there is a non-negative measure p € M(G) such that
o@) = [(@dut) (e, )
Let B(G) be the set of all functions f on G which are representable in the form
f@) = [(@ndut) (€ Gy e M(E)) @

B(G) is exactly the set of all finite linear combinations of continuous positive-definite func-
tions on G. If f € L'(G) N B(G), then f € L'(G). If the Haar measure of G is fixed, the
Haar measure of G can by normalized such that inversion formula

f(x) = /G F@ndy (zea) (4)

is valid for every f € L*(G) N B(G) [17].

Definition 3.1. [15] A weight w on the locally compact Abelian group G is called semi-
bounded if there exist a constant K and a subsemigroup S C G with S — S = G, such that
w(s) < K and

. log w(—ns

By definition, a semi-bounded weight is always non-quasi analytic. For the rest of the paper,
we assume that w is semi-bounded.

Theorem 3.2. The Fourier transform restricted to L'(G,w) N L?(G,w) is a map onto a
dense linear subspace of L2(G), where for all f € L*(G,w) N LA(G,w), || f ll2.w=l fw II2-
Hence it may be extended to a map of L2(G,w) onto L*(G).

=
Proof. If f € LY(G,w) N L?(G,w) then fw € LY(G) N L*(G). Set g := fw* fw (where

=~ - —
f (z) = f(—x)). Then g € L'(G), g is continuous and positive definite, |g| = |fw|?, and
the inversion theorem gives

[ etwrar = [ 1o T2t = o0) = [ g0 = [ (o

or [ fllz. =l fo |2
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Now we show that the image of Fourier transform is a dense set in LQ(@). That will imply
that it can be extended to a map from L?(G,w) onto L?(G). It is sufficient to show that the
only element ® orthogonal to all f, f € L*(G,w) N L?(G,w) is ® = 0. Using the fact that

~

LD = @D F.
For allf € L'(G,w) N L?(G,w), we obtain

0= [ SNy = [ @ efa)d

Then it can be shown (by uniqueness of measure, Theorem1.3.6 [17] ) that ®f = 0 a.e. for
all f e (L'nL?)(G,w),so ®=0. O

The right translation representation R of G on L'(G) given by
:Rtf(x) = f(l’—t), (tEG)7

is a strongly continuous representation satisfies || Ry ||< 1 for allt € G.

Definition 3.2. [15] Let G be a locally compact Abelian group and R be the right translation
representation of G on L'(G). Let 8(G) denote the class of all Banach subalgebras A C
LY(G) satisfying the following properties:

(1) A is norm dense in L*(G) and the injection A — L*(Q) is continuous.

(2) A is translation-invariant, i.e., ReA C A for each t € G.

(3) For each f € A, the mapping G >t — Ry f € A is continuous.

(4) There ezists a semi-bounded weight w on G such that | Ry ||a< w(t) for each t € G.
(5) The intersection AN LY(G,w) is norm dense in both A and L*(G,w).

The set L*(G,w)N LY (G, w) is dense in L'(G) because it contains continuous functions with
compact support, and the injection L*(G,w) N LY(G,w) < LY(G) is continuous.

Let f € L*(G,w) N LY(G,w), then [ | Ryf(z) | w(z)de < w(t) || flzi(cuw), so Ref is in
LY(G,w). Also

(1250 P wayiny 7 = /Ifx—t ) 2 w?(w)da)"/?
/|f w(z + t)dz)'/?

/ | F() 2 () an(t))?de) /2

wt) | fllz2ew)y  (A).

This means that R,(L*(G,w) N L' (G, w)) C L2(G,w) N LY(G,w). It is obvious by Lemma
2.1 that for each f € L*(G,w) N LY (G,w), the mapping G > t — Ry f is continuous.
For every weight w on G,

| Re ll21(w) = sup{ll Ref lovcwy s I f lov@uwy= 1}
— sup / | Ref(@) | w@des | f =1}

— sup / fe—t) |w@de ;| f o= 1}
— sup{ / F@) | w(e+t)de s | f o= 1}

< sup{w(@) | fllercw s 1 loicw=1} =w(t).  (B)
The norm on L*(G,w) N LY(G,w) is usually considered as || . |=| . 1w + || - 2w - We
can set || . [|= (|| - ll1,w + || - l2,w), which is equivalent to the usual one.

2
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Due to (1) and (2), we have
1
” Ry ||L2(G,w)ﬁL1(G,w) = S’U,p{§(|| :Rtf HLl(G,w) + ” Rtf ||L2(G,w)); ” f HLl(G,w):” f HLZ(G,w): 1}

< Sl Ref [t |1 2= 1)
+supl{l| Ref 2wy | f 226wy = 1})
< 5 (wlt) + w(H) = w(d).

We conclude that L?(G,w) N LY (G,w) is in the class 8(G).

Theorem 3.3. Suppose f € L*(G,w) and € > 0. There exists v € L'(G,w) such that U has
compact support and || f*xv — f ||w< €.

Proof. Let X be the set of all g € L?(G,w) N L*(G,w) such that § has compact support.
Since w is semi-bounded, by ([15] Proposition 2.4 (iii)), X is dense in L?(G,w) N L*(G,w).
If v = gh, with g,h € X then U = ’g\*ﬁ, hence 7 has compact support, since X is dense in
L?(G,w) N LY(G,w), the set of all such v is dense in L*(G,w). Let V be the neighborhood
of identity as in Lemma 2.2, using Urysohn lemma, choose ug € C.(G)4 such that ug = 0
off V. Let a = fG ugdm, put u = éuo then v € L'(G,w) satisfies the conditions of Lemma
2.2, thus || f*u — f ||w< €/2, also we can choose v € L'(G,w) such that ¥ has compact

€
— " then
2 f llw

1= frvlwsl F=frullw+ 1 Fru—v)o<e

support and || v — v ||, <

O

Proposition 3.1. Suppose C is a compact subset of @, VcGandwisa wetght function on
G and 0 < m(V) < oo, where m is the Haar measure of G. Then there ezists k € L' (G, w)
such that R R R

(1) k(y) =1 on C, k(vy) =0 outside C+V —V and 0 < k() <1 for all v € G;

(2) ko < 2.

Proof. Let g, h be the functions in L?(G,w) whose Fourier transforms of gw and hw are the
characteristic functions of V and C' — V respectively and gw? and hw? be in L?(G). Define

_gulhu)
k(x) = m(v) (x € G). (6)
Then k = m(V)*l(gft\u*Ei\u) or E(v) = ﬁfv Hi\u(’y —a)da, v € G. If vy € C then

@(7—@) =1 for all « € V. Hence 74:\(7) =1. Ifyisnot in C+V —V, then ﬁt\u(v—a) =0,
for all o € V, since 0 < hw < 1 (1) follows.

By Theorem 3.2 || g ||2.0= m(V)Y2, || h ||2.0= m(C—V)'/2, since gw? and hw? are in L?(G),
there exists L, M > 0 such that ([ | hw?(z) |? dz)'/2 < L and ([ | gw?(z) |? dz)Y/? < M.
Let o = max{L, M}, then by applying Schwartz inequality to (3.6), we have

1kl =m0 [ | gu) ) | (s
§7n<V>-1§/°|gumx>\de>“2(]/\huﬂ<x>\2dx>“2
<m(V) | g o L < m(V) " a.

We can choose V' such that m(V) > 2a? this implies (2). O
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Theorem 3.4. If W is an open set in G which contains a compact set C, then there exists
f € LY(G,w) such that f =1 on C and f = 0 outside W .

Proof. Choose a neighborhood V of 0 in G such that C+V —V C W and apply Proposition
3.1. a

Theorem 3.5. Suppose f € L' (G, w), vy € G, ]?('yo) =0, W is a neighborhood of vy, and
€ > 0. Then there exists k € L'(G,w) such that

D) [k llw<2;
(2) k=1ina neighborhood of vo and k =0 outside W;
@) [If*kflu<e

Proof. We assume 79 = 0. Put 6 = there exists a compact set E in G such

A0+ f 1)

that the integral of | fw | over the complement G — FE of E is less than §. We can find
C and V as in the proof of Proposition 3.1 subject to the following conditions (i) 0 is an
interior point of C; (ii) m(C — V) < 4m(V); (iii) C+V —=V C W; and (iv) | 1 — (x,7) |< §
whenever € E and v € C +V — V. Define k as in the proof of Proposition 3.1 then (1)
and (2) hold and since ]?(0) =0, we have

fxk(z /f —k(@)dy (z€G),

so that || fxk [[w< [o | f) |- || ky —k|lwdy =[5+ [5_p- Since
| hy = F [l <Il By [lw + I & [l < w() [ £ [lw + [ F o< 20(y) | 5w -

The integral over G — E is less than 2 || k ||,, < 49 and the integral over E does not exceed
| £ lli supyer || ky — k ||w - Hence the inequality || ky, — k ||w< 40 (y € E) will complete
the proof. Similarly, as in Proposition 3.1, we have

m(V)(ky — k) = gu((hw), — hw) + ((gw), - gw)(hw), (y € B).
Schwartz inequality implies,
m(V)/(k: — k) (z)w(x)ds < ( / | gw?(z) |? dz)'/2.( / | (hw), hw(z) |? dx)'/?
([ Hgu)yfa) - guta) P de) . / | (hw), (@)w(a) 2)1/2
By Theorem 3.2 and (iv), we have that
([ 1y, =) B2 = ([ 11 ) ) < sm(c = V)2

and

([ 1)y =) B2 = ([ 11~ ) P a)!/2 < dm(v) (7)
. By Proposition 3.1, we have that

/ | hw?(z) |2 de)'/? < L

and

( / | gu(x) 2 de)/? < M,
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so that

/"”"y (z) [P dz)*/? = /lhwxf><x>|2dx>1/2

< (/ | h(z)w(z)w(z)w(y) |* dz)'/?

< w(y / | hw?(z) |)Y? = w(y)L.
We obtain
m(V) || ky =k [lw< ad(w(y) (m(V)/? + (m(C = V))'/?). (5)
Since m(C — V) < 4m(V), (3.0) implies
| ky =k [lw< Badw(y)(m(V)/? (y € E).
Let N = supyepw(y), since w is continuous and FE is compact, so IV is finite, we can choose

9
V such that m(V) > EQQNQ and this complete the proof. O

Theorem 3.6. Suppose f € LY(G,w), v € G , f(’yo) = 0. There exists v € L*(G,w), such
that U = 0 in a neighborhood of vo, || v ||< 3 and || f — fxv |lw< €.

Proof. As in the proof of Theorem 3.3, there exists u € L'(G,w), such that || u ||;= 1 and
| f = f*u |lw< €/2, since fii(yo) = 0, Theorem 3.5 applies to f  u and so there exists
k € L'(G,w) such that k = 0 in a neighborhood of 7, |k lw<2and || fruxk ||o<€/2.
Put v =u—uxk, then 7 = 0 when k = 1 and

If = vl f=frullw+ | fruxk|o<e
O

Theorem 3.7. Suppose f € L*(G,w), yo € G W is a neighborhood of’yO cmd € > 0. There

there exists h € L' (G, w) such that || b ||,< €, h =0 outside W and f( )— ( )= f('yo) in
some neighborhood .

Proof. Choose g € L'(G,w) such that g(y) = f(’yo) in some neighborhood of o Theorem
3.5 apphes to f — g, and so there exists k € L' (G, w) such that k=1lina nelghborhood of
Yo , k = 0 outside W and I(f—g)*k ||w< €. Put h = (f g)*k: Then h = (f g)k and
so there is a neighborhood of vy in which h= f g= f f('yo) |

Suppose I is an ideal of L' (G, w), if f € L*(G,w) and v € (A?, we say that f is locally in I
at o if there exists g € I such that f =g in a neighborhood of ~o.

Theorem 3.8. Suppose that f € LY (G, w), I is a closed ideal of L'(G,w) and 7o € G.
Then f belongs to T locally at o if either of the following conditions is satisfied

(a) vo is not in Z(I),

(b) vo is in the interior of Z(I).
Proof. If (a) holds, there exists g € I with g(79) = 1, and Theorem 3.7 shows that there
exists h € LY(G,w) such that || h |[,< 1/2 and h(y) = 1 — g(y) in some neighborhood V/
of 7. The series Y ° Fh™ converges in the norm of A(G), to a function j € A(G), and

o~

J(y) = (A=h()" f(y) for all v € G, if y € V then §(7)j () = f(7), since § € I and T is an
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ideal, gj € I and so f belongs to I locally at vg. If (b) holds, then f— 0 in a neighborhood
of 4o and since T contains the constant 0, f belongs to T locally at ~p. ]

Theorem 3.9. Suppose G is compact, I is a closed ideal of L'(G,w) and Z(I) C Z(f),
then f e 1.

Proof. If ~g is not in Z(I), there exists g € I with g(vp) = 1, and hence gx79 = v regarding
Yo as a member of L'(G,w), since I is an ideal, g xyo € I and so g € I, it follows that
contains every trigonometric polynomial on G of the form )" a.(z,~), provided that a, = 0,
for all vy € Z(I). If Z(I) C Z(f), then f x x satisfies this condition for every trigonometric
polynomial k on G. Since || f — f * & || can be arbitrarily small by Theorem 3.3, and I is
a closed, we conclude that f € I. |

Theorem 3.10. Suppose I is an ideal of L'(G,w) and f € L'(G,w). If]?has compact
support and f is locally in I at every v € G, then f € 1.

Proof. For every v € é choose g, € I such that f = ¢, on an open set Uq, containing
~v. By passing to a finite subcover of supp f, we obtam open sets Uy, Us,...,U, in é and
91,92, -, gn in I such that g; = f on U; and buppf C UTU;, next each £ € U N buppf has
a compact neighborhood contained in Uj;, by passing to a finite subcover supp f again, we
obtain compact sets Ki, Ks, ..., K, such that K; C U; and suppf C UTK;. By Theorem
3.4, there exists hy, ..., h, in Ll(G w) such that h; = 1 on K; and supph; C U;. Then
[1ra- ) =0 on suppf, so f = f(1 — [1ra— )) If we multiply out the product inside
the brackets each term of the resulting sum is a product of hj’s, i.e., the Fourier transform
of convolution of h;’s. Collecting terms, we see that f = Zf * Hj where H; € L'(G,w)
and suppP/I\j C Uj. But then (f/*T{]) = fI/{\j = g”;f{\] = (gj/*-ﬁj), so fxH; =gj~h; €1,
and hence f € I. ]

Theorem 3.11. If I is a closed ideal of L*(G,w) and vy is not in Z(I), then every f €
LY (G, w) is locally in T at 7.

Proof. Pick g in I such that g(v9) = 1. By Theorem 3.7, there exists v € L'(G,w) such
that || v ||< 1/2 and 7+ ¢ = 1 in a neighborhood of . Let v,, = v x v % ... x v (n factors)
then || 7, oo /w<|| ¥n lw< 27" Hence if f € L'(G,w), the series f+ 37" f v, converges

in L'(G,w) to a function h such that h = > fom = > Foy = I ! —. Butl-v=g
—-v

near g, SO f: ﬁ(l V)= ﬁﬁz (h/g) near 7g. Since hx g € I, f is locally in I at ~.
O

Theorem 3.12. If I is a closed ideal of L'(G,w) and Z(I) is empty, then L'(G,w) = I.

Proof. Since w is non quasi analytic, the set {f € L'(G,w) : suppf is compact} is dense in
LY(G,w), by Theorem 3.3, and is contained in I by Theorem 3.10 and Theorem 3.11. [

If € L™(G,1/w), the statement (p(x) — a as © — 00) will mean that to every e > 0
there exists a compact set K in G such that | ¢(x) — a |< € in the complement of K.

Example 3.1. Suppose ¢ € L>°(G,1/w) and f € LY (G,w), f(’y) £ 0 for all v € G
and (f x ¢)(x) — af(0), as © — oo, then (g *x ¢)(x) — ag(0), as x — oo, for every
g € LYG,w).

Proof. Replacing ¢ by ¢ — a, we may assume without loss of generality, that a = 0, the
set I of all g € L'(G,w) such that (g x ¢)(z) — ag(0) as z — oo is a linear subspace
of L'(G,w) which is clearly translation invariant. I is closed, for if || g, — g [lw—> 0 then
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| gnxd—g*x¢ |looijw— 0, and f € I. Hence I is a closed ideal in LY(G,w) with Z(I)
empty so by Theorem 3.12, I = L} (G, w). O
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