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ZERO SET OF IDEALS IN BEURLING ALGEBRAS

A. Minapoor1 and O.T. Mewomo2

In this paper, for a locally compact Abelian group G with a non quasi analytic 
weight w of G, we investigate the zero set of ideals for Beurling algebra L1(G, w). Also, 
we obtain the weighted version of Plancherel theorem. In particular, we show that if the 
zero set of an ideal I of L1(G, w) is empty then I = L1(G, w).
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1. Introduction

Various aspects of the cohomologies of Beurling algebras have been studied by several au-
thors, most notable are Gronbaek [6], Dales and Lau [2], Grahramani, Loy and Zhang 
[5] and Mewomo and Maepa [12]. For details on the cohomologies of Banach algebras, see 
[10, 11, 13, 14] and the references cited therein. Beurling algebras are L1-algebras associated 
with locally compact groups G with an extra weight ω on the groups.
Dales and Lau in [2] studied these algebras and their second duals. Weak amenability and 
2-weak amenability of Beurling algebras are studied by Samei in [16]. In the Abelian case, 
their harmonic analysis properties have been studied among others by Beurling [1] and 
Domar [3]. Domar [3] proved the following results:

Theorem 1.1. Let G be a locally compact Abelian group and w a weight on G. For every 
neighborhood N of the identity e in Ĝ (the dual group of G ), there exists fN ∈ L1(G, w)

such that suppf̂N ⊂ N , f̂N (e) 6= 0, if and only if w satisfies
∞∑
n=1

logw(nt)

n2
<∞ ∀t ∈ G.

In case this is true, the algebra L1(G,w) has the wiener property, i.e. for every proper closed

ideal I of L1(G,w), there exists γ ∈ Ĝ such that I ⊂ {f ∈ L1(G,w)|f̂(γ) = 0}.

Rudin in [17] studied the zero set of ideals I of group algebra L1(G) for some locally compact
Abelian group G. With this we can easily characterize the closed ideals of L1(G).
Motivated by the work of Rudin in [17] and the above result, in this paper, for a locally
compact Abelian group G, we use the fact that the Beurling algebra L1(G,w) is a regular
Banach algebra if the weight w is non quasi analytic and study the notion of zero set of
ideals for ideals of Beurling algebra L1(G,w). Also in Theorem 3.2, we obtain the weighted
version of Plancherel theorem [17]. Finally we show that if the zero set of an ideal I of
L1(G,w) is empty then I = L1(G,w).
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2. Beurling Algebras

In this section, we establish some results on Beurling algebras needed in the next section. 
Let G be a locally compact group. We denote by L1(G) the group algebra of G.
Let w be a Borel measurable function, w : G → [1, ∞) such that w(s + t) ≤ w(s).w(t) and 
w(0) = 1, then w is called a weight function on G. The Beurling algebra L1(G, w) is defined

as the set of all (equivalence classes of) measurable functions f : G → C such that

‖f‖w =

∫
G

| f(x) | w(x)dx <∞,

and equipped with the convolution product ? of functions; that is for f, g ∈ L1(G,w) and
x ∈ G,

f ? g(x) =

∫
G

f(x− y)g(y)dy.

Also, let L∞(G, 1
w ) be the space of all measurable complex-valued function φ on G, such

that
φ

w
is essentially bounded, and for φ ∈ L∞(G, 1

w ), define

‖ φ ‖∞, 1
w

=‖ φ
w
‖∞= esssup{| φ(x)

w(x)
|;x ∈ G}.

The spaces L1(G,w) and L∞(G, 1
w ) are in duality by

〈f, φ〉 =

∫
G

f(x)φ(x)dx (f ∈ L1(G,w), φ ∈ L∞(G,
1

w
).

Recall that, fx is the translate of f defined by fx(y) = f(y − x) (y ∈ G).

Theorem 2.1. Every closed translation-invariant subspace of L1(G,w) is an ideal, Con-
versely any closed ideal in L1(G,w) is translation invariant.

Proof. The proof is similar to that of [17, Theorem 7.1.2]. �

Lemma 2.1. Suppose f ∈ L1(G,w), then the map x 7→ fx is a continuous map of G into
L1(G,w).

Proof. Let ε > 0 be given and fix x ∈ G. Since Cc(G) is dense in L1(G,w), there exists

g ∈ Cc(G) such that ‖ g − f ‖w<
ε

3w(x)
. By translation we assume that g(0) 6= 0, where

0 ∈ G is the identity of G. Let m be the Haar measure of G, and W = {y ∈ G : g(y) 6= 0},
then W is an open neighborhood of 0 ∈ G and W = K := supp(g). By continuity of g at

0 ∈ G, there is a neighborhood U of 0 ∈ G such that ‖ g − gz ‖∞<
ε

M
(z ∈ U), where

M = 3m(K+K)(supt∈K+K w(t)).w(x). Here K+K = {y+z : y, z ∈ K}. Now V = U ∩W
is an open neighborhood of 0 ∈ G and K + V ⊆ K +W ⊆ K +K. Also

supp(g − gz) ⊆ K + V ⊆ K +K (z ∈ V ).

Next

‖ g − gz ‖w =

∫
G

|g(u)− g(u− z)|w(u)du =

∫
K+K

|g(u)− g(u− z)|w(u)du

≤‖ g − gz ‖∞
∫
K+K

w(u)du ≤‖ g − gz ‖∞ ( sup
t∈K+K

w(t))m(K +K)

≤ ε

M
( sup
t∈K+K

w(t)) =
ε

3w(x)
(z ∈ V ).
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Also we have

‖ gz − fz ‖w =

∫
G

(g − f)(t− z)w(t)dt =

∫
G

(g − f)(α)w(z + α)dα

≤ w(z)

∫
G

(g − f)(α)w(α)dα ≤ w(z) ‖ g − f ‖w≤ w(z).
ε

3w(x)
.

Since w ≥ 1 we get

‖ f − fz ‖w ≤‖ f − g ‖w + ‖ g − gz ‖w + ‖ gz − fz ‖w

≤ ε

3w(x)
+

ε

3w(x)
+ w(z).

ε

3w(x)
≤ w(z).

ε

w(x)
(z ∈ V ).

Finally we have fx − fy = (f − fy−x)x for y ∈ G. If we assume that y − x ∈ V and put
z = y − x, then we get

‖ fx − fy ‖w ≤ w(x) ‖ f − fy−x ‖w≤ w(x) ‖ f − fz ‖w
≤ sup
z∈V

w(z)ε ≤ sup
z∈K+K

w(z)ε.

Since w is continuous and continuous functions are bounded on compact sets, w is bounded
on V , also it is bounded on K +K, since ε is arbitrary the proof is complete. �

Lemma 2.2. Given f ∈ L1(G,w) and ε > 0, there exists a neighborhood V of 0 in G with
the following property: if u ∈ L1(G,w) vanishes outside V , u ≥ 0 and

∫
G
u(x)dx = 1, then

‖ f − f ? u ‖w< ε.

Proof. For ε > 0, choose V by Lemma 2.1 with ‖ f − fy ‖w< ε for all y ∈ V . If u satisfies
the hypotheses, we have

(f ? u)(x) =

∫
G

f(x− y)u(y)dy.

Then we have

(f ? u)(x)− f(x) =

∫
G

[f(x− y)− f(x)]u(y)dy.

Hence

‖ f ? u− f ‖w =

∫
G

∫
G

|[f(x− y)− f(x)]u(y)|w(x)dydx

=

∫
G

u(y)

∫
G

|f(x− y)− f(x)|w(x)dxdy

≤
∫
G

u(y) ‖ f − fy ‖w dy =

∫
V

u(y) ‖ f − fy ‖w dy

≤
∫
V

u(y)εdy = ε

∫
G

u(y)dy ≤ ε.

�

For 1 ≤ p <∞, a Beurling space on a locally compact group G is defined as follows

Lp(G,ω) := {f : f ∈ Lp(G); f.w ∈ Lp(G)}.
When p = 1, then it is Beurling algebra. For f ∈ Lp(G,w), we define ‖ f ‖p,ω:=‖ fω ‖p.
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3. Zero Set of Ideals

For f ∈ L1(G,w), we define Z(f) to be the set of all γ ∈ Ĝ such that f̂(γ) = 0, and if I
is an ideal in L1(G,w), we define the zero set of I by Z(I) =

⋂
f∈I Z(f). Thus γ ∈ Z(I)

if and only if f̂(γ) = 0 for all f ∈ I. Since f̂ is continuous on Ĝ, each Z(f) is closed,
hence Z(I) is closed for every I. It was shown by Domar in [3, Theorem 2.11] that L1(G,w)
is a regular Banach algebra if and only if the weight w is non quasi analytic (n.q.a.), i.e.,∑∞
n=1

logw(nt)
n2 <∞ for all t ∈ G. This generalizes a theorem of Beurling [1, Theorem V B]

for G = R. It follows that if w is a n.q.a. weight on G, then the ideal

{f ∈ L1(G,w) : f̂ has compact support } is dense in L1(G,w) [15].
A function φ defined on G is said to be positive-definite if the inequality

N∑
n,m=1

cncmφ(xn − xm) ≥ 0 (1)

holds for every choice of x1, ..., xN in G and for every choice of complex numbers c1, ..., cN .

Theorem 3.1. (Bochner [17]) A continuous function φ on G is positive-definite if and only

if there is a non-negative measure µ ∈M(Ĝ) such that

φ(x) =

∫
Ĝ

(x, γ)dµ(γ) (x ∈ G). (2)

Let B(G) be the set of all functions f on G which are representable in the form

f(x) =

∫
Ĝ

(x, γ)dµ(γ) (x ∈ G, γ ∈M(Ĝ)). (3)

B(G) is exactly the set of all finite linear combinations of continuous positive-definite func-

tions on G. If f ∈ L1(G) ∩ B(G), then f̂ ∈ L1(Ĝ). If the Haar measure of G is fixed, the

Haar measure of Ĝ can by normalized such that inversion formula

f(x) =

∫
Ĝ

f̂(γ)(x, γ)dγ (x ∈ G) (4)

is valid for every f ∈ L1(G) ∩B(G) [17].

Definition 3.1. [15] A weight w on the locally compact Abelian group G is called semi-
bounded if there exist a constant K and a subsemigroup S ⊆ G with S − S = G, such that
w(s) ≤ K and

limn→+∞
logw(−ns)√

n
= 0 s ∈ S. (5)

By definition, a semi-bounded weight is always non-quasi analytic. For the rest of the paper,
we assume that w is semi-bounded.

Theorem 3.2. The Fourier transform restricted to L1(G,ω) ∩ L2(G,ω) is a map onto a

dense linear subspace of L2(Ĝ), where for all f ∈ L1(G,ω) ∩ L2(G,ω), ‖ f ‖2,ω=‖ f̂ω ‖2.

Hence it may be extended to a map of L2(G,ω) onto L2(Ĝ).

Proof. If f ∈ L1(G,ω) ∩ L2(G,ω) then fω ∈ L1(G) ∩ L2(G). Set g := fω ?
︷︸︸︷
fω (where︷︸︸︷

f (x) = f(−x)). Then g ∈ L1(G), g is continuous and positive definite, |ĝ| = |f̂ω|2, and
the inversion theorem gives∫

G

|fω(x)|2dx =

∫
G

fω(x)
︷︸︸︷
fω (−x)dx = g(0) =

∫
Ĝ

ĝ(γ)dγ =

∫
Ĝ

|f̂ω|2dγ

or ‖f‖2,ω =‖ f̂ω ‖2.
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Now we show that the image of Fourier transform is a dense set in L2(Ĝ). That will imply

that it can be extended to a map from L2(G,ω) onto L2(Ĝ). It is sufficient to show that the

only element Φ orthogonal to all f̂ , f ∈ L1(G,ω) ∩ L2(G,ω) is Φ = 0. Using the fact that

(̂Lxf)(γ) = (x, γ)f̂(γ).

For allf ∈ L1(G,ω) ∩ L2(G,ω), we obtain

0 =

∫
Φ(γ)(̂Lxf)(γ)dγ =

∫
(x, γ)Φf̂(γ)dγ.

Then it can be shown (by uniqueness of measure, Theorem1.3.6 [17] ) that Φf = 0 a.e. for
all f ∈ (L1 ∩ L2)(G,ω), so Φ = 0. �

The right translation representation R of G on L1(G) given by

Rtf(x) := f(x− t), (t ∈ G),

is a strongly continuous representation satisfies ‖ Rt ‖≤ 1 for all t ∈ G.

Definition 3.2. [15] Let G be a locally compact Abelian group and R be the right translation
representation of G on L1(G). Let S(G) denote the class of all Banach subalgebras A ⊂
L1(G) satisfying the following properties:
(1) A is norm dense in L1(G) and the injection A ↪→ L1(G) is continuous.
(2) A is translation-invariant, i.e., RtA ⊆ A for each t ∈ G.
(3) For each f ∈ A, the mapping G 3 t 7−→ Rtf ∈ A is continuous.
(4) There exists a semi-bounded weight w on G such that ‖ Rt ‖A≤ w(t) for each t ∈ G.
(5) The intersection A ∩ L1(G,w) is norm dense in both A and L1(G,w).

The set L2(G,w)∩L1(G,w) is dense in L1(G) because it contains continuous functions with
compact support, and the injection L2(G,w) ∩ L1(G,w) ↪→ L1(G) is continuous.
Let f ∈ L2(G,w) ∩ L1(G,w), then

∫
| Rtf(x) | w(x)dx ≤ w(t) ‖ f ‖L1(G,w), so Rtf is in

L1(G,w). Also

(

∫
| Rtf(x) |2 w2(x)dx)1/2 = (

∫
| f(x− t) |2 w2(x)dx)1/2

= (

∫
| f(x) |2 w2(x+ t)dx)1/2

≤ (

∫
| f(x) |2 (w(x).w(t))2dx)1/2

≤ w(t) ‖ f ‖L2(G,w) (A).

This means that Rt(L
2(G,w) ∩ L1(G,w)) ⊆ L2(G,w) ∩ L1(G,w). It is obvious by Lemma

2.1 that for each f ∈ L2(G,w) ∩ L1(G,w), the mapping G 3 t 7→ Rtf is continuous.
For every weight w on G,

‖ Rt ‖L1(G,w) = sup{‖ Rtf ‖L1(G,w) ; ‖ f ‖L1(G,w)= 1}

= sup{
∫
| Rtf(x) | w(x)dx ; ‖ f ‖L1(G,w)= 1}

= sup{
∫
| f(x− t) | w(x)dx ; ‖ f ‖L1(G,w)= 1}

= sup{
∫
| f(x) | w(x+ t)dx ; ‖ f ‖L1(G,w)= 1}

≤ sup{w(t) ‖ f ‖L1(G,w) ; ‖ f ‖L1(G,w)= 1} = w(t). (B)

The norm on L2(G,w) ∩ L1(G,w) is usually considered as ‖ . ‖=‖ . ‖1,w + ‖ . ‖2,w . We

can set ‖ . ‖= 1

2
(‖ . ‖1,w + ‖ . ‖2,w), which is equivalent to the usual one.
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Due to (1) and (2), we have

‖ Rt ‖L2(G,w)∩L1(G,w) = sup{1

2
(‖ Rtf ‖L1(G,w) + ‖ Rtf ‖L2(G,w)); ‖ f ‖L1(G,w)=‖ f ‖L2(G,w)= 1}

≤ 1

2
(sup{‖ Rtf ‖L1(G,w); ‖ f ‖L1(G,w)= 1}

+ sup{‖ Rtf ‖L2(G,w); ‖ f ‖L2(G,w)= 1})

≤ 1

2
(w(t) + w(t)) = w(t).

We conclude that L2(G,w) ∩ L1(G,w) is in the class S(G).

Theorem 3.3. Suppose f ∈ L1(G,w) and ε > 0. There exists ν ∈ L1(G,w) such that ν̂ has
compact support and ‖ f ? ν − f ‖w< ε.

Proof. Let X be the set of all g ∈ L2(G,w) ∩ L1(G,w) such that ĝ has compact support.
Since w is semi-bounded, by ([15] Proposition 2.4 (iii)), X is dense in L2(G,ω) ∩ L1(G,w).

If ν = gh, with g, h ∈ X then ν̂ = ĝ ? ĥ, hence ν̂ has compact support, since X is dense in
L2(G,ω) ∩ L1(G,w), the set of all such ν is dense in L1(G,w). Let V be the neighborhood
of identity as in Lemma 2.2, using Urysohn lemma, choose u0 ∈ Cc(G)+ such that u0 = 0
off V . Let α =

∫
G
u0dm, put u = 1

αu0 then u ∈ L1(G,w) satisfies the conditions of Lemma

2.2, thus ‖ f ? u − f ‖w< ε/2, also we can choose ν ∈ L1(G,w) such that ν̂ has compact

support and ‖ u− ν ‖w<
ε

2 ‖ f ‖w
, then

‖ f − f ? ν ‖w≤‖ f − f ? u ‖w + ‖ f ? (u− ν) ‖w< ε.

�

Proposition 3.1. Suppose C is a compact subset of Ĝ, V ⊂ Ĝ and w is a weight function on

G and 0 < m(V ) <∞, where m is the Haar measure of Ĝ. Then there exists k ∈ L1(G,w)
such that
(1) k̂(γ) = 1 on C, k̂(γ) = 0 outside C + V − V and 0 ≤ k̂(γ) ≤ 1 for all γ ∈ Ĝ;
(2) ‖k‖w ≤ 2.

Proof. Let g, h be the functions in L2(G,w) whose Fourier transforms of gw and hw are the
characteristic functions of V and C − V respectively and gw2 and hw2 be in L2(G). Define

k(x) =
gw(x)hw(x)

m(V )
, (x ∈ G). (6)

Then k̂ = m(V )−1(ĝw ? ĥw) or k̂(γ) =
1

m(V )

∫
V
ĥw(γ − α)dα, γ ∈ Ĝ. If γ ∈ C then

ĥw(γ−α) = 1 for all α ∈ V . Hence k̂(γ) = 1. If γ is not in C+V −V , then ĥw(γ−α) = 0,

for all α ∈ V , since 0 ≤ ĥw ≤ 1 (1) follows.
By Theorem 3.2 ‖ g ‖2,w= m(V )1/2, ‖ h ‖2,w= m(C−V )1/2, since gw2 and hw2 are in L2(G),

there exists L,M > 0 such that (
∫
| hw2(x) |2 dx)1/2 ≤ L and (

∫
| gw2(x) |2 dx)1/2 6 M.

Let α = max{L,M}, then by applying Schwartz inequality to (3.6), we have

‖ k ‖w = m(V )−1
∫
| gw(x).hw(x) | w(x)dx

≤ m(V )−1(

∫
| gw(x) |2 dx)1/2.(

∫
| hw2(x) |2 dx)1/2

≤ m(V )−1 ‖ g ‖2,w .L ≤ m(V )−1/2α.

We can choose V such that m(V ) ≥ 9
16α

2 this implies (2). �
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Theorem 3.4. If W is an open set in Ĝ which contains a compact set C, then there exists

f ∈ L1(G,w) such that f̂ = 1 on C and f̂ = 0 outside W .

Proof. Choose a neighborhood V of 0 in Ĝ such that C+V −V ⊂W and apply Proposition
3.1. �

Theorem 3.5. Suppose f ∈ L1(G,w), γ0 ∈ Ĝ, f̂(γ0) = 0, W is a neighborhood of γ0, and
ε > 0. Then there exists k ∈ L1(G,w) such that
(1) ‖ k ‖w< 2;

(2) k̂ = 1 in a neighborhood of γ0 and k̂ = 0 outside W ;
(3) ‖f ? k ‖w< ε.

Proof. We assume γ0 = 0. Put δ =
ε

4(1+ ‖ f ‖1)
, there exists a compact set E in G such

that the integral of | fw | over the complement G − E of E is less than δ. We can find
C and V as in the proof of Proposition 3.1 subject to the following conditions (i) 0 is an
interior point of C; (ii) m(C − V ) < 4m(V ); (iii) C + V − V ⊂W ; and (iv) | 1− (x, γ) |< δ
whenever x ∈ E and γ ∈ C + V − V . Define k as in the proof of Proposition 3.1 then (1)

and (2) hold and since f̂(0) = 0, we have

f ? k(x) =

∫
G

f(y)(k(x− y)− k(x))dy (x ∈ G),

so that ‖ f ? k ‖w≤
∫
G
| f(y) | . ‖ ky − k ‖w dy =

∫
E

+
∫
G−E . Since

‖ ky − k ‖w≤‖ ky ‖w + ‖ k ‖w≤ w(y) ‖ k ‖w + ‖ k ‖w≤ 2w(y) ‖ k ‖w .

The integral over G−E is less than 2 ‖ k ‖w δ ≤ 4δ and the integral over E does not exceed
‖ f ‖1 supy∈E ‖ ky − k ‖w . Hence the inequality ‖ ky − k ‖w< 4δ (y ∈ E) will complete
the proof. Similarly, as in Proposition 3.1, we have

m(V )(ky − k) = gw((hw)y − hw) + ((gw)y − gw)(hw)y (y ∈ E).

Schwartz inequality implies,

m(V )

∫
(ky − k)(x)w(x)dx ≤ (

∫
| gw2(x) |2 dx)1/2.(

∫
| (hw)y(x)− hw(x) |2 dx)1/2

+ (

∫
| (gw)y(x)− gw(x) |2 dx)1/2.(

∫
| (hw)y(x).w(x) |2)1/2

By Theorem 3.2 and (iv), we have that

(

∫
| ((hw)y − hw) |2)1/2 = (

∫
C−V

| 1− (y, γ) |2 dγ)1/2 < δm(C − V )1/2

and

(

∫
| ((gw)y − gw) |2)1/2 = (

∫
V

| 1− (y, γ) |2 dγ)1/2 < δm(V )1/2 (7)

. By Proposition 3.1, we have that

(

∫
| hw2(x) |2 dx)1/2 ≤ L

and

(

∫
| gw2(x) |2 dx)1/2 6M,
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so that

(

∫
| (hw)y(x).w(x) |2 dx)1/2 = (

∫
| hw(x− y).w(x) |2 dx)1/2

= (

∫
| h(x− y)w(x− y)w(x) |2 dx)1/2

= (

∫
| h(x)w(x)w(x+ y) |2 dx)1/2

≤ (

∫
| h(x)w(x)w(x)w(y) |2 dx)1/2

≤ w(y)(

∫
| hw2(x) |2)1/2 = w(y)L.

We obtain
m(V ) ‖ ky − k ‖w< αδ(w(y)(m(V ))1/2 + (m(C − V ))1/2). (5)

Since m(C − V ) < 4m(V ), (3.0) implies

‖ ky − k ‖w≤ 3αδw(y)(m(V ))1/2 (y ∈ E).

Let N = supy∈Ew(y), since w is continuous and E is compact, so N is finite, we can choose

V such that m(V ) ≥ 9

16
α2N2 and this complete the proof. �

Theorem 3.6. Suppose f ∈ L1(G,w), γ0 ∈ Ĝ , f̂(γ0) = 0. There exists ν ∈ L1(G,w), such
that ν̂ = 0 in a neighborhood of γ0, ‖ ν ‖< 3 and ‖ f − f ? ν ‖w< ε.

Proof. As in the proof of Theorem 3.3, there exists u ∈ L1(G,w), such that ‖ u ‖1= 1 and

‖ f − f ? u ‖w< ε/2, since f̂ û(γ0) = 0, Theorem 3.5 applies to f ? u and so there exists

k ∈ L1(G,w) such that k̂ = 0 in a neighborhood of γ0, ‖ k ‖w< 2 and ‖ f ? u ? k ‖w< ε/2.

Put ν = u− u ? k, then ν̂ = 0 when k̂ = 1 and

‖ f − f ? ν ‖w6‖ f − f ? u ‖w + ‖ f ? u ? k ‖w< ε.

�

Theorem 3.7. Suppose f ∈ L1(G,w), γ0 ∈ Ĝ, W is a neighborhood of γ0 and ε > 0. There

there exists h ∈ L1(G,w) such that ‖ h ‖w< ε, ĥ = 0 outside W and f̂(γ)− ĥ(γ) = f̂(γ0) in
some neighborhood γ0.

Proof. Choose g ∈ L1(G,w) such that ĝ(γ) = f̂(γ0) in some neighborhood of γ0 Theorem

3.5 applies to f − g, and so there exists k ∈ L1(G,w) such that k̂ = 1 in a neighborhood of

γ0 , k̂ = 0 outside W and ‖(f − g) ? k ‖w< ε. Put h = (f − g) ? k. Then ĥ = (f̂ − ĝ)k̂ and

so there is a neighborhood of γ0 in which ĥ = f̂ − ĝ = f̂ − f̂(γ0). �

Suppose I is an ideal of L1(G,w), if f ∈ L1(G,w) and γ0 ∈ Ĝ, we say that f is locally in I

at γ0 if there exists g ∈ I such that f̂ = ĝ in a neighborhood of γ0.

Theorem 3.8. Suppose that f ∈ L1(G,w), I is a closed ideal of L1(G,w) and γ0 ∈ Ĝ.

Then f̂ belongs to Î locally at γ0 if either of the following conditions is satisfied
(a) γ0 is not in Z(I),
(b) γ0 is in the interior of Z(I).

Proof. If (a) holds, there exists g ∈ I with ĝ(γ0) = 1, and Theorem 3.7 shows that there

exists h ∈ L1(G,w) such that ‖ h ‖w< 1/2 and ĥ(γ) = 1 − ĝ(γ) in some neighborhood V

of γ0. The series
∑∞

0 f̂ ĥn converges in the norm of A(Ĝ), to a function ĵ ∈ A(Ĝ), and

ĵ(γ) = (1− ĥ(γ))−1f̂(γ) for all γ ∈ Ĝ, if γ ∈ V then ĝ(γ)ĵ(γ) = f̂(γ), since ĝ ∈ Î and Î is an
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ideal, ĝĵ ∈ Î, and so f̂ belongs to Î locally at γ0. If (b) holds, then f̂ = 0 in a neighborhood

of γ0 and since Î contains the constant 0, f̂ belongs to Î locally at γ0. �

Theorem 3.9. Suppose G is compact, I is a closed ideal of L1(G,w) and Z(I) ⊆ Z(f),
then f ∈ I.

Proof. If γ0 is not in Z(I), there exists g ∈ I with ĝ(γ0) = 1, and hence g?γ0 = γ0 regarding
γ0 as a member of L1(G,w), since I is an ideal, g ? γ0 ∈ I and so γ0 ∈ I, it follows that I
contains every trigonometric polynomial on G of the form

∑
aγ(x, γ), provided that aγ = 0,

for all γ ∈ Z(I). If Z(I) ⊂ Z(f), then f ? κ satisfies this condition for every trigonometric
polynomial κ on G. Since ‖ f − f ? κ ‖w can be arbitrarily small by Theorem 3.3, and I is
a closed, we conclude that f ∈ I. �

Theorem 3.10. Suppose I is an ideal of L1(G,w) and f ∈ L1(G,w). If f̂ has compact

support and f is locally in I at every γ ∈ Ĝ, then f ∈ I.

Proof. For every γ ∈ Ĝ, choose gγ ∈ I such that f̂ = ĝγ on an open set Uγ containing

γ. By passing to a finite subcover of suppf̂ , we obtain open sets U1, U2, ..., Un in Ĝ and

g1, g2, ..., gn in I such that ĝj = f̂ on Uj and suppf̂ ⊂ ∪n1Uj , next each ξ ∈ Uj∩ suppf̂ has

a compact neighborhood contained in Uj , by passing to a finite subcover suppf̂ again, we

obtain compact sets K1,K2, ...,Kn such that Kj ⊂ Uj and suppf̂ ⊂ ∪n1Kj . By Theorem

3.4, there exists h1, ..., hn in L1(G,w) such that ĥj = 1 on Kj and suppĥj ⊂ Uj . Then∏n
1 (1− ĥj) = 0 on suppf̂ , so f̂ = f̂(1−

∏n
1 (1− ĥj)). If we multiply out the product inside

the brackets, each term of the resulting sum is a product of hj ’s, i.e., the Fourier transform
of convolution of hj ’s. Collecting terms, we see that f =

∑
f ? Hj where Hj ∈ L1(G,w)

and suppĤj ⊂ Uj . But then ̂(f ? Hj) = f̂ Ĥj = ĝjĤj = ̂(gj ? Hj), so f ? Hj = gj ? hj ∈ I,
and hence f ∈ I. �

Theorem 3.11. If I is a closed ideal of L1(G,w) and γ0 is not in Z(I), then every f ∈
L1(G,w) is locally in I at γ0.

Proof. Pick g in I such that ĝ(γ0) = 1. By Theorem 3.7, there exists ν ∈ L1(G,w) such
that ‖ ν ‖< 1/2 and ν̂ + ĝ = 1 in a neighborhood of γ0. Let νn = ν ? ν ? ... ? ν (n factors)
then ‖ ν̂n ‖∞,1/w≤‖ νn ‖w< 2−n. Hence if f ∈ L1(G,w), the series f +

∑∞
1 f ? νn converges

in L1(G,w) to a function h such that ĥ =
∑∞

0 f̂ ν̂n =
∑∞

0 f̂(ν̂)n =
f̂

1− ν̂
. But 1 − ν̂ = ĝ

near γ0, so f̂ = ĥ(1− ν̂) = ĥĝ = (̂h ? g) near γ0. Since h ? g ∈ I, f is locally in I at γ0.
�

Theorem 3.12. If I is a closed ideal of L1(G,w) and Z(I) is empty, then L1(G,w) = I.

Proof. Since w is non quasi analytic, the set {f ∈ L1(G,w) : suppf̂ is compact} is dense in
L1(G,w), by Theorem 3.3, and is contained in I by Theorem 3.10 and Theorem 3.11. �

If φ ∈ L∞(G, 1/w), the statement (φ(x) −→ a as x −→ ∞) will mean that to every ε > 0
there exists a compact set K in G such that | φ(x)− a |< ε in the complement of K.

Example 3.1. Suppose φ ∈ L∞(G, 1/w) and f ∈ L1(G,w), f̂(γ) 6= 0 for all γ ∈ Ĝ

and (f ? φ)(x) −→ af̂(0), as x −→ ∞, then (g ? φ)(x) −→ aĝ(0), as x → ∞, for every
g ∈ L1(G,w).

Proof. Replacing φ by φ − a, we may assume without loss of generality, that a = 0, the
set I of all g ∈ L1(G,w) such that (g ? φ)(x) −→ aĝ(0) as x −→ ∞ is a linear subspace
of L1(G,w) which is clearly translation invariant. I is closed, for if ‖ gn − g ‖w−→ 0 then
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‖ gn ? φ − g ? φ ‖∞,1/w→ 0, and f ∈ I. Hence I is a closed ideal in L1(G,w) with Z(I)

empty so by Theorem 3.12, I = L1(G,w). �
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