

ZERO SET OF IDEALS IN BEURLING ALGEBRAS

A. Minapoor¹ and O.T. Mewomo²

In this paper, for a locally compact Abelian group G with a non quasi analytic weight w of G , we investigate the zero set of ideals for Beurling algebra $L^1(G, w)$. Also, we obtain the weighted version of Plancherel theorem. In particular, we show that if the zero set of an ideal I of $L^1(G, w)$ is empty then $I = L^1(G, w)$.

Keywords: Zero set, Beurling algebras, non quasi analytic weight.

MSC2000 Mathematics Subject Classification: 46H20, 46H25.

1. Introduction

Various aspects of the cohomologies of Beurling algebras have been studied by several authors, most notable are Gronbaek [6], Dales and Lau [2], Grahramani, Loy and Zhang [5] and Mewomo and Maepa [12]. For details on the cohomologies of Banach algebras, see [10, 11, 13, 14] and the references cited therein. Beurling algebras are L^1 -algebras associated with locally compact groups G with an extra weight ω on the groups.

Dales and Lau in [2] studied these algebras and their second duals. Weak amenability and 2-weak amenability of Beurling algebras are studied by Samei in [16]. In the Abelian case, their harmonic analysis properties have been studied among others by Beurling [1] and Domar [3]. Domar [3] proved the following results:

Theorem 1.1. *Let G be a locally compact Abelian group and w a weight on G . For every neighborhood N of the identity e in \widehat{G} (the dual group of G), there exists $f_N \in L^1(G, w)$ such that $\widehat{\text{supp } f_N} \subset N$, $\widehat{f_N}(e) \neq 0$, if and only if w satisfies*

$$\sum_{n=1}^{\infty} \frac{\log w(nt)}{n^2} < \infty \quad \forall t \in G.$$

In case this is true, the algebra $L^1(G, w)$ has the wiener property, i.e. for every proper closed ideal I of $L^1(G, w)$, there exists $\gamma \in \widehat{G}$ such that $I \subset \{f \in L^1(G, w) | \widehat{f}(\gamma) = 0\}$.

Rudin in [17] studied the zero set of ideals I of group algebra $L^1(G)$ for some locally compact Abelian group G . With this we can easily characterize the closed ideals of $L^1(G)$.

Motivated by the work of Rudin in [17] and the above result, in this paper, for a locally compact Abelian group G , we use the fact that the Beurling algebra $L^1(G, w)$ is a regular Banach algebra if the weight w is non quasi analytic and study the notion of zero set of ideals for ideals of Beurling algebra $L^1(G, w)$. Also in Theorem 3.2, we obtain the weighted version of Plancherel theorem [17]. Finally we show that if the zero set of an ideal I of $L^1(G, w)$ is empty then $I = L^1(G, w)$.

¹ Department of Mathematics, Ayatollah Borujerdi University, Borujerd, Iran, e-mail: shp_np@yahoo.com

² School of Mathematics, Statistics and Computer Science, University of KwaZulu-Natal, Durban, South Africa, e-mail: mewomoo@ukzn.ac.za

2. Beurling Algebras

In this section, we establish some results on Beurling algebras needed in the next section.

Let G be a locally compact group. We denote by $L^1(G)$ the group algebra of G .

Let w be a Borel measurable function, $w : G \rightarrow [1, \infty)$ such that $w(s+t) \leq w(s).w(t)$ and $w(0) = 1$, then w is called a weight function on G . The Beurling algebra $L^1(G, w)$ is defined as the set of all (equivalence classes of) measurable functions $f : G \rightarrow \mathbb{C}$ such that

$$\|f\|_w = \int_G |f(x)| w(x) dx < \infty,$$

and equipped with the convolution product \star of functions; that is for $f, g \in L^1(G, w)$ and $x \in G$,

$$f \star g(x) = \int_G f(x-y) g(y) dy.$$

Also, let $L^\infty(G, \frac{1}{w})$ be the space of all measurable complex-valued function ϕ on G , such that $\frac{\phi}{w}$ is essentially bounded, and for $\phi \in L^\infty(G, \frac{1}{w})$, define

$$\|\phi\|_{\infty, \frac{1}{w}} = \left\| \frac{\phi}{w} \right\|_\infty = \text{esssup} \left\{ \left| \frac{\phi(x)}{w(x)} \right| ; x \in G \right\}.$$

The spaces $L^1(G, w)$ and $L^\infty(G, \frac{1}{w})$ are in duality by

$$\langle f, \phi \rangle = \int_G f(x) \phi(x) dx \quad (f \in L^1(G, w), \phi \in L^\infty(G, \frac{1}{w})).$$

Recall that, f_x is the translate of f defined by $f_x(y) = f(y-x)$ ($y \in G$).

Theorem 2.1. *Every closed translation-invariant subspace of $L^1(G, w)$ is an ideal, Conversely any closed ideal in $L^1(G, w)$ is translation invariant.*

Proof. The proof is similar to that of [17, Theorem 7.1.2]. \square

Lemma 2.1. *Suppose $f \in L^1(G, w)$, then the map $x \mapsto f_x$ is a continuous map of G into $L^1(G, w)$.*

Proof. Let $\epsilon > 0$ be given and fix $x \in G$. Since $C_c(G)$ is dense in $L^1(G, w)$, there exists $g \in C_c(G)$ such that $\|g - f\|_w < \frac{\epsilon}{3w(x)}$. By translation we assume that $g(0) \neq 0$, where $0 \in G$ is the identity of G . Let m be the Haar measure of G , and $W = \{y \in G : g(y) \neq 0\}$, then W is an open neighborhood of $0 \in G$ and $\overline{W} = K := \text{supp}(g)$. By continuity of g at $0 \in G$, there is a neighborhood U of $0 \in G$ such that $\|g - g_z\|_\infty < \frac{\epsilon}{M}$ ($z \in U$), where $M = 3m(K+K)(\sup_{t \in K+K} w(t)).w(x)$. Here $K+K = \{y+z : y, z \in K\}$. Now $V = U \cap W$ is an open neighborhood of $0 \in G$ and $K+V \subseteq K+W \subseteq K+K$. Also

$$\text{supp}(g - g_z) \subseteq K+V \subseteq K+K \quad (z \in V).$$

Next

$$\begin{aligned} \|g - g_z\|_w &= \int_G |g(u) - g(u-z)| w(u) du = \int_{K+K} |g(u) - g(u-z)| w(u) du \\ &\leq \|g - g_z\|_\infty \int_{K+K} w(u) du \leq \|g - g_z\|_\infty \left(\sup_{t \in K+K} w(t) \right) m(K+K) \\ &\leq \frac{\epsilon}{M} \left(\sup_{t \in K+K} w(t) \right) = \frac{\epsilon}{3w(x)} \quad (z \in V). \end{aligned}$$

Also we have

$$\begin{aligned}\|g_z - f_z\|_w &= \int_G (g-f)(t-z)w(t)dt = \int_G (g-f)(\alpha)w(z+\alpha)d\alpha \\ &\leq w(z) \int_G (g-f)(\alpha)w(\alpha)d\alpha \leq w(z) \|g-f\|_w \leq w(z) \cdot \frac{\epsilon}{3w(x)}.\end{aligned}$$

Since $w \geq 1$ we get

$$\begin{aligned}\|f - f_z\|_w &\leq \|f - g\|_w + \|g - g_z\|_w + \|g_z - f_z\|_w \\ &\leq \frac{\epsilon}{3w(x)} + \frac{\epsilon}{3w(x)} + w(z) \cdot \frac{\epsilon}{3w(x)} \leq w(z) \cdot \frac{\epsilon}{w(x)} \quad (z \in V).\end{aligned}$$

Finally we have $f_x - f_y = (f - f_{y-x})_x$ for $y \in G$. If we assume that $y - x \in V$ and put $z = y - x$, then we get

$$\begin{aligned}\|f_x - f_y\|_w &\leq w(x) \|f - f_{y-x}\|_w \leq w(x) \|f - f_z\|_w \\ &\leq \sup_{z \in V} w(z) \epsilon \leq \sup_{z \in K+K} w(z) \epsilon.\end{aligned}$$

Since w is continuous and continuous functions are bounded on compact sets, w is bounded on V , also it is bounded on $K + K$, since ϵ is arbitrary the proof is complete. \square

Lemma 2.2. *Given $f \in L^1(G, w)$ and $\epsilon > 0$, there exists a neighborhood V of 0 in G with the following property: if $u \in L^1(G, w)$ vanishes outside V , $u \geq 0$ and $\int_G u(x)dx = 1$, then $\|f - f \star u\|_w < \epsilon$.*

Proof. For $\epsilon > 0$, choose V by Lemma 2.1 with $\|f - f_y\|_w < \epsilon$ for all $y \in V$. If u satisfies the hypotheses, we have

$$(f \star u)(x) = \int_G f(x-y)u(y)dy.$$

Then we have

$$(f \star u)(x) - f(x) = \int_G [f(x-y) - f(x)]u(y)dy.$$

Hence

$$\begin{aligned}\|f \star u - f\|_w &= \int_G \int_G |[f(x-y) - f(x)]u(y)|w(x)dydx \\ &= \int_G u(y) \int_G |f(x-y) - f(x)|w(x)dx dy \\ &\leq \int_G u(y) \|f - f_y\|_w dy = \int_V u(y) \|f - f_y\|_w dy \\ &\leq \int_V u(y) \epsilon dy = \epsilon \int_G u(y)dy \leq \epsilon.\end{aligned}$$

\square

For $1 \leq p < \infty$, a Beurling space on a locally compact group G is defined as follows

$$L^p(G, \omega) := \{f : f \in L^p(G); f \cdot w \in L^p(G)\}.$$

When $p = 1$, then it is Beurling algebra. For $f \in L^p(G, w)$, we define $\|f\|_{p, \omega} := \|f \cdot \omega\|_p$.

3. Zero Set of Ideals

For $f \in L^1(G, w)$, we define $Z(f)$ to be the set of all $\gamma \in \widehat{G}$ such that $\widehat{f}(\gamma) = 0$, and if I is an ideal in $L^1(G, w)$, we define the zero set of I by $Z(I) = \bigcap_{f \in I} Z(f)$. Thus $\gamma \in Z(I)$ if and only if $\widehat{f}(\gamma) = 0$ for all $f \in I$. Since \widehat{f} is continuous on \widehat{G} , each $Z(f)$ is closed, hence $Z(I)$ is closed for every I . It was shown by Domar in [3, Theorem 2.11] that $L^1(G, w)$ is a regular Banach algebra if and only if the weight w is non quasi analytic (n.q.a.), i.e., $\sum_{n=1}^{\infty} \frac{\log w(nt)}{n^2} < \infty$ for all $t \in G$. This generalizes a theorem of Beurling [1, Theorem V B] for $G = \mathbb{R}$. It follows that if w is a n.q.a. weight on G , then the ideal $\{f \in L^1(G, w) : \widehat{f} \text{ has compact support}\}$ is dense in $L^1(G, w)$ [15].

A function ϕ defined on G is said to be positive-definite if the inequality

$$\sum_{n,m=1}^N c_n \overline{c_m} \phi(x_n - x_m) \geq 0 \quad (1)$$

holds for every choice of x_1, \dots, x_N in G and for every choice of complex numbers c_1, \dots, c_N .

Theorem 3.1. (Bochner [17]) *A continuous function ϕ on G is positive-definite if and only if there is a non-negative measure $\mu \in M(\widehat{G})$ such that*

$$\phi(x) = \int_{\widehat{G}} (x, \gamma) d\mu(\gamma) \quad (x \in G). \quad (2)$$

Let $B(G)$ be the set of all functions f on G which are representable in the form

$$f(x) = \int_{\widehat{G}} (x, \gamma) d\mu(\gamma) \quad (x \in G, \gamma \in M(\widehat{G})). \quad (3)$$

$B(G)$ is exactly the set of all finite linear combinations of continuous positive-definite functions on G . If $f \in L^1(G) \cap B(G)$, then $\widehat{f} \in L^1(\widehat{G})$. If the Haar measure of G is fixed, the Haar measure of \widehat{G} can be normalized such that inversion formula

$$f(x) = \int_{\widehat{G}} \widehat{f}(\gamma) (x, \gamma) d\gamma \quad (x \in G) \quad (4)$$

is valid for every $f \in L^1(G) \cap B(G)$ [17].

Definition 3.1. [15] *A weight w on the locally compact Abelian group G is called semi-bounded if there exist a constant K and a subsemigroup $S \subseteq G$ with $S - S = G$, such that $w(s) \leq K$ and*

$$\lim_{n \rightarrow +\infty} \frac{\log w(-ns)}{\sqrt{n}} = 0 \quad s \in S. \quad (5)$$

By definition, a semi-bounded weight is always non-quasi analytic. For the rest of the paper, we assume that w is semi-bounded.

Theorem 3.2. *The Fourier transform restricted to $L^1(G, \omega) \cap L^2(G, \omega)$ is a map onto a dense linear subspace of $L^2(\widehat{G})$, where for all $f \in L^1(G, \omega) \cap L^2(G, \omega)$, $\|f\|_{2, \omega} = \|\widehat{f\omega}\|_2$. Hence it may be extended to a map of $L^2(G, \omega)$ onto $L^2(\widehat{G})$.*

Proof. If $f \in L^1(G, \omega) \cap L^2(G, \omega)$ then $f\omega \in L^1(G) \cap L^2(G)$. Set $g := f\omega \star \widehat{f\omega}$ (where $\widehat{f}(x) = \overline{f(-x)}$). Then $g \in L^1(G)$, g is continuous and positive definite, $|\widehat{g}| = |\widehat{f\omega}|^2$, and the inversion theorem gives

$$\int_G |f\omega(x)|^2 dx = \int_G f\omega(x) \widehat{f\omega}(-x) dx = g(0) = \int_{\widehat{G}} \widehat{g}(\gamma) d\gamma = \int_{\widehat{G}} |\widehat{f\omega}|^2 d\gamma$$

or $\|f\|_{2, \omega} = \|\widehat{f\omega}\|_2$.

Now we show that the image of Fourier transform is a dense set in $L^2(\widehat{G})$. That will imply that it can be extended to a map from $L^2(G, \omega)$ onto $L^2(\widehat{G})$. It is sufficient to show that the only element Φ orthogonal to all \widehat{f} , $f \in L^1(G, \omega) \cap L^2(G, \omega)$ is $\Phi = 0$. Using the fact that

$$\widehat{(L_x f)}(\gamma) = \overline{(x, \gamma)} \widehat{f}(\gamma).$$

For all $f \in L^1(G, \omega) \cap L^2(G, \omega)$, we obtain

$$0 = \int \Phi(\gamma) \overline{\widehat{(L_x f)}(\gamma)} d\gamma = \int (x, \gamma) \Phi \widehat{f}(\gamma) d\gamma.$$

Then it can be shown (by uniqueness of measure, Theorem 1.3.6 [17]) that $\Phi f = 0$ a.e. for all $f \in (L^1 \cap L^2)(G, \omega)$, so $\Phi = 0$. \square

The right translation representation \mathcal{R} of G on $L^1(G)$ given by

$$\mathcal{R}_t f(x) := f(x - t), \quad (t \in G),$$

is a strongly continuous representation satisfies $\|\mathcal{R}_t\| \leq 1$ for all $t \in G$.

Definition 3.2. [15] Let G be a locally compact Abelian group and \mathcal{R} be the right translation representation of G on $L^1(G)$. Let $\mathcal{S}(G)$ denote the class of all Banach subalgebras $\mathcal{A} \subset L^1(G)$ satisfying the following properties:

- (1) \mathcal{A} is norm dense in $L^1(G)$ and the injection $\mathcal{A} \hookrightarrow L^1(G)$ is continuous.
- (2) \mathcal{A} is translation-invariant, i.e., $\mathcal{R}_t \mathcal{A} \subseteq \mathcal{A}$ for each $t \in G$.
- (3) For each $f \in \mathcal{A}$, the mapping $G \ni t \mapsto \mathcal{R}_t f \in \mathcal{A}$ is continuous.
- (4) There exists a semi-bounded weight w on G such that $\|\mathcal{R}_t\|_{\mathcal{A}} \leq w(t)$ for each $t \in G$.
- (5) The intersection $\mathcal{A} \cap L^1(G, w)$ is norm dense in both \mathcal{A} and $L^1(G, w)$.

The set $L^2(G, w) \cap L^1(G, w)$ is dense in $L^1(G)$ because it contains continuous functions with compact support, and the injection $L^2(G, w) \cap L^1(G, w) \hookrightarrow L^1(G)$ is continuous.

Let $f \in L^2(G, w) \cap L^1(G, w)$, then $\int |\mathcal{R}_t f(x)| w(x) dx \leq w(t) \|f\|_{L^1(G, w)}$, so $\mathcal{R}_t f$ is in $L^1(G, w)$. Also

$$\begin{aligned} \left(\int |\mathcal{R}_t f(x)|^2 w^2(x) dx \right)^{1/2} &= \left(\int |f(x - t)|^2 w^2(x) dx \right)^{1/2} \\ &= \left(\int |f(x)|^2 w^2(x + t) dx \right)^{1/2} \\ &\leq \left(\int |f(x)|^2 (w(x) \cdot w(t))^2 dx \right)^{1/2} \\ &\leq w(t) \|f\|_{L^2(G, w)} \quad (A). \end{aligned}$$

This means that $\mathcal{R}_t(L^2(G, w) \cap L^1(G, w)) \subseteq L^2(G, w) \cap L^1(G, w)$. It is obvious by Lemma 2.1 that for each $f \in L^2(G, w) \cap L^1(G, w)$, the mapping $G \ni t \mapsto \mathcal{R}_t f$ is continuous.

For every weight w on G ,

$$\begin{aligned} \|\mathcal{R}_t\|_{L^1(G, w)} &= \sup\{\|\mathcal{R}_t f\|_{L^1(G, w)} ; \quad \|f\|_{L^1(G, w)} = 1\} \\ &= \sup\{\int |\mathcal{R}_t f(x)| w(x) dx ; \quad \|f\|_{L^1(G, w)} = 1\} \\ &= \sup\{\int |f(x - t)| w(x) dx ; \quad \|f\|_{L^1(G, w)} = 1\} \\ &= \sup\{\int |f(x)| w(x + t) dx ; \quad \|f\|_{L^1(G, w)} = 1\} \\ &\leq \sup\{w(t) \|f\|_{L^1(G, w)} ; \quad \|f\|_{L^1(G, w)} = 1\} = w(t). \quad (B) \end{aligned}$$

The norm on $L^2(G, w) \cap L^1(G, w)$ is usually considered as $\|\cdot\| = \|\cdot\|_{1, w} + \|\cdot\|_{2, w}$. We can set $\|\cdot\| = \frac{1}{2}(\|\cdot\|_{1, w} + \|\cdot\|_{2, w})$, which is equivalent to the usual one.

Due to (1) and (2), we have

$$\begin{aligned} \|\mathcal{R}_t\|_{L^2(G,w) \cap L^1(G,w)} &= \sup\left\{\frac{1}{2}(\|\mathcal{R}_t f\|_{L^1(G,w)} + \|\mathcal{R}_t f\|_{L^2(G,w)}); \quad \|f\|_{L^1(G,w)} = \|f\|_{L^2(G,w)} = 1\right\} \\ &\leq \frac{1}{2}(\sup\{\|\mathcal{R}_t f\|_{L^1(G,w)}; \quad \|f\|_{L^1(G,w)} = 1\} \\ &\quad + \sup\{\|\mathcal{R}_t f\|_{L^2(G,w)}; \quad \|f\|_{L^2(G,w)} = 1\}) \\ &\leq \frac{1}{2}(w(t) + w(t)) = w(t). \end{aligned}$$

We conclude that $L^2(G, w) \cap L^1(G, w)$ is in the class $\mathcal{S}(G)$.

Theorem 3.3. Suppose $f \in L^1(G, w)$ and $\epsilon > 0$. There exists $\nu \in L^1(G, w)$ such that $\widehat{\nu}$ has compact support and $\|f * \nu - f\|_w < \epsilon$.

Proof. Let X be the set of all $g \in L^2(G, w) \cap L^1(G, w)$ such that \widehat{g} has compact support. Since w is semi-bounded, by ([15] Proposition 2.4 (iii)), X is dense in $L^2(G, w) \cap L^1(G, w)$. If $\nu = gh$, with $g, h \in X$ then $\widehat{\nu} = \widehat{g} * \widehat{h}$, hence $\widehat{\nu}$ has compact support, since X is dense in $L^2(G, w) \cap L^1(G, w)$, the set of all such ν is dense in $L^1(G, w)$. Let V be the neighborhood of identity as in Lemma 2.2, using Urysohn lemma, choose $u_0 \in C_c(G)_+$ such that $u_0 = 0$ off V . Let $\alpha = \int_G u_0 dm$, put $u = \frac{1}{\alpha} u_0$ then $u \in L^1(G, w)$ satisfies the conditions of Lemma 2.2, thus $\|f * u - f\|_w < \epsilon/2$, also we can choose $\nu \in L^1(G, w)$ such that $\widehat{\nu}$ has compact support and $\|u - \nu\|_w < \frac{\epsilon}{2\|f\|_w}$, then

$$\|f - f * \nu\|_w \leq \|f - f * u\|_w + \|f * (u - \nu)\|_w < \epsilon.$$

□

Proposition 3.1. Suppose C is a compact subset of \widehat{G} , $V \subset \widehat{G}$ and w is a weight function on G and $0 < m(V) < \infty$, where m is the Haar measure of \widehat{G} . Then there exists $k \in L^1(G, w)$ such that

- (1) $\widehat{k}(\gamma) = 1$ on C , $\widehat{k}(\gamma) = 0$ outside $C + V - V$ and $0 \leq \widehat{k}(\gamma) \leq 1$ for all $\gamma \in \widehat{G}$;
- (2) $\|k\|_w \leq 2$.

Proof. Let g, h be the functions in $L^2(G, w)$ whose Fourier transforms of gw and hw are the characteristic functions of V and $C - V$ respectively and gw^2 and hw^2 be in $L^2(G)$. Define

$$k(x) = \frac{gw(x)hw(x)}{m(V)}, \quad (x \in G). \quad (6)$$

Then $\widehat{k} = m(V)^{-1}(\widehat{gw} * \widehat{hw})$ or $\widehat{k}(\gamma) = \frac{1}{m(V)} \int_V \widehat{hw}(\gamma - \alpha) d\alpha$, $\gamma \in \widehat{G}$. If $\gamma \in C$ then $\widehat{hw}(\gamma - \alpha) = 1$ for all $\alpha \in V$. Hence $\widehat{k}(\gamma) = 1$. If γ is not in $C + V - V$, then $\widehat{hw}(\gamma - \alpha) = 0$, for all $\alpha \in V$, since $0 \leq \widehat{hw} \leq 1$ (1) follows.

By Theorem 3.2 $\|g\|_{2,w} = m(V)^{1/2}$, $\|h\|_{2,w} = m(C - V)^{1/2}$, since gw^2 and hw^2 are in $L^2(G)$, there exists $L, M > 0$ such that $(\int |hw^2(x)|^2 dx)^{1/2} \leq L$ and $(\int |gw^2(x)|^2 dx)^{1/2} \leq M$. Let $\alpha = \max\{L, M\}$, then by applying Schwartz inequality to (3.6), we have

$$\begin{aligned} \|k\|_w &= m(V)^{-1} \int |gw(x).hw(x)| w(x) dx \\ &\leq m(V)^{-1} \left(\int |gw(x)|^2 dx \right)^{1/2} \cdot \left(\int |hw^2(x)|^2 dx \right)^{1/2} \\ &\leq m(V)^{-1} \|g\|_{2,w} \cdot L \leq m(V)^{-1/2} \alpha. \end{aligned}$$

We can choose V such that $m(V) \geq \frac{9}{16} \alpha^2$ this implies (2). □

Theorem 3.4. *If W is an open set in \widehat{G} which contains a compact set C , then there exists $f \in L^1(G, w)$ such that $\widehat{f} = 1$ on C and $\widehat{f} = 0$ outside W .*

Proof. Choose a neighborhood V of 0 in \widehat{G} such that $C + V - V \subset W$ and apply Proposition 3.1. \square

Theorem 3.5. *Suppose $f \in L^1(G, w)$, $\gamma_0 \in \widehat{G}$, $\widehat{f}(\gamma_0) = 0$, W is a neighborhood of γ_0 , and $\epsilon > 0$. Then there exists $k \in L^1(G, w)$ such that*

- (1) $\|k\|_w < 2$;
- (2) $\widehat{k} = 1$ in a neighborhood of γ_0 and $\widehat{k} = 0$ outside W ;
- (3) $\|f \star k\|_w < \epsilon$.

Proof. We assume $\gamma_0 = 0$. Put $\delta = \frac{\epsilon}{4(1 + \|f\|_1)}$, there exists a compact set E in G such that the integral of $|fw|$ over the complement $G - E$ of E is less than δ . We can find C and V as in the proof of Proposition 3.1 subject to the following conditions (i) 0 is an interior point of C ; (ii) $m(C - V) < 4m(V)$; (iii) $C + V - V \subset W$; and (iv) $|1 - (x, \gamma)| < \delta$ whenever $x \in E$ and $\gamma \in C + V - V$. Define k as in the proof of Proposition 3.1 then (1) and (2) hold and since $\widehat{f}(0) = 0$, we have

$$f \star k(x) = \int_G f(y)(k(x - y) - k(x))dy \quad (x \in G),$$

so that $\|f \star k\|_w \leq \int_G |f(y)| \cdot \|k_y - k\|_w dy = \int_E + \int_{G-E}$. Since

$$\|k_y - k\|_w \leq \|k_y\|_w + \|k\|_w \leq w(y) \|k\|_w + \|k\|_w \leq 2w(y) \|k\|_w.$$

The integral over $G - E$ is less than $2 \|k\|_w \delta \leq 4\delta$ and the integral over E does not exceed $\|f\|_1 \sup_{y \in E} \|k_y - k\|_w$. Hence the inequality $\|k_y - k\|_w < 4\delta$ ($y \in E$) will complete the proof. Similarly, as in Proposition 3.1, we have

$$m(V)(k_y - k) = gw((hw)_y - hw) + ((gw)_y - gw)(hw)_y \quad (y \in E).$$

Schwartz inequality implies,

$$\begin{aligned} m(V) \int (k_y - k)(x)w(x)dx &\leq \left(\int |gw^2(x)|^2 dx \right)^{1/2} \cdot \left(\int |(hw)_y(x) - hw(x)|^2 dx \right)^{1/2} \\ &\quad + \left(\int |(gw)_y(x) - gw(x)|^2 dx \right)^{1/2} \cdot \left(\int |(hw)_y(x) \cdot w(x)|^2 dx \right)^{1/2} \end{aligned}$$

By Theorem 3.2 and (iv), we have that

$$\left(\int |(hw)_y - hw|^2 \right)^{1/2} = \left(\int_{C-V} |1 - (y, \gamma)|^2 d\gamma \right)^{1/2} < \delta m(C - V)^{1/2}$$

and

$$\left(\int |(gw)_y - gw|^2 \right)^{1/2} = \left(\int_V |1 - (y, \gamma)|^2 d\gamma \right)^{1/2} < \delta m(V)^{1/2} \quad (7)$$

. By Proposition 3.1, we have that

$$\left(\int |hw^2(x)|^2 dx \right)^{1/2} \leq L$$

and

$$\left(\int |gw^2(x)|^2 dx \right)^{1/2} \leq M,$$

so that

$$\begin{aligned}
\left(\int |(hw)_y(x) \cdot w(x)|^2 dx \right)^{1/2} &= \left(\int |hw(x-y) \cdot w(x)|^2 dx \right)^{1/2} \\
&= \left(\int |h(x-y)w(x-y)w(x)|^2 dx \right)^{1/2} \\
&= \left(\int |h(x)w(x)w(x+y)|^2 dx \right)^{1/2} \\
&\leq \left(\int |h(x)w(x)w(x)w(y)|^2 dx \right)^{1/2} \\
&\leq w(y) \left(\int |hw^2(x)|^2 dx \right)^{1/2} = w(y)L.
\end{aligned}$$

We obtain

$$m(V) \|k_y - k\|_w < \alpha \delta (w(y)(m(V))^{1/2} + (m(C-V))^{1/2}). \quad (5)$$

Since $m(C-V) < 4m(V)$, (3.0) implies

$$\|k_y - k\|_w \leq 3\alpha \delta w(y)(m(V))^{1/2} \quad (y \in E).$$

Let $N = \sup_{y \in E} w(y)$, since w is continuous and E is compact, so N is finite, we can choose V such that $m(V) \geq \frac{9}{16} \alpha^2 N^2$ and this complete the proof. \square

Theorem 3.6. Suppose $f \in L^1(G, w)$, $\gamma_0 \in \widehat{G}$, $\widehat{f}(\gamma_0) = 0$. There exists $\nu \in L^1(G, w)$, such that $\widehat{\nu} = 0$ in a neighborhood of γ_0 , $\|\nu\| < 3$ and $\|f - f \star \nu\|_w < \epsilon$.

Proof. As in the proof of Theorem 3.3, there exists $u \in L^1(G, w)$, such that $\|u\|_1 = 1$ and $\|f - f \star u\|_w < \epsilon/2$, since $\widehat{f} \widehat{u}(\gamma_0) = 0$, Theorem 3.5 applies to $f \star u$ and so there exists $k \in L^1(G, w)$ such that $\widehat{k} = 0$ in a neighborhood of γ_0 , $\|k\|_w < 2$ and $\|f \star u \star k\|_w < \epsilon/2$. Put $\nu = u - u \star k$, then $\widehat{\nu} = 0$ when $\widehat{k} = 1$ and

$$\|f - f \star \nu\|_w \leq \|f - f \star u\|_w + \|f \star u \star k\|_w < \epsilon.$$

\square

Theorem 3.7. Suppose $f \in L^1(G, w)$, $\gamma_0 \in \widehat{G}$, W is a neighborhood of γ_0 and $\epsilon > 0$. There there exists $h \in L^1(G, w)$ such that $\|h\|_w < \epsilon$, $\widehat{h} = 0$ outside W and $\widehat{f}(\gamma) - \widehat{h}(\gamma) = \widehat{f}(\gamma_0)$ in some neighborhood γ_0 .

Proof. Choose $g \in L^1(G, w)$ such that $\widehat{g}(\gamma) = \widehat{f}(\gamma_0)$ in some neighborhood of γ_0 Theorem 3.5 applies to $f - g$, and so there exists $k \in L^1(G, w)$ such that $\widehat{k} = 1$ in a neighborhood of γ_0 , $\widehat{k} = 0$ outside W and $\|(f - g) \star k\|_w < \epsilon$. Put $h = (f - g) \star k$. Then $\widehat{h} = (\widehat{f} - \widehat{g})\widehat{k}$ and so there is a neighborhood of γ_0 in which $\widehat{h} = \widehat{f} - \widehat{g} = \widehat{f} - \widehat{f}(\gamma_0)$. \square

Suppose I is an ideal of $L^1(G, w)$, if $f \in L^1(G, w)$ and $\gamma_0 \in \widehat{G}$, we say that f is locally in I at γ_0 if there exists $g \in I$ such that $\widehat{f} = \widehat{g}$ in a neighborhood of γ_0 .

Theorem 3.8. Suppose that $f \in L^1(G, w)$, I is a closed ideal of $L^1(G, w)$ and $\gamma_0 \in \widehat{G}$. Then \widehat{f} belongs to \widehat{I} locally at γ_0 if either of the following conditions is satisfied

- (a) γ_0 is not in $Z(I)$,
- (b) γ_0 is in the interior of $Z(I)$.

Proof. If (a) holds, there exists $g \in I$ with $\widehat{g}(\gamma_0) = 1$, and Theorem 3.7 shows that there exists $h \in L^1(G, w)$ such that $\|h\|_w < 1/2$ and $\widehat{h}(\gamma) = 1 - \widehat{g}(\gamma)$ in some neighborhood V of γ_0 . The series $\sum_0^\infty \widehat{f} \widehat{h}^n$ converges in the norm of $A(\widehat{G})$, to a function $\widehat{j} \in A(\widehat{G})$, and $\widehat{j}(\gamma) = (1 - \widehat{h}(\gamma))^{-1} \widehat{f}(\gamma)$ for all $\gamma \in \widehat{G}$, if $\gamma \in V$ then $\widehat{g}(\gamma) \widehat{j}(\gamma) = \widehat{f}(\gamma)$, since $\widehat{g} \in \widehat{I}$ and \widehat{I} is an

ideal, $\widehat{gj} \in \widehat{I}$, and so \widehat{f} belongs to \widehat{I} locally at γ_0 . If (b) holds, then $\widehat{f} = 0$ in a neighborhood of γ_0 and since \widehat{I} contains the constant 0, \widehat{f} belongs to \widehat{I} locally at γ_0 . \square

Theorem 3.9. *Suppose G is compact, I is a closed ideal of $L^1(G, w)$ and $Z(I) \subseteq Z(f)$, then $f \in I$.*

Proof. If γ_0 is not in $Z(I)$, there exists $g \in I$ with $\widehat{g}(\gamma_0) = 1$, and hence $g \star \gamma_0 = \gamma_0$ regarding γ_0 as a member of $L^1(G, w)$, since I is an ideal, $g \star \gamma_0 \in I$ and so $\gamma_0 \in I$, it follows that I contains every trigonometric polynomial on G of the form $\sum a_\gamma(x, \gamma)$, provided that $a_\gamma = 0$, for all $\gamma \in Z(I)$. If $Z(I) \subset Z(f)$, then $f \star \kappa$ satisfies this condition for every trigonometric polynomial κ on G . Since $\|f - f \star \kappa\|_w$ can be arbitrarily small by Theorem 3.3, and I is a closed, we conclude that $f \in I$. \square

Theorem 3.10. *Suppose I is an ideal of $L^1(G, w)$ and $f \in L^1(G, w)$. If \widehat{f} has compact support and f is locally in I at every $\gamma \in \widehat{G}$, then $f \in I$.*

Proof. For every $\gamma \in \widehat{G}$, choose $g_\gamma \in I$ such that $\widehat{f} = \widehat{g}_\gamma$ on an open set U_γ containing γ . By passing to a finite subcover of $\text{supp} \widehat{f}$, we obtain open sets U_1, U_2, \dots, U_n in \widehat{G} and g_1, g_2, \dots, g_n in I such that $\widehat{g}_j = \widehat{f}$ on U_j and $\text{supp} \widehat{f} \subset \cup_1^n U_j$, next each $\xi \in U_j \cap \text{supp} \widehat{f}$ has a compact neighborhood contained in U_j , by passing to a finite subcover $\text{supp} \widehat{f}$ again, we obtain compact sets K_1, K_2, \dots, K_n such that $K_j \subset U_j$ and $\text{supp} \widehat{f} \subset \cup_1^n K_j$. By Theorem 3.4, there exists h_1, \dots, h_n in $L^1(G, w)$ such that $\widehat{h}_j = 1$ on K_j and $\text{supp} \widehat{h}_j \subset U_j$. Then $\prod_1^n (1 - \widehat{h}_j) = 0$ on $\text{supp} \widehat{f}$, so $\widehat{f} = \widehat{f}(1 - \prod_1^n (1 - \widehat{h}_j))$. If we multiply out the product inside the brackets, each term of the resulting sum is a product of h_j 's, i.e., the Fourier transform of convolution of h_j 's. Collecting terms, we see that $f = \sum f \star H_j$ where $H_j \in L^1(G, w)$ and $\text{supp} \widehat{H}_j \subset U_j$. But then $(\widehat{f \star H_j}) = \widehat{f} \widehat{H}_j = \widehat{g}_j \widehat{H}_j = (\widehat{g_j \star H_j})$, so $f \star H_j = g_j \star h_j \in I$, and hence $f \in I$. \square

Theorem 3.11. *If I is a closed ideal of $L^1(G, w)$ and γ_0 is not in $Z(I)$, then every $f \in L^1(G, w)$ is locally in I at γ_0 .*

Proof. Pick g in I such that $\widehat{g}(\gamma_0) = 1$. By Theorem 3.7, there exists $\nu \in L^1(G, w)$ such that $\|\nu\| < 1/2$ and $\widehat{\nu} + \widehat{g} = 1$ in a neighborhood of γ_0 . Let $\nu_n = \nu \star \nu \star \dots \star \nu$ (n factors) then $\|\widehat{\nu_n}\|_{\infty, 1/w} \leq \|\nu_n\|_w < 2^{-n}$. Hence if $f \in L^1(G, w)$, the series $f + \sum_1^\infty f \star \nu_n$ converges in $L^1(G, w)$ to a function h such that $\widehat{h} = \sum_0^\infty \widehat{f} \widehat{\nu_n} = \sum_0^\infty \widehat{f}(\widehat{\nu})^n = \frac{\widehat{f}}{1 - \widehat{\nu}}$. But $1 - \widehat{\nu} = \widehat{g}$ near γ_0 , so $\widehat{f} = \widehat{h}(1 - \widehat{\nu}) = \widehat{h}\widehat{g} = (\widehat{h \star g})$ near γ_0 . Since $h \star g \in I$, f is locally in I at γ_0 . \square

Theorem 3.12. *If I is a closed ideal of $L^1(G, w)$ and $Z(I)$ is empty, then $L^1(G, w) = I$.*

Proof. Since w is non quasi analytic, the set $\{f \in L^1(G, w) : \text{supp} \widehat{f} \text{ is compact}\}$ is dense in $L^1(G, w)$, by Theorem 3.3, and is contained in I by Theorem 3.10 and Theorem 3.11. \square

If $\phi \in L^\infty(G, 1/w)$, the statement $(\phi(x) \rightarrow a \text{ as } x \rightarrow \infty)$ will mean that to every $\epsilon > 0$ there exists a compact set K in G such that $|\phi(x) - a| < \epsilon$ in the complement of K .

Example 3.1. *Suppose $\phi \in L^\infty(G, 1/w)$ and $f \in L^1(G, w)$, $\widehat{f}(\gamma) \neq 0$ for all $\gamma \in \widehat{G}$ and $(f \star \phi)(x) \rightarrow a\widehat{f}(0)$, as $x \rightarrow \infty$, then $(g \star \phi)(x) \rightarrow a\widehat{g}(0)$, as $x \rightarrow \infty$, for every $g \in L^1(G, w)$.*

Proof. Replacing ϕ by $\phi - a$, we may assume without loss of generality, that $a = 0$, the set I of all $g \in L^1(G, w)$ such that $(g \star \phi)(x) \rightarrow a\widehat{g}(0)$ as $x \rightarrow \infty$ is a linear subspace of $L^1(G, w)$ which is clearly translation invariant. I is closed, for if $\|g_n - g\|_w \rightarrow 0$ then

$\|g_n * \phi - g * \phi\|_{\infty, 1/w} \rightarrow 0$, and $f \in I$. Hence I is a closed ideal in $L^1(G, w)$ with $Z(I)$ empty so by Theorem 3.12, $I = L^1(G, w)$. \square

Acknowledgement: *The authors sincerely thank the anonymous reviewer for his careful reading, constructive comments and fruitful suggestions that substantially improved the manuscript.*

REFERENCES

- [1] *A. Beurling*, Sur les intégrales de Fourier absolument convergentes et leur application à une transformation fonctionnelle, in: IX Congr. Math. Scand. Helsingfors **14** (1938), 345-366.
- [2] *H.G. Dales and A.T. Lau*, The second duals of Beurling algebras, Mem. Amer. Math. Soc. **177** No. 836 (2005).
- [3] *Y. Domar*, Harmonic analysis based on certain commutative Banach algebras, Acta Math. **96** (1956), 1-66.
- [4] *J. Dziubanski, J. Ludwig and C. Molitor-Braun*, Functional calculus in weighted group algebras, Rev. Mat. Complut. **17** No. 2 (2004), 321-357.
- [5] *F. Ghahramani, R.J. Loy and Y. Zhang*, Generalized notions of amenability II, J. Funct. Anal. **254** (2008), 1776 - 1810.
- [6] *N. Grønbæk*, Amenability of weighted convolution algebras on locally compact groups, Trans. Amer. Math. Soc. **319** No. 2 (1990), 765 - 775.
- [7] *A. Jimenez-Vargas and J. M. Sepalcre*, Weighted composition operators on the predual and dual Banach spaces of Beurling algebras on \mathbb{Z} , J. Math. Anal. Appl. **399** No. 1 (2013), 394-402.
- [8] *G. Fendler, K. Grochenig, M. Ludwig, and C. Molitor-Braun*, Weighted group algebras of polynomial growth, Math. Z. **245** (2003), 791-821.
- [9] *J. Ludwig*, Polynomial growth and ideals in group algebras, Manuscripta Math. **30** No. 3 (1980), 215-221.
- [10] *S.M. Maepa and O.T. Mewomo* On character amenability of Semigroup algebras, Quaest. Math. **39** No. 3 (2016), 307-318.
- [11] *O.T. Mewomo*, Various notions of amenability in Banach algebra, Expo. Math. **29** (2011), 283–299.
- [12] *O.T. Mewomo and S.M. Maepa*, On character amenability of Beurling and second dual algebras, Acta Univ. Apulensis Math. Inform. **38** No. 4 (2014), 67—80.
- [13] *O.T. Mewomo and N.B. Okele*, On approximate character amenability of Banach algebras, J. Nig. Math. Soc **32** (2013), 303-315.
- [14] *A. Minapoor, A. Bodaghi, and D. Ebrahimi Bagha*, Ideal Connes-amenability of dual Banach algebras, *Mediterr. J. Math.* **14** (2017), 174. <https://doi.org/10.1007/s00009-017-0970-2>.
- [15] *S.-Z. Huang, J. Van Neerven, F. Räbiger*, Ditkin's condition for certain Beurling algebras, Proc. Amer. Math. Soc. **126** No. 5, (1998), 1397-1407.
- [16] *E. Samei*, Weak amenability and 2-weak amenability of Beurling algebras, J. Math. Anal. Appl. **346** (2008), 451-467.
- [17] *W. Rudin*, Fourier Analysis on Groups, A Wiley-Interscience Publication. John Wiley and Sons, Inc., New York, 1990.