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BARRIER FUNCTION METHOD AND SADDLE-POINT FOR 
FRACTIONAL OPTIMIZATION PROBLEM

 Preeti1, Ioan Stancu-Minasian2, Anurag Jayswal3 and Andreea Mădălina Rusu-Stancu4

In this paper, we discuss a novel approach to solve the fractional optimization

problem. For this purpose, the fractional optimization problem is transformed into a

non-fractional optimization problem through parametrization, which is further converted
into a unconstrained optimization problem by using the barrier function method. There-

after, the convergence of the barrier penalized optimization problem is discussed and it

is shown that a sequence constructed by the barrier penalized optimization problem has
a limit point which solves the fractional optimization problem. Moreover, the saddle-

point for fractional optimization problem with the help of barrier function method is

also discussed. We also framed some non-trivial examples to validate the hypotheses of
the established theory.
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1. Introduction

There are many realistic problems in which we require to optimize ratio of various
linear or nonlinear functions to achieve the pre-defined goals, (e.g. the problems in eco-
nomics, decision theory, game theory, information theory, data envelopment analysis, tax
programming, cluster analysis, signal processing, neural networks, managment science,
corporate planning, production and financial planning, etc. see for instances, [7, 26, 27]).
These types of the optimization problems are called the fractional optimization problems. In
the literature, there are various methods to solve the fractional optimization problems. The
parametric approach is one of them, in which the given fractional optimization problem is
transformed into an equivalent non-fractional optimization problem via a non-negative pa-
rameter. Many researchers took their interest to solve the fractional optimization problem
and used this technique in different ways (see for instances [3, 10, 17, 18, 24, 25, 27, 28, 29]).
Whereas, Ebrahimnejad et al. [11] had solved the fractional optimization problem by con-
verting it into the bi-objective linear programming problem involving fuzzy functions.

An interesting approach to solve the constrained optimization problem is barrier func-
tion method, which is known as interior penalty function method. The barrier function
method, transforms a constrained optimization problem into an equivalent unconstrained
optimization problem via a barrier function and a non-zero non-negative barrier parameter.
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A barrier function is a continuous function whose value on a point increase to infinity as
the point approaches the boundary of the feasible region of an optimization problem [22].
Roughly speaking, this method generates a sequence of feasible points whose limit is an
optimal solution to the considered optimization problem. Up to now it is known two kind of
barrier functions: one is an inverse barrier function and another one is a logarithm barrier
function. In the literature, many authors had used this method to study different types of
the optimization problems. (see for instance, [4, 6, 15, 20])

Iri and Imai [16] proposed a Newton-like descent algorithm to solve the linear
programming problem of its results of preliminary computational experiments on small-
and medium-size problems via barrier function method. Den Hertog et al. [9] used classical
logarithmic barrier function method for the convex programming problem. Nash and Sofer
[21] applied the logarithmic barrier method to solve the nonlinear programming problem
with inequality constraints, in which the primal-dual method is also discussed under con-
vexity assumption. Goldfard et al. [14] presented an interior point method for quadratically
constrained convex quadratic programming that is based on a logarithmic barrier function
approach. Further, the two-stage stochastic linear program was solved by Zhao [30] via the
log-barrier method involving Benders decomposition.

Motivated by the above works, we focus our study to find the optimal solution for
the class of fractional optimization problem by the barrier function method. We discuss
the equivalence between the optimal solution to the fractional optimization problem and its
associated barrier penalized optimization problem for which we prove that the limit of a
sequence constructed by the barrier penalized optimization problem is an optimal solution
to the fractional optimization problem. Furthermore, we define the Lagrange function for
fractional optimization problem and establish the relationship between a saddle-point of
the Lagrange function defined for the fractional optimization problem and barrier penalized
optimization problem. Suitable examples are given to justify the established results.

The paper is organized as follows. In Section 2, we recall few results which will we used
in the sequel of the paper. The equivalence between an optimal solution to the fractional
optimization problem and a limit point of the sequence constructed by the barrier penalized
optimization problem is discussed in Section 3. Section 4 demonstrates the relationship
between a saddle-point of the Lagrange function defined for the fractional optimization
problem and a limit point of the sequence constructed by the barrier penalized optimization
problem. Finally, in Section 5 we summarize our results obtained in the present paper.

2. Problem description and preliminaries

We consider the following fractional optimization problem

(FOP) minimize
p(x)

q(x)
, (q(x) 6= 0),

subject to ri(x) ≤ 0, i ∈ I = {1, . . . , s},

where the functions p(x), q(x) and ri(x) : X ⊆ R→ R are continuous on X. Let D = {x ∈
X : ri(x) ≤ 0, i ∈ I} be the set of all feasible solutions to the problem (FOP) and moreover,
we assume that p(x) ≥ 0, q(x) > 0, for all x ∈ D. Further, let D′ = {x ∈ X : ri(x) < 0, i ∈
I} be a non-empty set of all interior feasible solutions to (FOP).

The parametric form of the above problem (FOP) with a parameter τ ∈ R+ is given
by

(FOP)τ minimize f(x) = p(x)− τq(x),

subject to ri(x) ≤ 0, i ∈ I,

where R+ is the non-negative orthant of R.
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Definition 2.1. A feasible point x0 is said to be an optimal solution to the problem (FOP)τ
if for all x ∈ D

p(x)− τq(x) ≥ p(x0)− τq(x0).

The following lemma shows the equivalence between an optimal solution to the fractional
optimization problem (FOP) and its associated parametric form (FOP)τ .

Lemma 2.1. [10] τ = p(x0)
q(x0) = min{p(x)

q(x) : x ∈ D} if and only if f(x0) = min{p(x)− τq(x) :

x ∈ D}=0.

On the line of Davar and Mehra [8], we construct the following Karush-Kuhn-Tucker
(KKT) necessary optimality conditions for the problem (FOP).

Theorem 2.1. [KKT Necessary Optimality Conditions] Let x0 be an optimal solution to
the problem (FOP) and the suitable constraint qualification be satisfied at x0. Then there
exist Lagrange multipliers µ0 ∈ Rs+ such that

∇(p(x0)− τq(x0)) +

s∑
i=1

µ0i∇ri(x0) = 0, (2.1)

µ0iri(x0) = 0, ∀i ∈ I. (2.2)

3. Barrier function method for fractional optimization problem

For fractional optimization problem (FOP) we consider its associated parametric form
(FOP)τ and for (FOP)τ we consider its associated barrier penalized optimization problem
defined as :

(FOP)τγ minimize {p (x)− τq (x) + γb(x)}

where b (x) is a non-negative barrier function and γ is non-zero non-negative barrier param-
eter. Denote by

β (γ) = min {p (x)− τq (x) + γb (x)}

the optimal value of the objective function of problem (FOP)τγ .
Note that b(x) is zero in the interior of the feasible set and infinity on its boundary

and is defined by either of the two ways in general as follows:
(i) b(x) =

∑s
i=1

−1
ri(x) (inverse barrier function),

(ii) b(x) = −
∑s
i=1 ln(−ri(x)) (Frisch’s logarithmic barrier function).

The inverse barrier function was introduced by Caroll and Fiacco [5] which was further
developed by Fiacco and McCormick [12] and implemented by McCormick et al. [19] in the
SUMT-2 and SUMT-3 codes.

The logarithmic barrier function was introduced by Frisch [13] and Parisot [23] for
linear programming.

For the barrier penalized optimization problem (FOP)τγ , we define b(x) as follows:

b(x) = φ(ri(x)),∀x ∈ D′, ∀i ∈ I,

where φ : Rs → R+ is a continuously differentiable function.
Clearly, if xk solves the barrier penalized optimization problem (FOP)τγ , then∇β(γ) =

0. Therefore,

∇(p(xk)− τq(xk)) + γk

s∑
i=1

∇φ(ri(x
k))∇ri(xk) = 0,
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equivalently,

∇(p(xk)− τq(xk)) +

s∑
i=1

µk0i∇ri(xk) = 0,

where µk0i = γk∇φ(ri(x
k)) is known as Lagrange multipliers and µk0i → µ0i as k →∞, ∀i ∈ I.

Now, we show that an optimal solution to the problem (FOP) is a limit point of the
convergent sequence of the barrier penalized optimization problem (FOP)τγ .

Theorem 3.1. Let x0 be an optimal solution to the problem (FOP) and assume that for
any neighborhood N of x0, there exist a point x̄ ∈ N ∩ D′. Further, if the functions
p(x), q(x), ri(x),∀i ∈ I and b(x) are continuous at x0 on X, then x0 is a limit point of
any convergent sequence of the barrier penalized optimization problem (FOP)τγ .

Proof. Let x0 be an optimal solution to the problem (FOP). Since p(x) and q(x) are con-
tinuous functions at x0 on X, so, for any ε > 0 there exists a point x̄ ∈ N ∩ D′ such
that

p(x0)− τq(x0) + ε > p(x̄)− τq(x̄).

From the positivity of γ we have

p(x0)− τq(x0) + ε+ γb(x̄) > p(x̄)− τq(x̄) + γb(x̄) ≥ β(γ).

Since ε > 0 is a very small quantity, neglecting it and taking limit γ → 0+ on both side of
the above inequality, it follows that

p(x0)− τq(x0) ≥ lim
γ→0+

β(γ). (3.1)

On the other hand, by the barrier penalized optimization problem (FOP)τγ , we have

β(γ) = min {p(x)− τq(x) + γb(x)}.
As γ > 0 and for all x ∈ D′, b(x) ≥ 0, the above equality yields

β(γ) ≥ min {p(x)− τq(x)}.
Since x0 is an optimal solution to the problem (FOP), we conclude from the above inequality
that

β(γ) ≥ p(x0)− τq(x0).

Again, taking limit γ → 0+ on the both side of the above inequality, we get

lim
γ→0+

β(γ) ≥ p(x0)− τq(x0). (3.2)

On combining the inequalities (3.1) and (3.2), we have

lim
γ→0+

β(γ) = p(x0)− τq(x0).

This completes the proof. �

Now, by using the logarithmic barrier function, we present the following example in
order to validate the established result in Theorem 3.1.

Example 3.1. Let X = R and consider the following fractional optimization problem

(FOP1) minimize
x+ 1
1
2x+ 2

subject to (−x− 1,
1

2
− x) ≤ 0,

where 0 = (0, 0). Note that D = {x ∈ X : x ≥ 1
2} is the set of feasible solution to (FOP1)

and p(x) ≥ 0, q(x) > 0,∀x ∈ D.
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The parametric form of the above fractional optimization problem (FOP1) is

(FOP1)τ minimize f(x) = (x+ 1)− τ(
1

2
x+ 2)

subject to (−x− 1,
1

2
− x) ≤ 0, τ ∈ R+.

Let τ = 2
3 . One can verify that x0 = 1

2 is an optimal solution to (FOP1)τ and so by Lemma

2.1, x0 = 1
2 is also an optimal solution to (FOP1).

Further, the barrier penalized optimization problem, using Frisch’s logarithmic barrier
function, with the problem (FOP1)τ is

(FOP1)τγ minimize {(x+ 1)− τ(
1

2
x+ 2) + γ(− ln(x+ 1)− ln(x− 1

2
))},

∀x ∈ D′ and γ > 0.

On solving the above barrier penalized optimization problem (FOP1)τγ , we get xk1 =
−1−16γ+

√
9+256γ2

4

and xk2 =
−1−16γ−

√
9+256γ2

4 . Clearly, xk2 6∈ D′ as γ → 0. Further, it can be observed that

as γ → 0, {xk} → x0 = 1
2 is an optimal solution to (FOP1). Hence, the result.

Now, we derive the contrary of the Theorem 3.1.

Theorem 3.2. Let xk be a solution to the barrier penalized optimization problem (FOP)τγ
for any γ > 0 and sequence γk satisfy the condition 0 < γk+1 < γk, in which γk → 0 as k →
∞. Further, if the functions p(x), q(x),
ri(x), i ∈ I and b(x) are continuous functions at x0 on X, then any limit point x0 of {xk}
is also an optimal solution to the problem (FOP).

Proof. Let x0 be a limit point of the sequence {xk}. Firstly, we prove that x0 is a feasible
solution to (FOP). Since p(x), q(x) and ri(x),∀i ∈ I are continuous functions at x0 on X,
we have

lim
k→∞

(p(xk)− τq(xk)) = p(x0)− τq(x0), (3.3)

and lim
k→∞

ri(x
k) = ri(x0) ≤ 0,∀i ∈ I.

Thus, x0 is a feasible solution to (FOP). Now, we remain to show that x0 is an optimal
solution to (FOP). Assume to contrary that x0 is not an optimal solution to the problem
(FOP). Then, by Lemma 2.1, there exists a point x̄ ∈ D such that

p(x̄)− τq(x̄) < p(x0)− τq(x0). (3.4)

By assumption, xk is a solution to (FOP)τγ . Therefore, we have

p(xk)− τq(xk) + γkb(x
k) ≤ p(x̄)− τq(x̄) + γkb(x̄).

Taking limit k →∞ on the both side of the above inequality and using (3.3), we get

p(x0)− τq(x0) ≤ p(x̄)− τq(x̄),

which contradicts the inequality (3.4). Hence, x0 is an optimal solution to the problem
(FOP). This completes the proof. �

Now, by using the logarithmic barrier function, we present an example to validate the
above Theorem 3.2.
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Table 1

Iter. k γk xγk = xk+1 f(xγk) b(xγk) β(γk) γkb(xγk)

1 1.0 1.3819 0.3819 1.4436 1.8256 1.4437

2 0.1 1.0901 0.0901 2.5012 0.3402 0.2501

3 0.01 1.0099 0.0099 4.6251 0.0552 0.0462

4 0.001 1.0009 0.0009 7.0140 0.0079 0.0070

5 0.0001 1.0001 0.0001 9.2104 0.0001 0.0009

Example 3.2. Let X = R and consider the following fractional optimization problem

(FOP2) minimize
x2 + x+ 1

x2 + 2
subject to (1− x, x− 2) ≤ 0.

Note that D = {x ∈ X : 1 ≤ x ≤ 2} is the set of feasible solution to the problem (FOP2)
and p(x) ≥ 0, q(x) > 0,∀x ∈ D.

The parametric form of the above fractional optimization problem (FOP2) is

(FOP2)τ minimize f(x) = (x2 + x+ 1)− τ(x2 + 2)

subject to (1− x, x− 2) ≤ 0, τ ∈ R+.

Further, the barrier penalized optimization problem, using Frisch’s
logarithmic barrier function, with the parametric form of the problem (FOP2) is

(FOP2)τγ minimize {(x2 + x+ 1)− τ(x2 + 2) + γ(− ln(x− 1)− ln(2− x))},
∀x ∈ D′ and γ > 0.

Let τ = 1, γ1 = 1, the parameter η = 0.1 and ε = 0.0010. By Table 1, it is easily seen
that γk → 0 as k → ∞. Further, we get the sequence {xk} which converges to x0 = 1. By
Definition 2.1, we conclude that x0 = 1 is an optimal solution to (FOP2)τ and so by Lemma
2.1, x0 = 1 is also an optimal solution to (FOP2). Thus, we conclude that all hypotheses of
Theorem 3.2 are hold and the limit point of sequence {xk} is an optimal solution to (FOP2).

The following Flowchart describe the algorithm to solve the barrier penalized opti-
mization problem.
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Start

let ε > 0 be a termination scalar,
k = 1 and γ > 0, η ∈ (0, 1)

generate a sequence
{xk} by solving (FOP)γ

for next iteration
replace k by k + 1
and γk+1 by ηγk

if γkb(xγk) < ε

stop

no

yes

4. Saddle-point for fractional optimization problem with barrier function
method

The theory of a saddle-point has an important place in Operational Research to find
an optimal solution for the optimization problems.

Motivated by Antczak [1, 2], in this section we present the saddle-point of the La-
grange function defined for the problem (FOP) with the help of barrier function method. We
show the relationship between a saddle-point defined for the problem (FOP) and a limit of
a convergent sequence constructed by the barrier penalized optimization problem (FOP)τγ .
First, we recall basic definitions of Lagrange function L(x, µ) and a saddle-point for (FOP)
on the line of Antczak [2], which will be usefully to prove the main results .

Definition 4.1. The Lagrange function L(x, µ) : D × Rs+ → R for the problem (FOP) is
defined by

L(x, µ) = p(x)− τq(x) +

s∑
i=1

µiri(x), τ ∈ R+.

Definition 4.2. A point (x0, µ0) ∈ D × Rs+ is said to be a saddle-point of the Lagrange
function defined for the problem (FOP), if the following inequalities

(i) L(x0, µ) ≤ L(x0, µ0),∀µ ∈ Rs+,
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(ii) L(x0, µ0) ≤ L(x, µ0),∀x ∈ D
hold.

Now, we discuss the equivalence between a saddle-point of the Lagrange function de-
fined for (FOP) and a limit point of the convergent sequence
constructed by the barrier penalized optimization problem (FOP)τγ .

Theorem 4.1. Let (x0, µ0) be a saddle-point of the Lagrange function defined for the prob-
lem (FOP) and let p(x), q(x) and ri(x),∀i ∈ I be continuous functions at x0 on X. If γ is
sufficient large barrier parameter (it is sufficient to set γ ≥ max{µ0i, i ∈ I}), then x0 is a
limit of the convergent sequence to the barrier penalized optimization problem (FOP)τγ .

Proof. Since (x0, µ0) is a saddle-point of the Lagrange function defined for the problem
(FOP), therefore, by Definition 4.2 (i) we have

L(x0, µ) ≤ L(x0, µ0), ∀µ ∈ Rs+,

or, p(x0)− τq(x0) +

s∑
i=1

µiri(x0) ≤ p(x0)− τq(x0) +

s∑
i=1

µ0iri(x0), ∀µ ∈ Rs+.

We set µi = 0,∀i ∈ I, thus, we get
s∑
i=1

µ0iri(x0) ≥ 0. (4.1)

Since x0 is a feasible point to the problem (FOP), we have

s∑
i=1

µ0iri(x0) ≤ 0. (4.2)

On combining the inequalities (4.1) and (4.2), we obtain

s∑
i=1

µ0iri(x0) = 0. (4.3)

Again, by Definition 4.2 (ii) we have

L(x0, µ0) ≤ L(x, µ0), ∀x ∈ D,

or, p(x0)− τq(x0) +

s∑
i=1

µ0iri(x0) ≤ p(x)− τq(x) +

s∑
i=1

µ0iri(x), ∀x ∈ D,

which together with equality (4.3), yields

p(x0)− τq(x0) ≤ p(x)− τq(x) +

s∑
i=1

µ0iri(x), ∀x ∈ D. (4.4)

Here, we consider two cases.
Case I: Let ri(x) ≤ −1

ri(x) , for all ri(x) ≤ 0, ∀i ∈ I. Since µ0i ∈ R+,∀i ∈ I, then, the

following inequality

µ0iri(x) ≤ µ0i
−1

ri(x)
,∀i ∈ I

holds. Equivalently, we have
s∑
i=1

µ0iri(x) ≤
s∑
i=1

µ0i
−1

ri(x)
.
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On combining the above inequality along with inequality (4.4), we have

p(x0)− τq(x0) ≤ p(x)− τq(x) +

s∑
i=1

µ0i
−1

ri(x)
, ∀x ∈ D.

By the definition of inverse barrier function b(x) =
∑s
i=1

−1
ri(x) . The above inequality reduces

to

p(x0)− τq(x0) ≤ p(x)− τq(x) + µ0ib(x), ∀x ∈ D. (4.5)

Case II: Let ri(x) ≤ − ln(−ri(x)), for all ri(x) ≤ 0,∀i ∈ I. Since µ0i ∈ R+, then, the
following inequality

µ0iri(x) ≤ −µ0i ln(−ri(x)),∀i ∈ I
holds. Equivalently, we have

s∑
i=1

µ0iri(x) ≤ −
s∑
i=1

µ0i ln(−ri(x)).

On combining the above inequality along with inequality (4.4), we have

p(x0)− τq(x0) ≤ p(x)− τq(x)−
s∑
i=1

µ0i ln(−ri(x)), ∀x ∈ D.

By the definition of logarithmic barrier function b(x) = −
∑s
i=1 ln(−ri(x)). The above

inequality reduces to

p(x0)− τq(x0) ≤ p(x)− τq(x) + µ0ib(x), ∀x ∈ D. (4.6)

The inequalities (4.5) and (4.6) conclude the similar inequality in both the cases. Since
γ ≥ max{µ0i, i ∈ I}, then the inequalities (4.5) and (4.6) can be written as

p(x0)− τq(x0) ≤ p(x)− τq(x) + γb(x), ∀x ∈ D.
Thus, by the definition of β(γ), we get

p(x0)− τq(x0) ≤ β(γ), ∀x ∈ D.

Taking limit γ → 0+ on the both side of the above inequality, it follows that

p(x0)− τq(x0) ≤ lim
γ→0+

β(γ). (4.7)

On the other hand, the functions p(x), q(x) and ri(x),∀i ∈ I, are continuous, therefore, by
Theorem 3.1 it follows that

p(x0)− τq(x0) ≥ lim
γ→0+

β(γ). (4.8)

On combining the inequalities (4.7) and (4.8) we get

p(x0)− τq(x0) = lim
γ→0+

β(γ).

Hence, this completes the proof. �

Now, we shall prove the converse of the above Theorem 4.1.

Theorem 4.2. Let x0 be the limit point to the convergent sequence {xk} of the barrier
penalized optimization problem (FOP)τγ . Assume that

(i) xk is a solution to (FOP)τγ and γk satisfied the condition 0 < γk+1 < γk, in which
γk → 0 as k →∞,

(ii) the functions p(x), q(x) and ri(x),∀i ∈ I are continuous at x0 on X.

Furthermore, if γ is assumed to be a sufficient large barrier parameter, then there exist
Lagrange multipliers µ0 ∈ Rs+ such that (x0, µ0) is a saddle-point of the problem (FOP).
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Proof. Firstly, we show that x0 is an optimal solution to (FOP). By using assumptions
(i), (ii) and following the footsteps of Theorem 3.2, we see that x0 is feasible solution in
(FOP) and hence it is an optimal solution to (FOP). Henceforth, by Lemma 2.1, x0 is also
an optimal solution to (FOP)τ .

Since x0 is an optimal solution to the problem (FOP), therefore, there exist Lagrange
multipliers µ0 ∈ Rs+ such that the KKT necessary optimality conditions (2.1)-(2.2) are
satisfied at x0. In what follows, we prove that (x0, µ0) is a saddle-point of (FOP). From the
feasibility of x0 to (FOP) and equality (2.2), we have

s∑
i=1

µiri(x0) ≤
s∑
i=1

µ0iri(x0), ∀µ ∈ Rs+,

or,

p(x0)− τq(x0) +

s∑
i=1

µiri(x0) ≤ p(x0)− τq(x0) +

s∑
i=1

µ0iri(x0), ∀µ ∈ Rs+.

That is

L(x0, µ) ≤ L(x0, µ0), ∀µ ∈ Rs+.
Definition 4.2 implies that the above inequality satisfied the first condition of saddle-point
for (FOP). Now, we left to prove the remaining second condition of saddle-point for (FOP).
Let us suppose that the second condition is holds, then we have

L(x0, µ0) ≤ L(x, µ0), ∀x ∈ D,
or,

p(x0)− τq(x0) +

s∑
i=1

µ0iri(x0) ≤ p(x)− τq(x) +

s∑
i=1

µ0iri(x), ∀x ∈ D.

Using the KKT necessary condition (2.2), the above inequality reduces to

p(x0)− τq(x0) ≤ p(x)− τq(x) +

s∑
i=1

µ0iri(x), ∀x ∈ D,

equivalently, for all x ∈ D

p(x0)− τq(x0)− (p(x)− τq(x)) ≤
s∑
i=1

µ0iri(x) ≤ 0.

It follows that

p(x0)− τq(x0)− (p(x)− τq(x)) ≤ 0,

which shows that x0 is an optimal solution to (FOP)τ . Therefore, by Lemma 2.1, x0 is an
optimal solution to (FOP). Hence, we conclude that (x0, µ0) is a saddle-point of the problem
(FOP). �

Now, to authenticate the validity of the above Theorem 4.2, we furnish the following
example in which we use the logarithmic barrier function.

Example 4.1. Let X = R and consider the following fractional optimization problem

(FOP3) minimize
2x+ 3

x+ 3

subject to (x− 1, x2 − 1) ≤ 0.

Note that D = {x ∈ X : −1 ≤ x ≤ 1} is the set of feasible solution to (FOP3) and
p(x) ≥ 0, q(x) > 0,∀x ∈ D.
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Table 2

Iter. k γk
xγk =
xk+1

f(xγk) b(xγk) β(γk) γkb(xγk)
µk0 =

(µk01
, µk02

)

1 0.5 -0.7583 0.3625 0.1265 0.4258 0.0632

[
0.2844,
1.7843

]

2 0.05 -0.9677 0.0484 0.9029 0.0935 0.0451

[
0.0254,
1.5225

]

3 0.005 -0.9966 0.0051 1.8679 0.0144 0.0093

[
0.0002,
1.4680

]

4 0.0005 -0.9996 0.0006 2.7960 0.0020 0.0014

[
0.0002,
1.2496

]

5 0.00005 -0.9999 0.0001 3.3980 0.0003 0.0001

[
0.0000,
0.4999

]

The parametric form of the above fractional optimization problem (FOP3) is

(FOP3)τ minimize f(x) = (2x+ 3)− τ(x+ 3)

subject to (x− 1, x2 − 1) ≤ 0, τ ∈ R+.

Further, the barrier penalized optimization problem, using Frisch’s logarithmic barrier
function, with the parametric form of the problem (FOP3) is

(FOP3)τγ minimize {(2x+ 3)− τ(x+ 3) + γ(− ln(1− x)− ln(1− x2))},
∀x ∈ D′ and γ > 0.

We take τ = 1
2 and let γ1 = 0.5, the parameter η = 0.1 and ε = 0.0002, therefore, by Table 2,

it is easily seen that γk → 0 as k →∞. Further, we get the sequence of {xk} which converge
to x0 = −1. Hence, by Definition 2.1, we conclude that x0 = −1 is an optimal solution to
(FOP3)τ , t herefore, by Lemma 2.1, x0 = −1 is also an optimal solution to (FOP3). The
Lagrange function L(x, µ) is given by L(x, µ) = p(x)−τq(x)+

∑s
i=1 µiri(x).. It can be easily

verified that (x0, µ0) is satisfied all the conditions of Definition 4.2, where µ0 = (0, 1
2 ). Thus,

we conclude that all hypotheses of Theorem 4.2 are hold and (x0, µ0) is the saddle-point of
the Lagrange function defined for the considered fractional problem (FOP3).

5. Conclusions

In this paper, we employed the barrier function method to solve the fractional op-
timization problem after transforming it into a parametric form. We have established the
equivalence between an optimal solution to (FOP) and a limit point of sequence constructed
by its associated problem (FOP)τγ and proved that an optimal solution to (FOP) is a limit
point of the sequence, which is constructed by its associated problem (FOP)τγ . Thereafter,
we have also shown the relationship between a saddle-point of Lagrange function defined
for (FOP) and a limit point of sequence constructed by its associated problem (FOP)τγ .
Moreover, we checked the established results with the help of non-trivial examples.
Future research will orient to discuss the same method for vector fractional optimization
problem.
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