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CODAZZI-CARTAN CONNECTIONS ON FINSLER SPACES

E. Peyghan', E. Sharahi?, A. Baghban®

The aim of this paper is to introduce Codazzi- Cartan connections on Finsler
spaces. These connections are generalizations of Cartan connections in the sense of
substituting the Codazzi symmetry instead of parallelism in the vertical sub-bundle. The
B-change is considered on Finslerian spaces and the induced structures on the indicatriz
spaces will be investigated by using a natural diffeomorphism.

Keywords: Codazzi-Cartan connection, Finsler space, statistical manifold, tangent bun-
dle.

1. Introduction

Finsler geometry is one of the generalizations of Riemannian geometry. The history of
Finsler geometry is contained in consistent monographs, such as [3, 4, 5]. In this framework, a
characteristic trait is the considerable amount of tensors and notations. A defining mapping
E : TM — RT endowed with certain properties provides the most noteable geometric objects
of the theory. The occurrence of F may be motivated by introducing a distance function
d: TM — R* which yields F := lim;_, 7(1(3”’2(”), where 7 is a curve on M, with initial rate
y € T, M (a more detailed motivation can be read in [7]). As well, a defining alternative
might be a PDE having F as a solution having the properties of a Finsler metric (e.g., many
of dynamical systems are examples of such differential equations). Several example-based
developments of this kind are provided in [7].

A statistical manifold is a triple (M, g, V), where ¢g is a Riemannian metric on a
manifold M and V is a symmetric linear connection, such that the cubic tensor field € = Vg
is totally symmetric, namely the following Codazzi equations hold:

Ciire = Ok(9ij) — T"irgin — T jrgin, Cijk = Cini = Cpyj,
where I' j;, are the Christoffel symbols of V.

Several works naturally extend statistical Riemannian structures to the Finsler tan-
gent bundle (e.g., [11]). However, our approach in this paper is a different one. Indeed, we
define the Codazzi-Cartan connections for a Finslerian metric, which include in particular
the special case of the Cartan connection.

By using a p-change on a Finsler metric, one can get another Cartan connection.
So, starting from a Cartan connection we have two distinct connections; one of them is a
Codazzi-Cartan connection, and the other is defined by a f-change. Using the relations
between these connections, we derive some necessary conditions, under which the Finslerian
metric reduces to a Riemannian one. We know that the indicatrix space modifies under a
B-change. We would like to define a natural diffeomorphism between these two indicatrix

1Department of Mathematics, Faculty of Science, Arak University, Arak 38156-8-8349, Iran, e-mail:
epey§han©gmai1 .com
Department of Mathematics, Faculty of Science, Arak University, Arak 38156-8-8349, Iran, e-mail:

esasharahi@gmail.com
3Department of Mathematics, Faculty of Science, Azarbaijan Shahid Madani University, Tabriz 53751

71379, Iran, e-mail: amirbaghban87@gmail.com

79



80 E. Peyghan, E. Sharahi, A. Baghban

spaces, and then pullback the Codazzi structures in order to see how they mutually connect.
This procedure will be ensured by a pseudo-Cartan connection whose nonlinear component
is derived by this natural diffeomorphism.

This paper is organized as follows: the second Section includes preliminaries on non-
linear Finslerian connections and the related structures. The third Section is devoted to
the study of Codazzi structures and some of their features. The final Section explains the
B-change. This Section introduces a natural diffeomorfism between the indicatrix spaces,
which are related to a S-change. Moreover, we study the induced structures and obtain
relations under which they coincide.

2. Preliminaries

This Section contains the basic concepts needed to proceed. Details of these prelimi-
naries can be found in e.g. [10]. In the following, we assume that the dimension of the base
manifold M is n.

2.1. Split tangent bundle and (non)linear connections
Let N be a nonlinear connection with respect to a Finsler metric. This is provided

by n? functions N} (z,y) € C°°(TM); for a vector field 9; := 9_its horizontal lift (9;)" is
J

= 2ot

1) 0

= — =— — N/(z,y)—.
ozt Ozt i@ y)ayﬂ

The local fields §; and 9; := 827-, = (0;)" form alocal basis in HTM and V' TM, respectively;
thus

{51'3((}2'}3 i:]-a""7n7 E:L"'erM (1)
is a local basis in TTM adapted to the splitting TTM = HTM +VTM. We denote its dual
basis by (dz*,dy"), where dy" := dy’ + N} (x,y)dz?. The torsion of the nonlinear connection
N is defined by t*;; := 05N} — 9;N{. By setting R’;i := 0y N} — d; N}, the Lie brackets of
the vector fields from the adapted basis (1) are given by

[5]" 5k] = Rijk&iv [63" afc] = aEN;&m [aja afc] =0.

The vanishing of R;; is an iff condition for [d;,5;] € HTM. Hence, we call R'j; as the
curvature tensor field components of the nonlinear connection N.

2.2. Finsler spaces

Let (M, E) be a Finsler space; we consider the bilinear form
1
9i(%,y) = 50,0, 7, (2)

called the metric (or the fundamental) tensor, with the inverse g/ defined by g;; g’k = k.
The transvection by this metric makes it possible to move up and down the indices. For
instance, if Aijk is a tensor, then we can produce the transvected tensor Ajgm, = gimAijk.
In a similar manner, by using ¢*, we can move indices up. Our agreement is that in
any transvection, the new index stands on the rightmost position. An essential symmetric
(0, 3)-tensor is Cyj = %(?igjk, called the Cartan tensor field. Further, by the transvection
C*;; := gFmCijpm, define the (0,2)-tensor C(9;,9;) := C*;;0k, whose vanishing is equivalent
with reducing the Finsler space to a Riemannian one. We denote the Christoffel symbols of
the metric tensor (2) by

. 1 .
vik(z,y) = 59“”(1‘, Y)(959rk (2, y) + Okgrj(x,y) — Orgju(,y))-
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As well. there exist two important objects determined only by E: the canonical spray S :=
y'0;—2G"(z, y)0; associated with the Finsler space (M, E), where G'(z,y) := 37" 1(x, y)y y",
and the Cartan nonlinear connection N defined by

N;(x,y) = %aiGi(x,y), 3)

which is globally defined on TM\{0} (which we shall denote this by the same symbol N,
while the context specifies which nonlinear connection we consider on the space). By using
(2), we can prove that the local equality g(9;,0;) = gij. There is a natural lift (named Sasaki
lift), that extends g to HTM and makes VTM and HTM to be orthogonal by putting
9(3i,95) = gij- We will use this lift hereafter. The formula g(9;,0;) = gij + N/" NI gmn
holds, as well. Now, we define the generalized Christioffel symbols

F'jp = 59 (5jgm,h + 5h9jm - 6mgjh)v (4)
) 1 im
C'n = 29 (O39mn + Ongim — Omgjn)- (5)

It is notable that the right hand side of (5) can be simplified to its left hand side. For
a Eins]er metric E, it is customary to denote a Finsler connection as F€ ! by a triple
(N}, 3 jk, € jx), where "5, €' jx € C*°(TM) and N7} is just (3). Moreover, we denote the
local expressions of the horizontal and vertical covariant derivatives of g with respect to a
Finsler connection (N}, " i, C' ;i) by
Gijk = OkGij — 9msT ik — ImiT " jk
{ Gijik = 059i5 — ImiC™ ik — GmiC™" jk-
Due to the properties of the Sasaki metric, we can work on vertical sections only. Indeed, in

a Finsler space (M, F') the local expression of a covariant derivative V as a FC€ with respect
to (1), and the Sasaki extension of the fundamental metric (2), is

Vs, dj = TF0, +T%0, V5,05 = TP 6, + TF 50y,
Vo,0; = T¥5,0, + TF5,05, V.05 = TFsdy + T30y,
where , 3,7 € {1,--- ,n,1,--- ,a}, V45 € C°(TM) where k = n + k. But V is a Finsler
connection, namely
p(VxY)=Vx(pY), and VxVTM CVTM,
where p(0;) := 95 and p(95) := —d;. So
{ Ity =14 =T, =T =0,
¥ =Tk, Thy =T
Thus we can focus only on the situations
V5,05 = I* =0y,
{ Vo,85 = "0

Also, the torsion of the Riemannian subcase shall naturally generalize to the h-torsion
and to the v-torsion

Tk = F 5k — Fij)
Sljk = (‘szk — lej.

Iwe prefer using the notation FC for its components instead of F'C, which denotes the abbreviation for
”Finsler connection”.
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According to [9], a Finsler connection (N ;, Sr;k, G;k) has only three local components
of curvature Rihjk, Pihjk and Sihjk given by

55&}”‘ _ (SS"ihk

Ripjr = + T F ke — T F g + ConmR™ i,

dxk oxd
i 83rih' i i m
P'yjk = Wk] = C'hkj + C'hm P i,

gi €l OC L
MET ok oyl
Where, Pk]Z = aiN_]k — Fz’_fy

+ C i €l — C™ i Cl s,

3. The Codazzi-Cartan connection
This section is devoted to defining the Codazzi-Cartan connection and finding its local
expression.
C
Definition 3.1. A Codazzi-Cartan connection V on a Finsler manifold (M, E) is defined
by the following axioms

c
(A1) V is h-metric; namely g;j, = 0,
(A2) There exist Ui, € C°(TM) invariant under any permutation of its indices, such that

Gijik = Wijk,
C .
(A3) V is h-torsion free, namely T" i, =0,
C .
(Ad) V is v-torsion free, namely S*;; =0,
(A5) Nj = szjil/k'

J

=

It is obvious that Definition 3.1 is a generalization of the Cartan Finsler connection;
namely (N7, F’ji,C"j1), and as in the situation of the Cartan connection, the cases like
(Vxvg)(YV, ZH) will be derived from the axioms. So, we deal with a family of connections
that are generalizations Cartan-like connections in a natural way. It is notable that these
axioms are mutually independent (just similar to the Cartan connection). Axiom A5 has
another equivalent in literature too. The reference [2] contains a detailed discussion about
these axioms on the Cartan connection. The axioms Al and A2 are called as h-parallel and
v-parallel properties of g with respect to the Cartan connection, and it is important to note
that one can not gather them into a single axiom. More precisely, the global expression of
Al and A2 is exactly

c c
(Vxvg) YV, 2V) = (Vxvg) (Y™, Zz") =0
c C
(VXHg)(vazv) = (VXHg)(YHa ZH) =0,
c
that is a special case, which is not equivalent to (Vxg)(Y, Z) = 0, where X YH# € HTM,

XV, YV € VIM and X,Y,Z € TTM are arbitrarily chosen. Obviously, other cases like

(%ng) (YV, ZH) can be determined by the axioms.

Hence, the Codazzi-Cartan and the Cartan connections will coincide when the metric
g is parallel with respect to the Cartan connection, namely 2l = 0. Moreover, one can see
that the approach from Definition 3.1 is different from the Codazzi equation (6.6) from [8].

Lemma 3.1. 2 has the following local expression

C_
Q’[(&m 837 aE) = 2Cijk - 2gmk Fmﬁ .
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Proof. We have

C C_ C_
(95,05, 0%) = gijik = (Vo,9)(05,05) = Orgij — 9mi U™ ki —Gmi L5

» Vg
which yields

(05, 05, 0r) =Gik;j + Gjksi — Gijsk
07
=0;9jk + 0;9ik — OrGij — 29mr I35

C,
=2C5jk — 2Gmi I -

O
C
The axioms Ay, -+ , A5 give us an opportunity to calculate the local expression of V
in the upcoming theorem.
c
Theorem 3.1. V has the local expression
¢ k
V5,05 = F";0f, (6)
¢ k
Vo,0; = V%0,
where 1

Proof. To derive the equation (6), we use the reference [12]. Since this part of the proof is
independent from the tensor 2, and all conditions are the same as for the Cartan connection,
according to [12] we have
c
29(v515j7 8];) = 529(63’615) + 5jg(afcv (f}z) - 5169(({}1 6})7
and hence we get the result (6). To prove (7), the using of Lemma 3.1 suffices. O

e
So, by using the transvection Qlkij = gkalijm, V can be determined by the triplet
(NJ, F*i5,Crij — 5U%5).
In the following, we will investigate how two Cartan and Codazzi-Cartan connections
are mutually related when their curvatures coincide.
, . , c c ¢
Proposition 3.1. The triplets (R'njk, P'hjk, S'hjr) and (R'pjk, P'hjk, S'hjk) as curvature
components of the Cartan and the Codazzi-Cartan connections, coincide if and only if
ApmeR™ 1 =0
5j(9(zhk) + szjmphk — thjglzpk — Fpkjglzhp = mzhmpmjk
2(05% e — OpA'nj) = (C" Ak = Cr kA" nj + A" 1 A )
(O A s — O g 2A e+ A™ 1 2A ).

c
Corollary 3.1. If Sihjk: Sihjk and 51, = Cyji, then E reduces to a Riemannian metric.
c
Proof. It suffices to multiply the two sides of Sihjk: Sihjk with y*. Since Cijh is a homo-
geneous function of degree zero, we infer C*;; = 0, and consequently Cj i = 0. O

c
Corollary 3.2. If Sihjk: Sihjk and ykﬁlijk =0, then E reduces to a Riemannian metric.

Proof. If we multiply the two sides of the third equation of Proposition 3.1 with ¥, we get
—Aty; = y*O;A%,;, which shows that A?j; should identically vanish. O
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4. The -change on Finsler manifolds

Let E; be a Finslerian metric. Then its S-change (following the definition from [1])
is
EZ(x7 y) = ea(g;)El(m? y) + 6(1’, y)7
where ¢ and 3 := b;y’ are a function and a 1—form on M, respectively. Under this change,
the Cartan tensor changes as follows
1

C’ijk = T(ka + 2F,

hzjk)a

where h;j, = hiymg + hjpm; + hgm; and my = b; — E%&,El (see [1] for details). Now we
are ready to investigate the change of the Codazzi-Cartan connection under this proccess.
We can derive the following theorem by using [1] and some direct substitutions.

0
Theorem 4.1. Let (Nz F ik, Vijk) and (N F k> szk) be the Codazzi-Cartan connections
of the Finsler manifolds (M, Ey) and (M, Eg) respectively. Then the following relation holds.

1. 0

3 1 — m m — m m
Vi = Vi =<[r g™ + uE " Ey" — 772 (Ey™0 + By ™))

2
1 1 1) 0
2E hz]m) legm] - glg k(20”m - Q[ijm)7

(8)
[QT(C”m +

whererze"%, p=S=e gﬂ;;—ﬁ b% =b;b’, b' ='¢"b; and B} =1 ”('}El

1 0
Corollary 4.1. Let Ey change to Ey conformally. Then V', — V', = 0 if and only if the

tensor 3( changes conformally to 91l by 51 = 6203[.
Proof. If we put = 0, then the following equations hold
bi=0, m=0, hyjp=0, p=0.
By substituting these equations in (8), the assertion follows. |

We investigate the relation between two Codazzi-Cartan and Cartan connections,
when their Finslerian metrics vary under a conformal change. Accordingly, by putting

0
2A = 0in (8), we infer the following result
Corollary 4.2. Let Fy change to Es under a B-change. If we equip the Finslerian manifold

(M, Ey) with the Cartan connection and the Finslerian manifold (M, E2) with the Codazzi-
Cartan connection, then we have the following relation

1. 1
Vljk — 5[7,7llgmk —|—,uE1mE1k _ 7_72(E1mbk +E1kbm)]
1 1 )
[QT(Cij + — 2F, 1]m) Q[z]m] - 1gkaijm + Clj]f.

4.1. Codazzi-Cartan connections on the indicatrix space

Let E : TM — RZ° be a Finslerian metric. The indicatrix space I related to the
FE is the collection of unit vectors with respect to E. The unit vector field normal to the

indicatrix space is the vector field L : TM — TTM defined by L(z,y) = & y)8— So, by
considering the tangent sub-bundle {A — g(A, L)L|A € TTM?}, we can eablly infer
TIg = Span{A4,; := 9; — ¢g(0;, L)L.5;}.

1<i<n
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Note that {Ay,---, A,} are not independent, but they span an (n — 1)-dimensional space.
If the Finslerian metric E; changes to F5 by a (-change, then one can define a smooth

mapping f : I — Iy by
_ Y
f(xvy)_ (1.7 €”+ﬁ(l‘,y)> (9)

Note that E5 is a Finslerian metric and hence
Ey(x,y) = @B (,y) + Bz,y) = "™ + B(z,y) > 0,

for (z,y) € Iy, and if the base manifold is compact, then we can claim that there exists
a function o and an 1—form § on M such that e” 4+ B(z,y) is non-zero and positive on
non-zero vectors. So, we make a (-change with such a function and an 1-form.

In [4], the authors proved that there exists a coordinate system

1 n 1 n—1 n
(1’,"',33 YUy, U , U )7
on TM, such that (x',--- 2™ ul,--- " !) is the coordinate system on the indicatrix
space, where (z!,---,2") denotes the position. From now on, we will work with such a

coordinate system, which we employ in order to provide a coordinate system on I5.
The following proposition shows that f is a diffeomorphism.

Proposition 4.1. The function f: Iy — Iy given by (9), is a diffeomorphism.

Proof. Tt suffices to show that f is a topological homeomorphism, since it is a differentiable

mapping. Let (x1,y1), (x2,y2) € I1 be such that f(x1,y1) = f(x2,y2). By using (9), we
get ¥1 = x5 and we will have y; = %yg. But, Fi(x1,y1) = FEi(z2,y2) = 1 and

so Lgiyiyl = 1 = Yg;ybyl. This shows that (%)2 = 1.

E )
% =1, and then y; = ys. O

Since Es > 0, we infer

Since f is a diffeomorphism, by using the coordinate system

(.1317 e 7$nau1a U 7un71)a

on I1, we can define a coordinate system (&', --- , 2", @', .- , 4" ') on Iy, such that f*(a‘zi) =

-2 = 0;. It is obvious that §'(z,y) = Ea(z0,y0)y’, where (z,y) € I> and (z0,30) € I;. We

extend this coordinate system to TM, and we denote it as (z!,--- , 2", at,--- a1 an).
Now, we would like to compute the differential mapping of f. Let v : (—e,e) = I1

pass through (zg,y0) € I; with

_{, yo + K (0;)t
V() = < % By (0, o +K(6%)t)> ’

where K : TTM — TM is the connection map. Then we have
d Yo + K (0;)t
* Az = &z = T, lt= ) l
Jo (=0 = Gh=0(r0 B v+ K@))e ) + (o, v0 + K(OD)
_ (e70) + B(w0, 0))D5 — [05Ea(wo, yo)e” ™) + B(zo, K (5))]yo
(e7@0) + B(x0,0))?

Now, let () = (xt(t), -+, 2" (t), y (1), -,
(m(lja e ax6L7y[1)7' t ayg) S Ila SuCh that 7/(0)

LA ()
ot t=0 < ). Ez(x(t),y(t))>.

(10)

™(t)) be a curve in I; which passes through
= 6;(z0,y0). Then we have

f*(éi)
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By differentiation, from the above equation we get

0 1
(i) =5 —
1) 0zt Es(xo,Y0)

- i |5+ s = N0 w)(ao) | 75

Now, we focus on the case 3 = 0. We first use several abbreviations on (10) and (11). We
perform a new nonlinear splitting by {9;, d;, %85 = 2L}, where

A S

YT 0@t Ea(zo,90)

So, under the assumption 8 = 0 and using (12), we have

N o .
fu(di) = b — (a;-@a(m)> ' 05

Ng(%,yo)éj

(11)

N (20, 0)0;. (12)

If we use the new horizontal space H from above, in order to define a new metric Gi]’ =29,
as well as the induced metric from the Finsler metric F1, then we can pullback it to I7. Its
components are provided by

f1G(0;,0;) = ¥ g,

J

* Y o 80
[*G(8;,0;) = —€ @&'Eh
= Jo Oo
* _ 201, . 7 MY 20
f G((S“(s]) =€ g” + 6l‘i 83:16

We shall further work in the above introduced coordinate systems on (TM \ {0}, ’E), and
use the horizontal space H spanned by

- 0 1 j ~
= a5 = By

n

i=1
By using these notations, we define a pseudo-Cartan connection (]\Nf]‘7 f;"ijk, éljk) on TM\{0},
by

2 _im

1
Fin = 5 9 (6; 2gmh +6n 2gjm —Om 2gin),

. 1 ..
C'n = 3 29””(35 2gmh + 05 2Gim — Om 2gin)-

We can transfer the pseudo-Cartan connection on I7, as follows
(Vaﬁ;)k = (proj@&iég)k, (V(;ia;)’“ = (proj@f*((;i)ég)k,

where proj@ is the induced pseudo-Cartan connection on I5. We shall investigate when does
this connection coincide with the Codazzi-Cartan connection on I7.

By straight computations, we infer the following theorem.
Theorem 4.2. The connection V is provided by

(Vo,05)% = CE — C(0aF2) i,

: ~ a A ~ do T ~a
(V&:aj)k = Fi];' - Fij(66E2)yk - [“)gEie Y ij
do o~a/Ns (9 ~
+ 55:¢ Y Caj(agEQ)yk.

Now, we are ready to get the essential sufficient condition on the tensor 2, for V to
coincide with the Codazzi-Cartan connection on I.
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. C
Theorem 4.3. Let projV be the defined connection and let projV be the induced Codazzi-
Cartan connection on Iy. Then these two connections coincide if and only if

Cs — C&(DaBn)y* — [CF — O (0aB2)i*|0x Bry® = Vi — Vi (OREv)y*,

and
s a9 ~s do o ~a /s do o~a/vs (A ~5 Jdo o
FY — Fi5(0aE2)y° — 97i¢ Y Cqj + 97i¢ Y Coj(0isE2)7 95
r- ma (9 ~ do O ~a do o~a/NS (9 ~ do o s
= [Ff = Fi(0aBo)i" — 5=e75"Caj + 5675 Coj (05 B2)7" 57| (O )y

= Fj; — FE (0 By,
fors=1,---,n, where V¥;; = %gmk(QC'ijm —A(0;, 05, 0m))-

Proof. First, we should project the local vector fields v@a; fori,j=1,---,n—1and V(;i@j
fori =1,---,n, j=1---,n—1on I; along the normal vector field to I;. Moreover,

C
we should project V on Iy, too. The remaining part of the proof achieved by setting these
projections equal. O
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Appendix

For a fast and easy view, we mention all the used notations.
Suppose (M, E) is an n-dimensional Finsler manifold.

8;: partial derivative with respect to z*;
O;: partial derivative with respect to y*;

d;: partial derivative with respect to horizontal base local fields %'

Rl
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N;: non-linear connection in section 2 and Cartan nonlinear connection induced by E in other

sections;

RF;;: curvature tensor fields of the non-linear connection N;
gij: used for both the metric tensor of E and its Sasaki lift;
’yki]’: the Christoffel symbols of the metric tensor g;

G": the components of canonical spray S of E;

., ;: the horizontal and the vertical derivatives, respectively;
(N}, 9%:;,€%;): a Finsler connection F¢;

Ckij: the Cartan tensor field;

%: the Codazzi-Cartan connection;

;1 Codazzi components of the Codazzi-Cartan connection;

V: the Cartan connection;

V: the defined connection on the tangent bundle, by using the pseudo-Cartan connection;

I;: the indicatrix induced by the Finsler metric Fj;

I'i%: the restriction of % to I;;

TiV: the restriction of V to I;;

g: the metric tensor of E; and its Sasaki lift;

Iig: the restriction of the metric tensor of E; and its Sasaki lift to I;;

G the defined Riemannian metric using the horizontal space H , the vertical space and the metric

29.



