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CODAZZI-CARTAN CONNECTIONS ON FINSLER SPACES

E. Peyghan1, E. Sharahi2, A. Baghban3

The aim of this paper is to introduce Codazzi-Cartan connections on Finsler

spaces. These connections are generalizations of Cartan connections in the sense of

substituting the Codazzi symmetry instead of parallelism in the vertical sub-bundle. The
β-change is considered on Finslerian spaces and the induced structures on the indicatrix

spaces will be investigated by using a natural diffeomorphism.

Keywords: Codazzi-Cartan connection, Finsler space, statistical manifold, tangent bun-
dle.

1. Introduction

Finsler geometry is one of the generalizations of Riemannian geometry. The history of
Finsler geometry is contained in consistent monographs, such as [3, 4, 5]. In this framework, a
characteristic trait is the considerable amount of tensors and notations. A defining mapping
E : TM → R+ endowed with certain properties provides the most noteable geometric objects
of the theory. The occurrence of E may be motivated by introducing a distance function

d : TM → R+ which yields E := limt→0
d(x,γ(t))

t , where γ is a curve on M , with initial rate
y ∈ TxM (a more detailed motivation can be read in [7]). As well, a defining alternative
might be a PDE having E as a solution having the properties of a Finsler metric (e.g., many
of dynamical systems are examples of such differential equations). Several example-based
developments of this kind are provided in [7].

A statistical manifold is a triple (M, g,∇), where g is a Riemannian metric on a
manifold M and ∇ is a symmetric linear connection, such that the cubic tensor field C = ∇g
is totally symmetric, namely the following Codazzi equations hold:

Cijk = ∂k(gij)− Γhikgjh − Γhjkgih, Cijk = Cjki = Ckij ,

where Γijk are the Christoffel symbols of ∇.
Several works naturally extend statistical Riemannian structures to the Finsler tan-

gent bundle (e.g., [11]). However, our approach in this paper is a different one. Indeed, we
define the Codazzi-Cartan connections for a Finslerian metric, which include in particular
the special case of the Cartan connection.

By using a β-change on a Finsler metric, one can get another Cartan connection.
So, starting from a Cartan connection we have two distinct connections; one of them is a
Codazzi-Cartan connection, and the other is defined by a β-change. Using the relations
between these connections, we derive some necessary conditions, under which the Finslerian
metric reduces to a Riemannian one. We know that the indicatrix space modifies under a
β-change. We would like to define a natural diffeomorphism between these two indicatrix
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spaces, and then pullback the Codazzi structures in order to see how they mutually connect.
This procedure will be ensured by a pseudo-Cartan connection whose nonlinear component
is derived by this natural diffeomorphism.

This paper is organized as follows: the second Section includes preliminaries on non-
linear Finslerian connections and the related structures. The third Section is devoted to
the study of Codazzi structures and some of their features. The final Section explains the
β-change. This Section introduces a natural diffeomorfism between the indicatrix spaces,
which are related to a β-change. Moreover, we study the induced structures and obtain
relations under which they coincide.

2. Preliminaries

This Section contains the basic concepts needed to proceed. Details of these prelimi-
naries can be found in e.g. [10]. In the following, we assume that the dimension of the base
manifold M is n.

2.1. Split tangent bundle and (non)linear connections

Let N be a nonlinear connection with respect to a Finsler metric. This is provided
by n2 functions N i

j(x, y) ∈ C∞(TM); for a vector field ∂i := ∂
∂xi , its horizontal lift (∂i)

H is

δi :=
δ

δxi
=

∂

∂xi
−N j

i (x, y)
∂

∂yj
.

The local fields δi and ∂ī := ∂
∂yi = (∂i)

V form a local basis in HTM and V TM , respectively;

thus

{δi, ∂ī}, i = 1, · · · , n, ī = 1̄, · · · , n̄, (1)

is a local basis in TTM adapted to the splitting TTM = HTM+V TM . We denote its dual
basis by (dxi, δyi), where δyi := dyi +N i

j(x, y)dxj . The torsion of the nonlinear connection

N is defined by tijk := ∂k̄N
i
j − ∂j̄N i

k. By setting Rijk := δkN
i
j − δjN i

k, the Lie brackets of
the vector fields from the adapted basis (1) are given by

[δj , δk] = Rijk∂ī, [δj , ∂k̄] = ∂k̄N
i
j∂ī, [∂j̄ , ∂k̄] = 0.

The vanishing of Rijk is an iff condition for [δj , δk] ∈ HTM . Hence, we call Rijk as the
curvature tensor field components of the nonlinear connection N .

2.2. Finsler spaces

Let (M,E) be a Finsler space; we consider the bilinear form

gij(x, y) :=
1

2
∂ī∂j̄E

2, (2)

called the metric (or the fundamental) tensor, with the inverse gij defined by gijg
jk = δki .

The transvection by this metric makes it possible to move up and down the indices. For
instance, if Aijk is a tensor, then we can produce the transvected tensor Ajkm := gimA

i
jk.

In a similar manner, by using gij , we can move indices up. Our agreement is that in
any transvection, the new index stands on the rightmost position. An essential symmetric
(0, 3)-tensor is Cijk := 1

2∂īgjk, called the Cartan tensor field. Further, by the transvection

Ckij := gkmCijm, define the (0,2)-tensor C(∂i, ∂j) := Ckij∂k, whose vanishing is equivalent
with reducing the Finsler space to a Riemannian one. We denote the Christoffel symbols of
the metric tensor (2) by

γijk(x, y) :=
1

2
gir(x, y)(∂jgrk(x, y) + ∂kgrj(x, y)− ∂rgjk(x, y)).
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As well. there exist two important objects determined only by E: the canonical spray S :=
yi∂i−2Gi(x, y)∂ī associated with the Finsler space (M,E), whereGi(x, y) := 1

2γ
i
jk(x, y)yjyk,

and the Cartan nonlinear connection N defined by

N i
j(x, y) :=

1

2
∂j̄G

i(x, y), (3)

which is globally defined on TM\{0} (which we shall denote this by the same symbol N ,
while the context specifies which nonlinear connection we consider on the space). By using
(2), we can prove that the local equality g(∂ī, ∂j̄) = gij . There is a natural lift (named Sasaki
lift), that extends g to HTM and makes V TM and HTM to be orthogonal by putting
g(δi, δj) = gij . We will use this lift hereafter. The formula g(∂i, ∂j) = gij + Nm

i N
n
j gmn

holds, as well. Now, we define the generalized Christioffel symbols
F ijh :=

1

2
gim(δjgmh + δhgjm − δmgjh), (4)

Cijh =
1

2
gim(∂j̄gmh + ∂h̄gjm − ∂m̄gjh). (5)

It is notable that the right hand side of (5) can be simplified to its left hand side. For
a Finsler metric E, it is customary to denote a Finsler connection as FC 1 by a triple
(N i

j ,F
i
jk,C

i
jk), where Fijk,C

i
jk ∈ C∞(TM) and N i

j is just (3). Moreover, we denote the
local expressions of the horizontal and vertical covariant derivatives of g with respect to a
Finsler connection (N i

j ,F
i
jk,C

i
jk) by{

gij,k := δkgij − gmjFmik − gmiFmjk
gij;k := ∂k̄gij − gmjCmik − gmiCmjk.

Due to the properties of the Sasaki metric, we can work on vertical sections only. Indeed, in
a Finsler space (M,F ) the local expression of a covariant derivative ∇ as a FC with respect
to (1), and the Sasaki extension of the fundamental metric (2), is

∇δiδj = Γkijδk + Γk̄ij∂k̄, ∇δi∂j̄ = Γkij̄δk + Γk̄ij̄∂k̄,

∇∂īδj = Γkījδk + Γk̄ īj∂k̄, ∇∂ī∂j̄ = Γkīj̄δk + Γk̄ īj̄∂k̄,

where α, β, γ ∈ {1, · · · , n, 1̄, · · · , n̄}, Γγαβ ∈ C∞(TM) where k̄ = n+ k. But ∇ is a Finsler
connection, namely

ρ(∇XY ) = ∇X(ρY ), and ∇XV TM ⊆ V TM,

where ρ(δi) := ∂ī and ρ(∂ī) := −δi. So{
Γk̄ij = Γkij̄ = Γk̄ īj = Γkīj̄ = 0,

Γkij = Γk̄ij̄ , Γkīj = Γk̄ īj̄ .

Thus we can focus only on the situations{
∇δi∂j̄ = Γk̄ij̄∂k̄,

∇∂ī∂j̄ = Γk̄ īj̄∂k̄.

Also, the torsion of the Riemannian subcase shall naturally generalize to the h-torsion
and to the v-torsion {

T ijk := Fijk − Fikj ,

Sijk := Cijk − Cikj .

1We prefer using the notation FC for its components instead of FC, which denotes the abbreviation for
”Finsler connection”.



82 E. Peyghan, E. Sharahi, A. Baghban

According to [9], a Finsler connection (N i
j ,F

i
jk,C

i
jk) has only three local components

of curvature Rihjk, P
i
hjk and Sihjk given by

Rihjk =
δFihj
δxk

− δFihk
δxj

+ FmhjF
i
mk − FmhkF

i
mj + CihmR

m
jk,

P ihjk =
∂Fihj
∂yk

− Cihk,j + CihmP
m
jk,

Sihjk =
∂Cihj
∂yk

− ∂Cihk
∂yj

+ CmhjC
i
mk − CmhkC

i
mj ,

where, P kji := ∂īN
k
j − F kij .

3. The Codazzi-Cartan connection

This section is devoted to defining the Codazzi-Cartan connection and finding its local
expression.

Definition 3.1. A Codazzi-Cartan connection
C

∇ on a Finsler manifold (M,E) is defined
by the following axioms

(A1)
C

∇ is h-metric; namely gij,k = 0,
(A2) There exist Aijk ∈ C∞(TM) invariant under any permutation of its indices, such that

gij;k = Aijk,

(A3)
C

∇ is h-torsion free, namely T ijk = 0,

(A4)
C

∇ is v-torsion free, namely Sijk = 0,
(A5) N i

j = F ikjy
k.

It is obvious that Definition 3.1 is a generalization of the Cartan Finsler connection;
namely (N i

j , F
i
jk, C

i
jk), and as in the situation of the Cartan connection, the cases like

(∇XV g)(Y V , ZH) will be derived from the axioms. So, we deal with a family of connections
that are generalizations Cartan-like connections in a natural way. It is notable that these
axioms are mutually independent (just similar to the Cartan connection). Axiom A5 has
another equivalent in literature too. The reference [2] contains a detailed discussion about
these axioms on the Cartan connection. The axioms A1 and A2 are called as h-parallel and
v-parallel properties of g with respect to the Cartan connection, and it is important to note
that one can not gather them into a single axiom. More precisely, the global expression of
A1 and A2 is exactly  (

C

∇XV g)(Y V , ZV ) = (
C

∇XV g)(Y H , ZH) = 0

(
C

∇XHg)(Y V , ZV ) = (
C

∇XHg)(Y H , ZH) = 0,

that is a special case, which is not equivalent to (
C

∇Xg)(Y, Z) = 0, where XH , Y H ∈ HTM ,
XV , Y V ∈ V TM and X,Y, Z ∈ TTM are arbitrarily chosen. Obviously, other cases like

(
C

∇XV g)(Y V , ZH) can be determined by the axioms.
Hence, the Codazzi-Cartan and the Cartan connections will coincide when the metric

g is parallel with respect to the Cartan connection, namely A = 0. Moreover, one can see
that the approach from Definition 3.1 is different from the Codazzi equation (6.6) from [8].

Lemma 3.1. A has the following local expression

A(∂ī, ∂j̄ , ∂k̄) = 2Cijk − 2gmk
C

Γm̄īj̄ .
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Proof. We have

A(∂ī, ∂j̄ , ∂k̄) = gij;k = (
C

∇∂k̄g)(∂ī, ∂j̄) = ∂k̄gij − gmj
C

Γm̄k̄ī −gmi
C

Γm̄k̄j̄ ,

which yields

A(∂ī, ∂j̄ , ∂k̄) =gik;j + gjk;i − gij;k

=∂īgjk + ∂j̄gik − ∂k̄gij − 2gmk
C

Γm̄īj̄

=2Cijk − 2gmk
C

Γm̄īj̄ .

�

The axioms A1, · · · , A5 give us an opportunity to calculate the local expression of
C

∇
in the upcoming theorem.

Theorem 3.1.
C

∇ has the local expression
C

∇δi∂j̄ = F kij∂k̄, (6)

C

∇∂ī∂j̄ = V kij∂k̄,

where

V kij =
1

2
gmk(2Cijm − A(∂ī, ∂j̄ , ∂m̄)). (7)

Proof. To derive the equation (6), we use the reference [12]. Since this part of the proof is
independent from the tensor A, and all conditions are the same as for the Cartan connection,
according to [12] we have

2g(
C

∇δiδj , ∂k̄) = δig(∂j̄ , ∂k̄) + δjg(∂k̄, ∂ī)− δkg(∂ī, ∂j̄),

and hence we get the result (6). To prove (7), the using of Lemma 3.1 suffices. �

So, by using the transvection Akij := gmkAijm,
C

∇ can be determined by the triplet
(N i

j , F
k
ij , C

k
ij − 1

2A
k
ij).

In the following, we will investigate how two Cartan and Codazzi-Cartan connections
are mutually related when their curvatures coincide.

Proposition 3.1. The triplets (Rihjk, P
i
hjk, S

i
hjk) and (

C

Rihjk,
C

P ihjk,
C

Sihjk) as curvature
components of the Cartan and the Codazzi-Cartan connections, coincide if and only if

AhmtR
m
jk = 0

δj(A
i
hk) + F ipjA

p
hk − F phjAipk − F pkjAihp = AihmP

m
jk

2(∂j̄A
i
hk − ∂k̄Aihj) = (CmhjA

i
mk − CimkAmhj + AmhjA

i
mk)

+(CmhkA
i
mj − CimjAmhk + AmhkA

i
mj).

Corollary 3.1. If
C

Sihjk= Sihjk and Aijk = Cijk, then E reduces to a Riemannian metric.

Proof. It suffices to multiply the two sides of
C

Sihjk= Sihjk with yk. Since Cijh is a homo-
geneous function of degree zero, we infer Cihj = 0, and consequently Cijk = 0. �

Corollary 3.2. If
C

Sihjk= Sihjk and ykAijk = 0, then E reduces to a Riemannian metric.

Proof. If we multiply the two sides of the third equation of Proposition 3.1 with yk, we get
−Aihj = yk∂k̄A

i
hj , which shows that Aihj should identically vanish. �
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4. The β-change on Finsler manifolds

Let E1 be a Finslerian metric. Then its β-change (following the definition from [1])
is

E2(x, y) = eσ(x)E1(x, y) + β(x, y),

where σ and β := biy
i are a function and a 1−form on M , respectively. Under this change,

the Cartan tensor changes as follows

C̄ijk = τ(Cijk +
1

2E2
hijk),

where hijk := hijmk + hjkmi + hkimj and mi := bi − β
E1
∂īE1 (see [1] for details). Now we

are ready to investigate the change of the Codazzi-Cartan connection under this proccess.
We can derive the following theorem by using [1] and some direct substitutions.

Theorem 4.1. Let (
0

N i
j ,

0

F ijk,
0

V ijk) and (
1

N i
j ,

1

F ijk,
1

V ijk) be the Codazzi-Cartan connections
of the Finsler manifolds (M,E1) and (M,E2), respectively. Then the following relation holds.

1

V ijk −
0

V ijk =
1

2
[τ−11gmk + µE1

mE1
k − τ−2(E1

mbk + E1
kbm)]

[2τ(Cijm +
1

2E2
hijm)−

1

Aijm]− 1

2
1gmk(2Cijm −

0

Aijm),

(8)

where τ = eσ E2

E1
, µ = eσE1b

2+β
E2τ2 , b2 = bib

i, bi = 1gijbj and Ei1 = 1gij∂j̄E1.

Corollary 4.1. Let E1 change to E2 conformally. Then
1

V ijk −
0

V ijk = 0 if and only if the

tensor
0

A changes conformally to
1

A by
1

A = e2σ
0

A.

Proof. If we put β = 0, then the following equations hold

bi = 0, m = 0, hijk = 0, µ = 0.

By substituting these equations in (8), the assertion follows. �

We investigate the relation between two Codazzi-Cartan and Cartan connections,
when their Finslerian metrics vary under a conformal change. Accordingly, by putting
0

A = 0 in (8), we infer the following result

Corollary 4.2. Let E1 change to E2 under a β-change. If we equip the Finslerian manifold
(M,E1) with the Cartan connection and the Finslerian manifold (M,E2) with the Codazzi-
Cartan connection, then we have the following relation

1

V ijk =
1

2
[τ−11gmk + µE1

mE1
k − τ−2(E1

mbk + E1
kbm)]

[2τ(Cijm +
1

2E2
hijm)−

1

Aijm]− 1gmkCijm + Cijk.

4.1. Codazzi-Cartan connections on the indicatrix space

Let E : TM → R≥0 be a Finslerian metric. The indicatrix space IE related to the
E is the collection of unit vectors with respect to E. The unit vector field normal to the

indicatrix space is the vector field L : TM → TTM defined by L(x, y) = yi

E(x,y)∂ī. So, by

considering the tangent sub-bundle {A− g(A,L)L|A ∈ TTM}, we can easily infer

TIE = Span
1≤i≤n

{Ai := ∂ī − g(∂ī, L)L.δi}.



Codazzi-Cartan connections on Finsler spaces 85

Note that {A1, · · · , An} are not independent, but they span an (n − 1)-dimensional space.
If the Finslerian metric E1 changes to E2 by a β-change, then one can define a smooth
mapping f : I1 → I2 by

f(x, y) =

(
x,

y

eσ + β(x, y)

)
. (9)

Note that E2 is a Finslerian metric and hence

E2(x, y) = eσ(x)E1(x, y) + β(x, y) = eσ(x) + β(x, y) ≥ 0,

for (x, y) ∈ I1, and if the base manifold is compact, then we can claim that there exists
a function σ and an 1−form β on M such that eσ + β(x, y) is non-zero and positive on
non-zero vectors. So, we make a β-change with such a function and an 1-form.

In [4], the authors proved that there exists a coordinate system

(x1, · · · , xn, u1, · · · , un−1, un),

on TM , such that (x1, · · · , xn, u1, · · · , un−1) is the coordinate system on the indicatrix
space, where (x1, · · · , xn) denotes the position. From now on, we will work with such a
coordinate system, which we employ in order to provide a coordinate system on I2.

The following proposition shows that f is a diffeomorphism.

Proposition 4.1. The function f : I1 → I2 given by (9), is a diffeomorphism.

Proof. It suffices to show that f is a topological homeomorphism, since it is a differentiable
mapping. Let (x1, y1), (x2, y2) ∈ I1 be such that f(x1, y1) = f(x2, y2). By using (9), we

get x1 = x2 and we will have y1 = E2(x1,y1)
E2(x2,y2)y2. But, E1(x1, y1) = E1(x2, y2) = 1 and

so 1gijy
i
1y
j
1 = 1 = 1gijy

i
2y
j
2. This shows that (E2(x1,y1)

E2(x2,y2) )2 = 1. Since E2 ≥ 0, we infer
E2(x1,y1)
E2(x2,y2) = 1, and then y1 = y2. �

Since f is a diffeomorphism, by using the coordinate system

(x1, · · · , xn, u1, · · · , un−1),

on I1, we can define a coordinate system (x̃1, · · · , x̃n, ũ1, · · · , ũn−1) on I2, such that f∗(
∂
∂ui ) =

∂
∂ũi = ∂̃ī. It is obvious that ỹi(x, y) = E2(x0, y0)yi, where (x, y) ∈ I2 and (x0, y0) ∈ I1. We

extend this coordinate system to TM , and we denote it as (x̃1, · · · , x̃n, ũ1, · · · , ũn−1, ũn).
Now, we would like to compute the differential mapping of f . Let γ : (−ε, ε) → I1

pass through (x0, y0) ∈ I1 with

γ(t) =

(
x0,

y0 +K(∂ī)t

E2(x0, y0 +K(∂ī)t)

)
,

where K : TTM → TM is the connection map. Then we have

f∗(Ai = ∂ī) =
d

dt
|t=0(x0,

y0 +K(∂ī)t

E2(x0, y0 +K(∂ī)t)e
σ(x0) + β(x0, y0 +K(∂ī)t)

)

=
(eσ(x0) + β(x0, y0))∂̃ĩ − [∂īE2(x0, y0)eσ(x0) + β(x0,K(∂ī))]y0

(eσ(x0) + β(x0, y0))2
. (10)

Now, let γ(t) = (x1(t), · · · , xn(t), y1(t), · · · , yn(t)) be a curve in I1 which passes through
(x1

0, · · · , xn0 , y1
0 , · · · , yn0 ) ∈ I1, such that γ′(0) = δi(x0, y0). Then we have

f∗(δi) =
d

dt

∣∣∣∣
t=0

(
x(t),

y(t)

E2(x(t), y(t))

)
.
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By differentiation, from the above equation we get

f∗(δi) =
∂

∂x̃i
− 1

E2(x0, y0)
N j
i (x0, y0)∂̃j̄

− 1

E2
2(x0, y0)

[
∂σ

∂xi
eσ(x0) +

∂βk
∂xi

yk0 −Nk
i (x0, y0)βk(x0)

]
ỹj ∂̃j̄ .

(11)

Now, we focus on the case β = 0. We first use several abbreviations on (10) and (11). We

perform a new nonlinear splitting by {∂̃ī, δ̃i, ỹ
s

E2
∂s̄ = 2L}, where

δ̃i :=
∂

∂x̃i
− 1

E2(x0, y0)
N j
i (x0, y0)∂̃j̄ . (12)

So, under the assumption β = 0 and using (12), we have

f∗(δi) = δ̃i −
(
∂σ

∂xi
eσ(x0)

)
ỹj ∂̃j̄ .

If we use the new horizontal space H̃ from above, in order to define a new metric Ḡij = 2gij ,
as well as the induced metric from the Finsler metric E1, then we can pullback it to I1. Its
components are provided by

f∗Ḡ(∂ī, ∂j̄) = e2σ 1gij ,

f∗Ḡ(∂ī, δj) = −e2σ ∂σ

∂xj
∂īE1,

f∗Ḡ(δi, δj) = e2σ 1gij +
∂σ

∂xi
∂σ

∂xj
e2σ.

We shall further work in the above introduced coordinate systems on (TM \ {0}, 2E), and

use the horizontal space H̃ spanned by{
δ̃i =

∂

∂x̃i
− 1

E2(x0, y0)
N j
i (x0, y0)∂̃j̄

}n
i=1

.

By using these notations, we define a pseudo-Cartan connection (Ñ i
j , F̃

i
jk, C̃

i
jk) on TM \{0},

by 
F̃ijh :=

1

2
2gim(δj

2gmh + δh
2gjm − δm 2gjh),

C̃ijh =
1

2
2gim(∂j̃

2gmh + ∂h̃
2gjm − ∂m̃ 2gjh).

We can transfer the pseudo-Cartan connection on I1, as follows

(∇̇∂ī∂j̄)
k := (proj∇̃∂̃ī ∂̃j̄)

k, (∇̇δi∂j̄)k := (proj∇̃f∗(δi)∂̃j̄)
k,

where proj∇̃ is the induced pseudo-Cartan connection on I2. We shall investigate when does
this connection coincide with the Codazzi-Cartan connection on I1.

By straight computations, we infer the following theorem.

Theorem 4.2. The connection ∇̇ is provided by

(∇̇∂ī∂j̄)
k = C̃kij − C̃aij(∂̃āE2)ỹk,

(∇̇δi∂j̄)k = F̃ kij − F̃ aij(∂̃āE2)ỹk − ∂σ

∂x̃i
eσ ỹaC̃kaj

+
∂σ

∂x̃i
eσ ỹaC̃saj(∂̃s̄E2)ỹk.

Now, we are ready to get the essential sufficient condition on the tensor A, for ∇̇ to
coincide with the Codazzi-Cartan connection on I1.
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Theorem 4.3. Let proj∇̇ be the defined connection and let proj
C

∇ be the induced Codazzi-
Cartan connection on I1. Then these two connections coincide if and only if

C̃sij − C̃aij(∂̃āE2)ỹs − [C̃kij − C̃aij(∂̃āE2)ỹk]∂k̄E1y
s = V sij − V kij(∂k̄E1)ys,

and

F̃ sij − F̃ aij(∂̃āE2)ỹs − ∂σ

∂x̃i
eσ ỹaC̃saj +

∂σ

∂x̃i
eσ ỹaC̃saj(∂̃īsE2)ỹs

∂σ

∂x̃i
eσ

− [F̃ kij − F̃ aij(∂̃āE2)ỹk − ∂σ

∂x̃i
eσ ỹaC̃kaj +

∂σ

∂x̃i
eσ ỹaC̃saj(∂̃īsE2)ỹk

∂σ

∂x̃i
eσ](∂k̄E1)ys

= F sij − F kij(∂k̄E1)ys,

for s = 1, · · · , n, where V kij = 1
2g
mk(2Cijm − A(∂ī, ∂j̄ , ∂m̄)).

Proof. First, we should project the local vector fields ∇̇∂ī∂j̄ for i, j = 1, · · · , n−1 and ∇̇δi∂j̄
for i = 1, · · · , n, j = 1 · · · , n − 1 on I1 along the normal vector field to I1. Moreover,

we should project
C

∇ on I1, too. The remaining part of the proof achieved by setting these
projections equal. �
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Appendix

For a fast and easy view, we mention all the used notations.
Suppose (M,E) is an n-dimensional Finsler manifold.

∂i: partial derivative with respect to xi;

∂ī: partial derivative with respect to yi;

δi: partial derivative with respect to horizontal base local fields δ
δxi

;
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N i
j : non-linear connection in section 2 and Cartan nonlinear connection induced by E in other

sections;

Rkij : curvature tensor fields of the non-linear connection N ;

gij : used for both the metric tensor of E and its Sasaki lift;

γkij : the Christoffel symbols of the metric tensor g;

Gi: the components of canonical spray S of E;

,, ;: the horizontal and the vertical derivatives, respectively;

(N i
j ,F

k
ij ,C

k
ij): a Finsler connection FC;

Ckij : the Cartan tensor field;

C

∇: the Codazzi-Cartan connection;

Aijk: Codazzi components of the Codazzi-Cartan connection;

∇: the Cartan connection;

∇̇: the defined connection on the tangent bundle, by using the pseudo-Cartan connection;

Ii: the indicatrix induced by the Finsler metric Ei;

Ii
C

∇: the restriction of
C

∇ to Ii;

Ii∇: the restriction of ∇ to Ii;

ig: the metric tensor of Ei and its Sasaki lift;

Iig: the restriction of the metric tensor of Ei and its Sasaki lift to Ii;

Ḡ: the defined Riemannian metric using the horizontal space H̃, the vertical space and the metric
2g.


